Gravitational waves and neutrino emissions from the merger of binary neutron stars

Kenta Kiuchi, Y. Sekiguchi, K. Kyutoku, M. Shibata

<u>Ref. PRL 107, 051102 (2011)</u>

Introduction

Coalescence of binary neutron stars

- ✓ Promising source of GWs ⇒ Verification of GR
- Theoretical candidate of Short-Gamma-Ray Burst
- High-end laboratory for Nuclear theory
- Mass-Radius relation for Neutron Star \Rightarrow True nuclear theory

GW detectors

Image of GRB

Mass-Radius

Radius (km)

Black hole + disk?

Overview of binary neutron star merger

✓ M_{crit} depends on the Equation of State, i.e. M_{crit} = 1.2-1.7 M_{max} (Hotokezaka+11)

✓ Final massive NS or torus around BH are extremely hot, T \sim O(10) MeV ⇒Neutrino cooling plays an important role

<u>So far, the microphysics is neglected in NR simulations,</u> <u>except for the special case (Oechslin-Janka 07).</u>

Set up of binary neutron star

○ Shen EOS based on RMF theory (Shen+,98) \Rightarrow M_{crit} = 2.8-2.9 M_☉ ○ Equal mass model with 1.35, 1.5, 1.6 M_☉, i.e., M_{tot}=2.7, 3, 3.2 M_☉ \Rightarrow Light model : Hyper massive NS, Normal model : marginal, Heavy model : BH

Basic equations

 $G_{\mu\nu} = 8\pi T_{\mu\nu} \Rightarrow BSSN \text{ formulation (Shibata-Nakamura, 95, Baumgarte-Shapiro, 99)}$ $\nabla_{\mu}(\sqrt{-g}\rho u^{\mu}) = 0$ $\nabla_{\mu}(T^{\mu\nu}_{\text{(fluid)}}) = -Q^{\nu} \Rightarrow \text{HRSC scheme (LLF)}$ $\nabla_{\mu}(T^{\mu\nu}_{(\mathrm{rad})}) = +Q^{\nu}$: Radiation field $\frac{d}{dt}Y_{e,\nu_e,\bar{\nu_e},\dots} = \gamma_{e,\nu_e,\bar{\nu_e},\dots} : \text{Electron fraction etc.}$ $Q^{\mu} \& \gamma_{e,\nu_{e},\bar{\nu}_{e},\dots} \Rightarrow \text{GR leakage scheme} (\text{Sekiguchi 10})$ Reaction: $e^- + p \rightarrow n + \nu_e, e^+ + n \rightarrow p + \bar{\nu}_e, \cdots$ Numerics

Non-uniform grid structure with $\Delta x_{uni} = 300m$, $L \approx 500 km$ 4th-order Runge-kutta shceme

Einstein equations : 4th-order accuracy in space Hydrodynamics : 3rd-order accuracy in space

<u>Density color contour on x-y plane = orbital plane</u>

Light model (2.7 M_O)

Density

t = 0 ms

Temperature

60

50

10

Ø

30

, seV

30

-20

-30

-30

-28

t = 8.013 ms

x [kn]

10

t = 8.013 ms

x-z plane

Dependence of total mass on merger process

○ M_{crit} = 2.8-2.9 M_{\odot} for Shen EOS ⇒ M_{tot} =3.2 M_{\odot} model is expected to collapse to a BH directly.

t = 0 ms

Hyper massive neutron star (HMNS) is transiently produced \Rightarrow Black hole

Finite temperature effect

Entropy / baryon on x-y plane

just after the contact

t = 20.49 ms

Finite temperature as well as rapid rotation bottoms up M_{crit} \Rightarrow Maximum mass of an equilibrium configuration of differentially rotating star with non-zero T EOS (Galeazzi+ 11)

Gravitational Waveforms

Gravitational Wave Spectrum

GWs could be detected if the merger happens within 20 Mpc. Constraining EOS from HMNS peak frequency (Stergioulas+ 11)

Neutrino Luminosity

Hierarchy of Neutrino Luminosity

Hierarchy is $\bar{\nu}_e, \nu_e, \nu_{\mu,\tau}$

High temperature in HMNS $\Rightarrow e^- \& e^+$ by thermal photon, in particular the HMNS envelope $\bigcirc n + e^+ \Rightarrow p + \overline{\nu}_e$ $\bigtriangleup p + e^- \Rightarrow n + \nu_e$ because <u>neutron fraction > proton fraction</u>

Central engine of Short Gamma-Ray burst

Accretion disk mass \gtrsim 0.01 M_{\odot} to be a central engine (Setiawan+ 04)

Potential candidate of SGRB central engine

<u>Summary</u>

○ Binary neutron star merger Numerical Relativity simulations with microphysical process for the first time
○ GWs could be detected if it happened within 20 Mpc
○ Neutrino could be detected if it happened within 5 Mpc ⇒
Multi messenger astronomy
○ Possible candidate of SGRB central engine

Thank you for your attention.