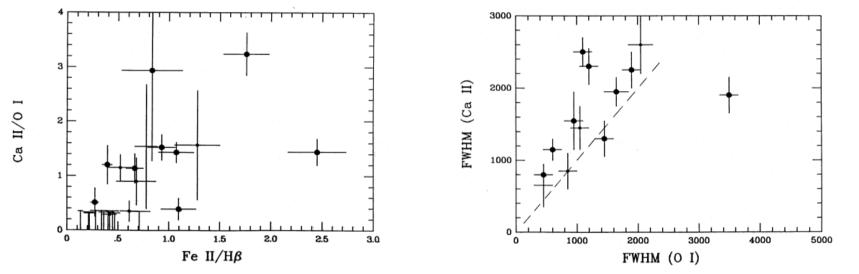
Calcium Infrared Triplet Emission In Quasar by Subaru/FOCAS Spectroscopy

Osamu KOIZUMI¹, Takashi MURAYAMA¹, Yoshiaki TANIGUCHI¹ & Tohru NAGAO^{2,3}

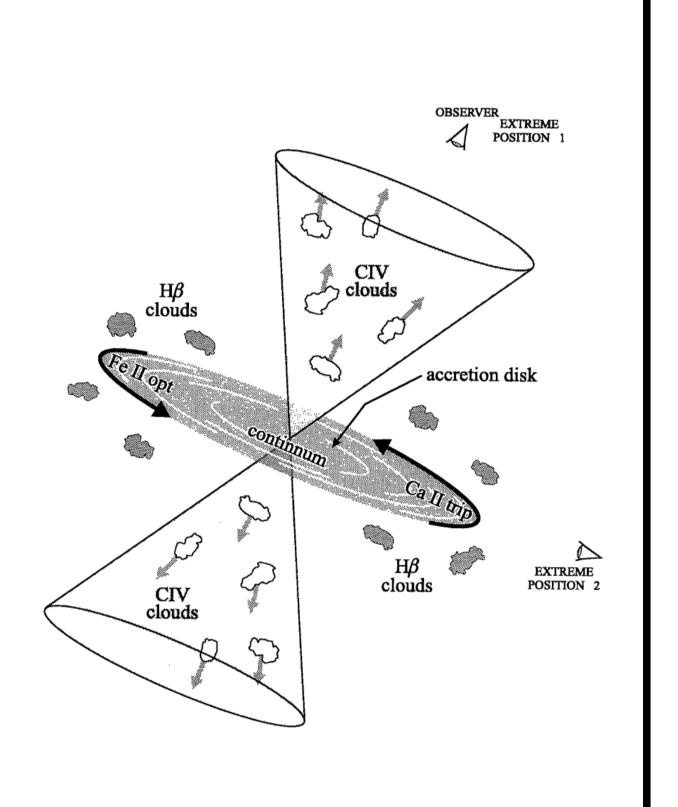
¹Astronomical Institute, Graduate School of Science, Tohoku University, ² INAF — Osservatorio Astrofisico di Arcetri, ³ National Astronomical Observatory

- I. Introduction		II. Observation			
Broad-Line Region (BLR) of Seyfert Nuclei The BLRs of Seyfert 1 galaxies are thought to consist of a large number of	HIL CLOUDS	Observatio	n		
 high-density clouds. non-radiatively heated materials the high ionized lines (HIL) excitation lines (ex. C IV, N V) come from 	OBSTACLE OBSTACLE	Observation Date	Subaru Telescope & FOCAS (Open-Use I.D. S05A-047) 7th July, 2005 (UTC)		
cooling gas behind shocks in hypersonic infalling materials	ACCRETION DISC	Weather	Clear		


BLUE BUMP EMISSION

- the low ionized lines (LIL) emission lines (ex. Fe II, Ca II) might originate in the atmosphere of the accretion disk
- It is possible to probe such weakly ionized material with Calcium Infrared Triplet.

Calcium Infrared Triplet : λ 8498, 8542, 8662 Å

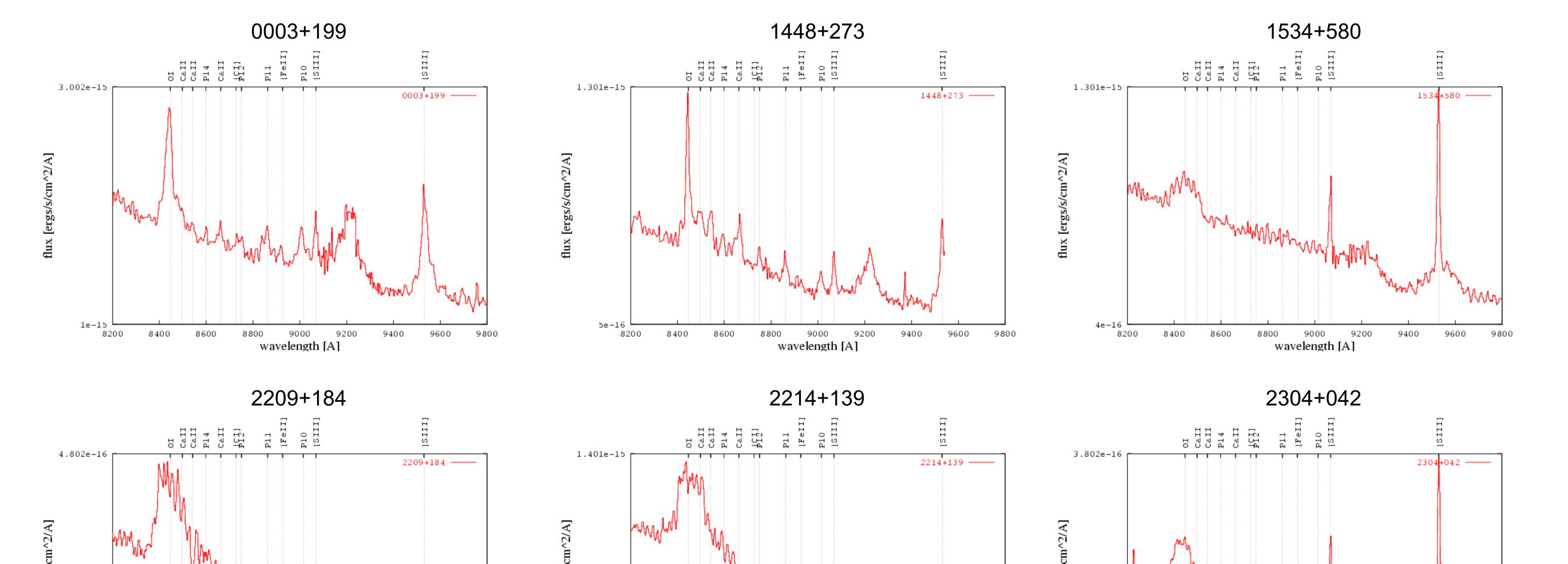

Persson 1988 (ApJ 330:751-765) detected the Ca II infrared triplet emission lines in at least nine, and probably 14, active galactic nuclei, out of a total of **40** surveyed.

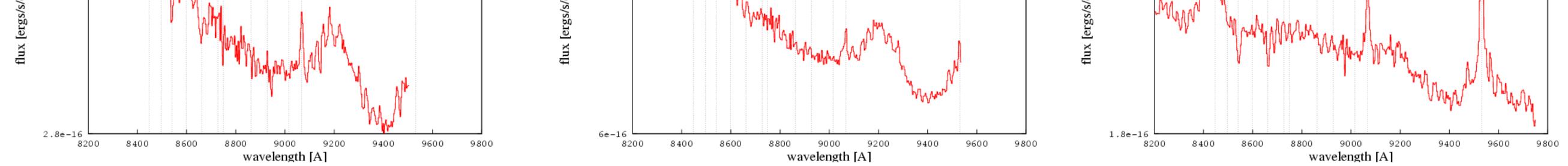
They confirmed that Ca II emission could be characteristic, at some level, of many AGN with Fe II emission. And the Ca II linewidths are significantly narrower than that of the OI line; a kinematically distinct region perhaps in the form of a disk.

They suggested that nonradiative heat source is dissipation in an accretion disk, and deduce that the BLR lies in close proximity to it, by virtue of the kinematic similarities demonstrated in above figure(right).

Recently, Dultzin-Hacyan et al. 1999 (ASPC **175**:303) showed more detailed picture of the BLR (see right picture). They concluded Ca II triplet and Fe II_{opt} lines must form in the same region -- this region is the accretion disk.

Observing Mode						
CCD	3 x 1 on-chip binning					
grism	High Echelle grism					
dispersion	0.98 Å / pix @ 9300 Å					
filter	SDSS-z'					
wavelength coverage	8300 Å – 10000 Å					
slit	0.8 arcsec slit					
Data Reduction standard manners with using IRAF						


Sample


PG QSO	Other Name	Z	Exp. (sec)
0003+199	Mk 335	0.025	1800
1448+273	_	0.065	1200
1534+580	MK 290	0.030	1800
2209+184	_	0.070	1200
2214+139	MK 304	0.065	1800
2304+042	PB 5250	0.042	2700

Observing the Ca II Triplet emission ———

a strong constraint on the geometry of BLR

III. Results and Discussion

1	We detected the calcium infrared triplet emission in 0003+199 and 1448+273 (maybe with Paschen series contamination).		Paschen (Å)	
1.	Ca II emission detectability is 2/6 in our samples. This result is comparable with Persson 1988 (ApJ 330:751-765), 9-14 / 40.	17	8467	
1.	We can see the calcium absorption lines in 2209+184 and 2304+042.	16	8502	8498
1.	1534+480, 2209+184, 2214+139 and 2304+042 have very broad components.	15 14	8545 8598	8542
\$	λ 9100-9300 Å feature is a blend of a number of lines of low ionization species (Mg II, O I, He I, Ne I, and Fe II) plus the	13	8665	8662
	Paschen 9 line of H I.	12	8750	