太陽観測におけるシーイング評価 Evaluation of the Seeing for Solar Observations

花岡 庸一郎(国立天文台) Y. Hanaoka (NAOJ)

1. Introduction

- 2. Solar Observations and the Seeing
- 3. Prospects for Solar Observations in Antarctica

1. Introduction Collaboration with Night-Astronomy People

- We are greatly interested in the seeing condition at Dome Fuji etc.
- The Sun is a possible light source in summertime
 - Evaluation of the seeing condition at Dome Fuji etc. with the Sun
- Collaboration for a seeing monitor/imaging instrument for the solar observation

1. Introduction Solar Observations and Antarctica

- Long, continuous sunshine
 - Seismology observations were attempted at the South Pole in 1970s-80s, but much attention has not been paid (e.g. Harvey 1989)
 - Weather condition was not very good
 - Seeing has not been considered to be very good
- Dome-C results (Lawrence et al. 2004)
 - Excellent seeing, good weather condition
 - Low scattered light
 - Low temperature, low water vapor pressure
- \rightarrow attracting solar observers' attention

2. Solar Observations and the Seeing

- Spatial resolution 0."1 has been quested for long time
- Late 1990s Adaptive optics became in operation
 - Now 0."1 resolution is available with a 1m telescope
- 2006- Hinode SOT realized 0".2 resolution from space
- In future: stable high resolution/comparable resolution in IR
 - Bigger telescopes, diffraction limited, are required (at ground base)

2. Solar Observations and the Seeing How to evaluate the seeing for solar observations?

- Direct imaging
- With seeing measuring instruments
 - Combining S-DIMM (Solar Differential Image Motion Monitor) and SHABAR (SHAdow-BAnd Ranger)
- Site tests for a 4-m telescope project, Advanced Technology Solar Telescope (ATST), were carried out extensively

2. Solar Observations and the Seeing ATST Site Survey

- Seeing was measured with S-DIMM+SHABAR system
- Major solar observation sites were covered
 - 6 sites including Haleakala (Maui), La Palma(Canaries), Big Bear(California), ...

Big Bear(old photo)

2. Solar Observations and the Seeing DIMM (Differential Image Motion Monitor)

 Fried parameter (a measure of the seeing) is derived from differential image motions

2. Solar Observations and the Seeing Solar DIMM

- The Sun is not a point source the solar limb is used to measure image motions
 - 1-dimensional motions

2. Solar Observations and the Seeing

SHABAR (SHAdow-BAnd Ranger) : Scintillation of the Sun and Stars

• σ_1^2 stars: 1~10⁻³ the Sun: 10⁻⁶~10⁻⁸

- Fried parameter and scintillation: anti-correlation

2. Solar Observations and the Seeing SHABAR

- Measuring the brightness of the Sun with a detector array
 - Very simple optics
 - The Sun is bright
 - 0.1~1200Hz

• Correlation between the scintillations shows $C_n^2(h)$ distribution

2. Solar Observations and the Seeing SHABAR

8

2

0

r₀ (cm)

Fried parameter(DIMM)

15 hr

15 hr

15 hr

16 hr

16 hr

16 hr

An example of measurements

- Combined with results from S-DIMM
- height distribution of the atmospheric turbulence

2. Solar Observations and the Seeing Seeing of the Best Solar Observing Sites

- Results from ATST site survey
 - Fried parameter r_0 > 10cm: 10-20% of the observing time

2. Solar Observations and the Seeing Seeing at Dome-C

- *r*₀> 10cm: 80% or more
 - Note: non-solar measurements, zenith
 - The seeing at Dome-C enables us to obtain diffraction-limited images without AOs??

3. Prospects for Solar Observations in Antarctica

- 1. Evaluation of the seeing
 - Anyhow, activity will start in summertime
 - Seeing monitor instruments and/or simple imagings
- 2. Scientific Observations
- 3. Future Prospects

3. Prospects for Solar Observations in Antarctica Evaluation of the Seeing at Dome Fuji etc. with the Sun

- S-DIMM/SHABAR
 - Our own seeing monitor: now constructing
 - For the room temperature, of course
- Imaging
 - Quality of usual white-light/G-band images are a good indicator of the seeing
 - Which telescope?

3. Prospects for Solar Observations in Antarctica Scientific Observations with a moderate size telescope

- Diffraction limited imaging observations with a moderate size telescope (30~50cm) are still strongly required
 - Flares, prominences, polarizations, ...
- Can a simple telescope achieve the diffraction limit?
 - A candidate: open telescope
 - Non-vacuum telescope, which realizes diffraction limited image quality

3. Prospects for Solar Observations in Antarctica Open Telescope

Dutch Open Telescope

- 45cm, La Palma, 1997~
- The first successfully operated Open Telescope
- Without any active wind control
- Structures and the secondary are cooled
- Diffraction limit without AO
- Imaging only

A hint for solar telescopes at Antarctica

3. Prospects for Solar Observations in Antarctica Scientific Observations with a Coronagraph

- Long lasting coronal sky (at Dome C)
 - A small coronagraph will produce high S/N images and Dopplergrams
- Coronagraph site after Norikura's shutdown?

A 10cm coronagraph of Norikura Solar Observatory, NAOJ

3. Prospects for Solar Observations in Antarctica Future Prospects

- Not only the next generation visible-light solar telescope, but also a large aperture IR/Coronal telescope
- IR/Corona requires
 - a large aperture (>2m)
 - Difficult targets for space telescopes
 - Excellent seeing
 - Difficult targets for AO
 - low scattered light
 - low temperature, low water vapor pressure
- Coronal Magnetic field observations will become possible