Chap. 2 Stellar populations and chemical evolution

- Stars in a color-magnitude diagram
- nearby stars, globular clusters
- Stellar evolution and population synthesis
- evolutionary tracks, metallicity vs. age
- star formation, single starburst model
- Origin of elements and yields
- Supernovae and hypernovae
- Extremely metal-poor stars
- Neutron capture elements, CEMP stars
- Galactic chemical evolution
- IMF, SFR, Simple model, G-dwarf problem

1. Stars in a color-magnitude diagram (CMD)

CMD for nearby stars with Hipparcos satellite (1989~1993)

Many young stars + some old stars

Astrometry Satellites

GIII

General relativistic light-bending determined to 1 part in 10^{6}

1000 million objects measured to $I=20$

20 kpc

Horizon for proper motions
accurate to $1 \mathrm{~km} / \mathrm{s}$ accurate to $1 \mathrm{~km} / \mathrm{s}$

10 $\mu \mathrm{as}=10 \%$ error @distance 10kpc, 10 $\mathrm{\mu as} / \mathrm{yr}=1 \mathrm{~km} / \mathrm{s} @ 20 \mathrm{kpc}$ Hipparcos: 1mas = 10\% error @distance 100pc, 1mas/yr = 5km/s @ 1kpc

The Map of the Milky Way with Gaia

The coloured lines in the figure show the revised passbands for $G_{,} G_{B P}$ and $G_{R P}$ (green: G; blue $G_{B P}$; red: $G_{R P}$), defining the Gaia DR2 photometric system. The thin, grey lines show the nominal, pre-launch passbands published in Jordi et al. 2010, used for Gaia DR1.

Gaia HRD of sources with low extinction $(E(B-V)<0.015$ mag) satisfying the filters described in Sect. 2.1 $(4,276,690$ stars $)$. The colour scale represents the square root of the density of stars. Approximate temperature and luminosity equivalents for main-sequence stars are provided at the top and right axis, respectively, to guide the eye.

Photometric Systems

M. Bessel 2005 ARAA, 43, 293

TABLE 1 Wavelengths (\AA) and widths (\AA) of broad-band systems

UBVRI			Washington			SDSS			Hipparcos			WFPC2		
	λ eff	$\Delta \lambda$		$\lambda \mathrm{eff}$	$\Delta \lambda$		λ eff	$\Delta \lambda$		$\lambda \mathrm{eff}$	$\Delta \lambda$		λ eff	$\Delta \lambda$
U	3663	650	C	3982	1070	u^{\prime}	3596	570	H_{P}	5170	2300	F336	3448	340
B	4361	890	M	5075	970	g^{\prime}	4639	1280	B_{T}	4217	670	F439	4300	720
V	5448	840	T_{1}	6389	770	r^{\prime}	6122	1150	V_{T}	5272	1000	F555	5323	1550
R	6407	1580	T_{2}	8051	1420	i^{\prime}	7439	1230				F675	6667	1230
I	7980	1540				z^{\prime}	8896	1070				F814	7872	1460

TABLE 3 Wavelengths (\AA) and widths (\AA) of intermediate-band systems

Strömgren			DDO			Geneva			Vilnius			Walraven		
	λ eff	$\Delta \lambda$												
u	3520	314	35	3460	383	U	3438	170	U	3450	400	W	3255	143
v	4100	170	38	3815	330	B	4248	283	P	3740	260	U	3633	239
b	4688	185	41	4166	83	B1	4022	171	X	4050	220	L	3838	227
y	5480	226	42	4257	73	B2	4480	164	Y	4660	260	B	4325	449
β_{w}	4890	150	45	4517	76	V	5508	298	Z	5160	210	V	5467	719
β_{n}	4860	30	48	4886	186	V1	5408	202	V	5440	260			
			51	5132	162	G	5814	206	S	6560	200			

Photometric Systems

M. Bessel 2005 ARAA, 43, 293

Prime focus

HSC broad-band filters

CMD for a Galactic globular cluster

CM diagrams for Galactic globular clusters

2. Stellar evolution and population synthesis

 Evolutionary trackstable iII

Mass (M_{\odot})	(1-2)	(2-3)	(3-4)	(4-5)	(5-6)
15	1.010 (7)	2.270 (5)		7.55 (4)	
9	2.144 (7)	6.053 (5)	9.113 (4)	1.477 (5)	6.552 (4)
5	6.547 (7)	2.173 (6)	1.372 (6)	7.532 (5)	4.857 (5)
3	2.212 (8)	1.042 (7)	1.033 (7)	4.505 (6)	4.238 (6)
2.25	4.802 (8)	1.647 (7)	3.696 (7)	1.310 (7)	3.829 (7)
1.5	1.553 (9)	8.10 (7)	3.490 (8)	1.049 (8)	≥ 2 (8)
1.25	2.803 (9)	1.824 (8)	1.045 (9)	1.463 (8)	$\geq 4 \quad$ (8)
1.0	7 (9)	2 (9)	$1.20 \quad$ (9)	1.57 (8)	$\geq 1 \quad$ (9)

a Numbers in parentheses beside each entry give the power of ten to which that entry is to be raised.

TABLE IV
Stellar Lifetimes (yr)*

s Numbers in parentheses beside each entry give the power of ten to which that entry is to be raised.

$\mathrm{M} \geq 0.08$ Msun	$:$ nuclear reaction	
≥ 1.1	Msun	$:$ convective core, CNO
≤ 2	Msun	: helium flash (T $\left.\mathrm{T}_{\mathrm{c}} \sim 10^{8} \mathrm{~K}\right)$
≥ 8	Msun	: C core burning

$$
\left\{\begin{array}{l}
\frac{d P}{d r}=-\rho \frac{G M(<r)}{r^{2}} \text { Equation for hydrostatic equilibrium } \\
M(<r)=\int_{0}^{r} 4 \pi r^{2} \rho(r) d r \Rightarrow \frac{d M(<r)}{d r}=4 \pi r^{2} \rho \\
\Rightarrow \frac{d P}{d M(<r)}=-\frac{G M(<r)}{4 \pi r^{4}}
\end{array}\right.
$$

P_{c}, T_{c} at the center

Equation of state

$$
\begin{aligned}
& \frac{d P}{d M(<r)} \approx \frac{P_{c}}{M} \approx \frac{G M}{4 \pi R^{4}}, P=\frac{\rho}{\mu m_{H}} k T, \\
& T \rightarrow T_{c}, \rho=\frac{M}{4 \pi R^{3} / 3}, \rho_{c} \propto \rho \\
& \Rightarrow T_{c} \propto \frac{\mu M}{R}
\end{aligned}
$$

Low-mass stars

$$
(\mathrm{M}<1.1 \text { Msun })
$$

Nuclear energy generation

$\log \mathrm{Tc}(\mathrm{K})$

High-mass stars
($\mathrm{M}>1.1$ Msun) $\quad \mathrm{H}$
 radiation
convection

$\mathrm{H} \Rightarrow \mathrm{He}$ convection
radiation

Evolutionary tracks for low/high mass stars

Fig. 5.-Tracks in the H-R diagram of theoretical model stars of low (1 M_{\odot}), intermediate ($5 M_{\odot}$), and high ($25 M_{\odot}$) mass. Nuclear burning on a long time scale occurs along the heavy portions of each track. The places where first and second dredge-up episodes occur are indicated, as are the places along the AGB where thermal pulses begin. The third dredge-up process occurs during the thermal pulse phase, and it is here where one may expect the formation of carbon stars and ZrO -rich stars. The luminosity where a given track turns off from the AGB is a conjecture based on comparison with the observations. From Iben (1985).

- Low mass, long-lived stars: dominate stellar photometry
 - High mass, short-lived stars: dominate stellar spectroscopy

Evolutionary track for low mass stars

Evolutionary tracks for low/high mass stars

- Low mass, long-lived stars: dominate stellar photometry of old stellar systems
- High mass, short-lived stars: dominate stellar spectroscopy of old stellar systems

(Iben 1985, QJRAS, 26, 1)

Fig. 5.-Tracks in the H-R diagram of theoretical model stars of low (1 M_{\odot}), intermediate ($5 M_{\odot}$), and high ($25 M_{\odot}$) mass. Nuclear burning on a long time scale occurs along the heavy portions of each track. The places where first and second dredge-up episodes occur are indicated, as are the places along the AGB where thermal pulses begin. The third dredge-up process occurs during the thermal pulse phase, and it is here where one may expect the formation of carbon stars and ZrO -rich stars. The luminosity where a given track turns off from the AGB is a conjecture based on comparison with the observations. From Iben (1985).

Isochrones

Fig. 2.-Isochrones for ages between 11 and 13 Gyr and ZAHB compared to the CMD of M68 (data from Walker 1994). Composition, distance modulus, and reddening used for the fit are given in the upper left-hand corner.

Salaris et al 1997, ApJ, 479, 665

Worthey 1994, ApJS, 95, 107

Age-metallicity degeneracy

Population synthesis of E galaxies

Horizontal Branch (HB) morphology

HB type (color) vs. metallicity in Galactic globular clusters

Fig. 2.-HB type, $(B-R) /(B+V+R)$, is plotted against $[\mathrm{Fe} / \mathrm{H}]$ for all globular clusters with reasonably well-studied CM diagrams ($R \leq 40 \mathrm{kpc}$). Note that the majority of clusters (e.g., M2, M13, M22) in the metallicity range $-2.0 \leq[\mathrm{Fe} / \mathrm{H}] \leq-1.6$ have very blue HBs $[(B-R) /(B+V+R)>+0.85]$.

B: \# of blue HBs
$\mathrm{R}:$ \# of red HBs
$\mathrm{V}: \#$ of RR Lyrae

3. Origin of elements and yields

$$
\begin{gathered}
\text { Type II SNe } \\
\mathrm{M}>8 \mathrm{M}_{\text {sun }} \\
\hline
\end{gathered}
$$

α-elements (O, Mg, Si)

Type la SNe
(white dwarf + companion)
$\mathrm{M}<8 \mathrm{M}_{\text {sun }}$

Origin of elements and yields

- $\mathrm{M}<8 \mathrm{M}_{\text {sun }}$ (Type la SNe) white dwarf, mass accretion from a companion
- Iron peak elements (Cr, Mn, $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$)
- $\mathrm{M}>8 \mathrm{M}_{\text {sun }}$ (Type II SNe) Core-collapse supernovae
- α-elements ($\left.{ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne},{ }^{24} \mathrm{Mg},{ }^{28} \mathrm{Si},{ }^{32} \mathrm{~S},{ }^{36} \mathrm{Ar},{ }^{40} \mathrm{Ca},{ }^{44} \mathrm{Ti}\right)$
$-8<\mathrm{M}<10 \mathrm{M}_{\text {sun }} \quad$ hydrostatic burning
- C-burning, $\mathrm{O}+\mathrm{Ne}+\mathrm{Mg}$-core, AGB star
- $\mathrm{O}+\mathrm{Ne}+\mathrm{Mg}$ WD after losing $\mathrm{H}-\mathrm{He}$ envelope or collapse due to e capture
$-10<M<140 M_{\text {sun }}$
- Fe-core, gravitational collapse, neutron star or black hole
- $140<\mathrm{M}<300 \mathrm{M}_{\text {sun }}$ Pair-Instability SNe
- Electron-positron pair creation \& core collapse, high $T_{c} \&$ explosive O burning, disrupt out completely due to explosion, release a lot of $\mathrm{Fe} \& \mathrm{Ca}$
$-\mathrm{M}>300 \mathrm{M}_{\text {sun }}$
- Photo-disintegration, core collapse, BH formation
- Hypernovae ($\mathrm{M}>20 \mathrm{M}_{\text {sun }}, \mathrm{E}>10^{52} \mathrm{erg}$) gamma-ray burst
- Large [Zn/Fe] \& [Co/Fe] ratios

Supernova and Hypernova Yields

Figure 4. (Left:) Relative abundance ratios as a function of progenitor mass with $Z=0$. The solid and dashed lines show normal SNe II with $E_{51}=1$ and HNe. (Right:) The IMF weighted abundance ratios as a function of metallicity of progenitors, where the HN fraction $\epsilon_{\mathrm{HN}}=0.5$ is adopted. Results for $Z=0$ are plotted at $\log Z / Z_{\odot}=-4$ (Nomoto et al. 2006; Kobayashi et al. 2006).

Elements from Type II SN

α elements: ${ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne}$, ${ }^{24} \mathrm{Mg},{ }^{28} \mathrm{Si},{ }^{32} \mathrm{~S},{ }^{36} \mathrm{Ar},{ }^{40} \mathrm{Ca}$

Tsujimoto et al. 1995, MN, 277, 945

Figure 1. Abundance pattern from Type II supernova explosions. Relative abundances of synthesized heavy elements and their isotopes, normalized to the corresponding solar abundances, $x_{i} / x_{i}(\odot)$, are shown by circles. The species indicated by open circles are not used in minimizing $g(r)$ in equation (3), because of uncertainties involved in their abundances in Type II supernovae (see Section 2).

Elements from Type la SN

Iron peak nuclides $\mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$

Solar System Abundances

Big Bang Nucleosynthesis

- p \& n creation
- $\mathrm{n}+\mathrm{p} \rightarrow \mathrm{D}+\gamma$
(D creation)
- $\mathrm{D}+\mathrm{D} \rightarrow{ }^{3} \mathrm{H}+\mathrm{p},{ }^{3} \mathrm{H}+\mathrm{D} \rightarrow{ }^{4} \mathrm{He}+\mathrm{n}$
- After Big Bang
$\mathrm{H}, \mathrm{D},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{7} \mathrm{Li}$ remained
(${ }^{7} \mathrm{Be},{ }^{3} \mathrm{H}$ are unstable)

Big Bang Nucleosynthesis

Stellar evolution \& nuclear reaction

Origin of elements heavier than Fe ~ neutron capture process ~


```
r-process
( }<<\textrm{T}(\beta\mathrm{ decay))
Eu, Pt, Au, Th, U
core-collapse SNe
or merging of
    neutron stars
s-process
( T > T ( }\beta\mathrm{ decay))
Sr, Ba, Pb
AGB stars
```


Neutron star mergers and r-process

GW170817
Optically identified object

Solar System Abundances

Where elements came from

$\begin{array}{r} H \\ 1 \end{array}$			Big Bang fusion Cosmic ray fission			Dying low-mass stars Merging neutron stars			Exploding massive stars			$\begin{aligned} & B \\ & 5 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 6 \\ \mathrm{Si} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 7 \end{gathered}$	$\begin{aligned} & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & F \\ & 9 \end{aligned}$	$\begin{gathered} \mathrm{He} \\ 2 \\ \mathrm{Ne} \\ \mathrm{Ne} \end{gathered}$
$\frac{\mathrm{Li}}{3}$	Be_{4}									xplodin							
Na	Mg_{12}											Al_{13}		$\underset{15}{P}$	$\underset{16}{S}$	$\underset{17}{\mathrm{Cl}}$	${ }_{18}$
$\begin{aligned} & \mathrm{K} \\ & 19 \end{aligned}$	$\underset{20}{\mathrm{Ca}}$	$\begin{aligned} & \mathrm{Sc} \\ & 21 \end{aligned}$	$\underset{22}{\mathrm{Ti}}$	$\underset{23}{V}$	$\underset{24}{\mathrm{Cr}}$	$\underset{25}{\mathrm{Mn}}$	$\underset{26}{\mathrm{Fe}}$	$\underset{27}{\mathrm{Co}}$	$\underset{28}{\mathrm{Ni}}$	$\underset{29}{\mathrm{Cu}}$	Zn_{30}	$\underset{31}{\mathrm{Ga}}$	$\underset{32}{\mathrm{Ge}}$	As 33	Se	$\underset{35}{\mathrm{Br}}$	$\underset{36}{ }{ }_{3}$
Rb	Sr	$\begin{aligned} & Y \\ & 39 \end{aligned}$	Zr_{40}	$\begin{gathered} \mathrm{Nb} \\ 41 \end{gathered}$	Mo_{42}	$\begin{aligned} & \text { Tc } \\ & 43 \end{aligned}$	R_{44}	R_{45}	$\underset{46}{\mathrm{Pd}}$	Ag_{47}	$\underset{48}{\mathrm{Cd}}$	$\begin{aligned} & \ln \\ & 49 \end{aligned}$	$\begin{gathered} \mathrm{Sn}_{50} \end{gathered}$	Sb	$\begin{aligned} & \mathrm{Te} \\ & 52 \end{aligned}$	$\begin{aligned} & 1 \\ & 53 \end{aligned}$	$\underset{54}{\mathrm{Xe}}$
$\underset{55}{\mathrm{Cs}}$	$\begin{aligned} & \mathrm{Ba} \\ & \hline 56 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{Hf} \\ & 72 \end{aligned}$	Ta_{73}	${ }_{74}^{W}$	Re_{75}	Os_{76}	$\begin{aligned} & \text { Ir } \\ & 77 \end{aligned}$	$\begin{aligned} & \mathrm{Pt} \\ & 78 \end{aligned}$	Au_{79}	$\begin{aligned} & \mathrm{Hg} \\ & 80 \end{aligned}$	$\underset{81}{\mathrm{Tl}}$	$\begin{aligned} & \mathrm{Pb} \\ & 82 \end{aligned}$	${ }_{83}^{\mathrm{Bi}}$	Po	At	${ }_{86}$
Fr	$\mathrm{Ra}$$88$	\circ															
				${ }_{58}$	$\begin{aligned} & r r \\ & 59 \end{aligned}$	$\frac{1 \mathrm{Na}}{60}$	${ }^{\prime} \mathrm{m}$	$5 \mathrm{~m}$	$\begin{aligned} & \text { Eu } \\ & 63 \end{aligned}$	${ }_{64}$	$\begin{aligned} & 10 \\ & 65 \end{aligned}$	$0 y$	$\begin{gathered} \mathrm{HO} \\ 67 \end{gathered}$	$\begin{aligned} & \text { Er } \\ & 68 \end{aligned}$	$1 \mathrm{~m}$	$\begin{aligned} & Y D \\ & 70 \end{aligned}$	${ }_{71}$
			Ac 89	$\begin{aligned} & \text { Th } \\ & 90 \end{aligned}$	$\begin{aligned} & \mathrm{Pa} \\ & 91 \end{aligned}$	U_{92}	$\begin{aligned} & \mathrm{Np} \\ & 93 \end{aligned}$	$\underset{94}{\mathrm{Pu}}$							Jennife		

Families of elements

1) Light odd-Z elements (Na and AI):

Mainly made in the hydrostatic burning shells of massive stars. Their yields are related to the mass of the shell, which is related to the initial mass of the star
2) Magnesium: Made in the hydrostatic burning shells of massive stars (specifically the C-burning shell), and the yield is related to the initial mass of the star.
3) The other alpha elements ($\mathrm{O}, \mathrm{Si}, \mathrm{Ca}$, and Ti):

O is formed in a hydrostatic burning shell (the He-burning shell). The heavier alpha-elements Si, Ca and Ti are formed deep within massive stars during the explosive burning phase of a supernova (SN).
4) Fe-peak elements (Sc, V, Cr, Mn, Fe, Co, Ni, Cu and Zn):

With the exception of Cu and maybe Zn , these elements are made in both Type la and Type II SNe during the explosive phases. Co and possibly Zn are made almost exclusively in Type II SNe. Hypernovae is required for Zn .
5) Light s-process elements (Sr, Y, and Zr):
(Nearly all the elements heavier than Zn are made by neutron-capture processes.) Made in metal-rich AGB stars. The peak of the s-process production moves to lighter elements as metallicity increases because there are more Fe-group "seed" nuclei at higher metallicity,
6) Heavy s-process elements (Ba and La):

Made in metal-poor AGB stars, although some of the inventory of both elements in the Sun came form the r-process.
7) r-process element (Eu):

By the explosive phase of Type II SNe or most probably merging of neutron stars.

List of elements and their production sites

-Lithium ($Z=3$): Produced in Big Bang nucleosynthesis and cosmic ray spallation.
-Carbon (Z=6): Results from the triple-alpha He-burning process. Isotope ratios between ${ }^{12} \mathrm{C}$ and ${ }^{13} \mathrm{C}$ are affected by hydrogen burning on the CNO cycle.

- Oxygen ($Z=8$): Results from hydrostatic He-burning burning in massive stars, yield related to the mass of the He-burning shell, which is a function of the star's initial mass.
-Sodium ($Z=11$): Results mostly from carbon-burning. Production depends on the n / p ratio, so there is a predicted metallicity dependence of the yield from SN II. Can also be affected by H-burning in intermediate-mass stars, as seen in the so-called "Na-O anti-correlation" often seen in globular cluster stars.
-Magnesium (Z=12): Results from carbon-burning. Effectively ${ }^{12} \mathrm{C} \rightarrow{ }^{24} \mathrm{Mg}$ via ${ }^{20} \mathrm{Ne}+{ }^{4} \mathrm{He}$. Released from SN II.
-Aluminum ($Z=13$): Carbon-burning; closely tied to the production of the minor Mg isotopes ${ }^{25,26} \mathrm{Mg}$. Production depends on the n / p ratio, so there is a predicted metallicity dependence of the yield from SN II. Can also be affected by H-burning in

Correlated strongly to C+N initial abundance intermediate-mass stars, as seen in "Na-O anti-correlation" in globular cluster stars.

- Silicon ($\mathrm{Z}=14$): Explosive oxygen burning via $2 \mathrm{O} \rightarrow \mathrm{Si}+\mathrm{He}$, with $\mathrm{Mg}+\mathrm{He} \rightarrow \mathrm{Si}$. SN II+SN Ia.
-Calcium ($Z=20$): Oxygen and silicon burning, both hydrostatic and explosive. SN II.
- Scandium ($Z=21$): SN II from oxygen burning + the alpha-rich freezeout.
-Titanium ($Z=22$): Explosive Si burning, + alpha-rich freezeout, including white dwarfs (SN la). Appears to be mostly SN II.
-Vanadium (Z=23): Explosive oxygen burning + silicon burning. SN la probably dominate production. The [V/Fe] value is very sensitive to the value of Teff.
-Chromium (Z=24): Equilibrium process in explosive Si burning. SN II + SN Ia, but dominated by SN II.
-Manganese (Z=25): Explosive Si burning + alpha-rich freezeout. SN II. Metallicity dep.
-Iron (Z=26): Equilibrium process. SN II + SN la, with a large yield from SN Ia.
-Cobalt ($Z=27$): Explosive Si burning + alpha-rich freezeout (which produces a large Co/Fe yield). Possibly metallicity-dependent yields in Type II SN.
-Nickel (Z=28):. Explosive Si burning + alpha-rich freezeout. SN II + SN la
-Copper (Z=29): Possibly from SN II "only" with metallicity-dependent yields. Minor contributions from the s-process and SN la.
-Zinc ($Z=30$): Explosive Si burning + alpha-rich freezeout + s-process. Zn does not form on dust grains, so it is used in the study of damped Lyman-alpha systems as metallicity indicator.
-Strontium ($Z=38$), Yttrium ($Z=39$), Zirconium ($Z=40$), Molybdenum ($Z=42$), and Palladium ($Z=46$): Light s-process. AGB stars and maybe massive stars ("weak s-process").
-Barium ($Z=56$): Heavy s-process. AGB stars. [heavy s/light s]= $f(Z)$.
-Lanthanum ($Z=57$): Heavy s-process. AGB stars. [heavy s/light s] $f(Z)$.
-Europium (Z=63): Bypassed by s-process (mostly), best r-process "only" element in the optical. The r-processes were believed to occur in a sub-class of SN II, the lowermass SN II, but now the merging of neutron stars is thought to be most likely.

4. Extremely metal-poor stars

$[\mathrm{Fe} / \mathrm{H}] \leq-2.5$

These stars were enriched by just one supernova.

Their abundance patterns reflect the mass of
a progenitor star (first star).

Dispersion due to difference Abundance ratios

in progenitor's mass

+ inhomogeneous chemical evolution

Aoki et al. (2002)
[Eu/Fe]

Universal mechanism (by SNe II or merging of neutron stars) is at work for r-process.

Nucleosynthesis from Hypernovae

(Tominaga et al. 2007)

5. Galactic chemical evolution

- Simple model
- Key parameters: SFR: $\psi(\mathrm{t})$, IMF: $\phi(\mathrm{m})$

$$
\phi(\mathrm{m}) \propto \mathrm{m}^{-\alpha}\left(\int \mathrm{m} \phi(\mathrm{~m}) \mathrm{dm}=1 \mathrm{M}_{\text {sun }}\right)
$$

- star: M_{s}, gas: M_{g}, metal: M_{z}, metallicity: $Z=M_{z} / M_{g}$
- closed box: $M_{\text {tot }}=M_{s}+M_{g}=$ const.
- instantaneous recycling: Massive stars die immediately and leave enriched gas (age: $\tau \ll 1$).
The rate of gas ejection is:

$$
\int_{m_{1}}^{\infty}\left(m-w_{m}\right) \varphi(m) \psi(t-\tau(m)) d m \rightarrow \int_{m_{1}}^{\infty}\left(m-w_{m}\right) \varphi(m) \psi(t) d m \equiv R \psi(t)
$$

w_{m} : remnant mass, R: return fraction
-y : yield
metallicity when a unit gas mass is locked into stars

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{d M_{g}}{d t}=-\frac{d M_{s}}{d t}=-\psi+R \psi=-(1-R) \psi \\
\frac{d\left(Z M_{g}\right)}{d t}=-Z(1-R) \psi+y(1-R) \psi
\end{array}\right. \\
& \Rightarrow Z=y \ln \frac{M_{\text {tot }}}{M_{g}}=y \ln f_{g}^{-1} \quad \begin{array}{l}
\mathrm{f}_{\mathrm{g}}: \text { gas fraction }<1 \\
\rightarrow \mathrm{Z} \text { increases with decreasing } \mathrm{f}_{\mathrm{g}}
\end{array} \\
& S(Z)=\frac{M_{s}}{M_{s}}=\frac{1-f_{g}}{1-f_{s}}=\frac{1-f_{g, \text { current }}^{Z / Z_{0}}}{1-f_{g, \text { and }}} \quad \mathrm{S}(Z) \text { : cumulative metallicity } \\
& \text { distribution of stars }
\end{aligned}
$$

Gaseous Oxygen abundance in M81 Garnett \& Shields 1987, ApJ, 317, 82

Gaseous Oxygen in various galaxies

Hac. 9. O.H vs, the log of the H , zass fraction for H u reeions in M81. The solid dine represents the resuls from the "simple" chemical evolution model wit Yed

SFR law for 61 disk galaxies and 36 starburst galaxies

Initial Mass Function

MDF of G-dwarfs in the solar neighborhood

 (model: Sommer-Larsen \& Yoshii 1990, MN, 243, 468)

Chemical clock

Comparison with metallicity distribution (MD) of young stars (B-type stars)

Feltzing \& Chiba (2013)

MD of B-type stars reflects that of ISM near the Sun

Very meal-rich stars with $[\mathrm{Fe} / \mathrm{H}]>+0.2$ cannot be formed near the Sun

These very metal-rich stars (possibly having exo-planets) are migrated from inner radii

Radial migration of stars

Sellwood \& Binney 2002, Schoenrich \& Binney 2009

[α / Fe] ratios in several MW dSphs (Tolstoy+ 2009)

