Seeing measurements using sonic anemometers

Kentaro Kurita (Tohoku univ.)

Contents

- Measuring method of seeing (C_T^2 method)
- Measurement system
- Results of test measurement
- Future Work

Seeing

The main sources of seeing degradation

- Free atmosphere
- Dome environment
- Surface Boundary Layer

Measuring method of Boundary Layer component C_T^2 method

$$C_T^2$$
 method

temperature fluctuation constant $C_T^2(\rho) = \frac{\langle (\theta(r+\rho) - \theta(r))^2 \rangle}{\frac{2}{3}}$

 $(\theta = T - \langle T \rangle$: temperature fluctuations ρ : separation between two points

refractive index fluctuation constant
$$C_N^2 = \left(\frac{80 \times 10^{-6} P}{T^2}\right)^2 C_T^2$$

seeing $\varepsilon_{\text{FWHM}} = 5.25 \ \lambda^{-\frac{1}{5}} \left(\int_{z}^{\infty} C_N^2(h) dh\right)^{\frac{3}{5}}$ (Fried 1966)

$$C_T^2$$
 method

Assuming the atmospheric turbulence follows Kolmogorov's power law . . .

 $C_T^2 = 13.67S_{\theta}(f)f^{\frac{5}{3}}U^{-\frac{2}{3}}$ $S_{\theta} \propto f^{-\frac{5}{3}}$ (Muschinski 2001) (U: wind speed f: frequency $S_{\theta}: \text{power spectrum of temperature fluctuations})$

 $\implies C_T^2 \text{ can be determined by measuring } S_\theta \text{ and } U$ $\implies \text{Sonic anemometer}$

Sonic anemometer

- This device determines the wind speed and the sound speed by measuring the time of flight of sonic pulses between pairs of transducers
- This device calculates the sonic temperature by the measured sound speed
- The lack of moving parts makes this operate in a tough environment

Measurement system

The outputs are 3d wind components and sonic temperature (4Hz~32Hz)

Future Work

 Using several sonic anemometers, we will develop a system that observes the altitude dependence of C_T² and determines the scale height of the boundary layer

We will be able to determine the most suitable height where the telescope should be set up in Antarctica

Sonic anemometer

Future Work

- Calculation of C_N² and seeing from C_T² values and Comparison with the DIMM measurements
- Investigation of the best fitting frequency range and time interval, when calculating the power spectrum of temperature fluctuations S_{θ}

 $C_{N}^{2} = \left(\frac{80 \times 10^{-6} P}{T^{2}}\right)^{2} C_{T}^{2}$ $\varepsilon_{\text{FWHM}} = 5.25 \,\lambda^{-\frac{1}{5}} \left(\int_{-\infty}^{\infty} C_N^2(\mathbf{h}) d\mathbf{h} \right)^{\frac{3}{5}}$ 10000 semple4.txt" | 1 u 12 1000 0.1 0.01 0.001 0.0001 0.001 0.01 0.1 ŧ. 10 fractuance

Cold test