Redshift-space distortions, γ and GAMA

John Peacock

Princeton SUMIRE Workshop

11 Nov 2009

Outline

- Goals: w \rightarrow DE + modified gravity
- Tools: $BAO \rightarrow BAO + RSD$
- Unified treatment (Fergus Simpson + JP 09)
- GAMA: New data from AAOmega

A non-standard universe?

Inference of DE comes from assuming Friedmann:

$$H^{2}(a) = H_{0}^{2} \left[\Omega_{r} a^{-4} + \Omega_{m} a^{-3} + \Omega_{k} a^{-2} + \Omega_{DE} a^{-3(1+w)} \right]$$

Extra term

Is DE a physical component, or a failure of Einstein gravity? (not of GR)

$$d\tau^{2} = (1+2\Psi) dt^{2} - (1-2\Phi) R^{2}(t) \left(dr^{2} - r^{2} d\psi^{2} \right)$$

Einstein: $\Psi = \Phi$; $\nabla^2 \Phi = 4\pi G \bar{\rho} \delta$ $\Rightarrow f_g(a) \equiv d \ln \delta(a)/d \ln a = \Omega_m(a)^{\gamma}$; $\gamma = 0.55$

Lensing measures sum of potentials; clustering tests perturbation growth law (measure γ)

Observing scales in redshift space

(1) Matter-radiation horizon:

123 (Ω_m h² / 0.13)⁻¹ Mpc

(2) Acoustic horizon at last scattering : 147 $(\Omega_m h^2 / 0.13)^{-0.25} (\Omega_b h^2 / 0.024)^{-0.08}$ Mpc

Observe transversely or radially: $\theta = L / D(z)$ or dz = L / [c/H(z)]

Assume average scale depends on $D_V = (D^2[c/H])^{1/3}$

Alcock-Paczynski distortions

 $\begin{aligned} H(z) &= H_0 [\Omega_v (1+z)^{3+3w} + \Omega_m (1+z)^3 + (1-\Omega)(1+z)^2]^{1/2} \\ D(z) &= \int_0^z \frac{c}{H(z)} dz \end{aligned}$

Radial/Transverse scalings: $f_{\perp} = D/D_{\rm ref}$, $f_{\parallel} = H_{\rm ref}/H$ Flattening factor: $F = f_{\perp}/f_{\parallel}$

Combining BAO and RSD

Kaiser flattening at ~ 10-20 Mpc from peculiar velocities. Little affect on

BAO ring

Redshift-Space Distortions

- RSD due to peculiar velocities are quantified by correlation fn ξ(σ,π).
- Two effects visible:
 - Small separations on sky: 'Finger-of-God';
 - Large separations on sky: flattening along line of sight.

Kaiser and A-P degeneracy

Simple theory (linear + FoG):

$$P_{\rm gal}(k) = b^2 P_m(k) \left[1 + \beta \mu^2\right]^2 D\left(k\mu\sigma_p\right); \quad \beta \equiv f_g/b$$

But Kaiser dynamical flattening is approximately degenerate with A-P geometrical flattening: β_{eff} =(F-1)/2

$$\begin{split} P_{\text{gal}}'(k') &= \frac{1}{f_{\perp}^2 f_{\parallel}} b^2 P_m \left(\frac{k'}{f_{\perp}} \sqrt{1 + \mu'^2 \left(\frac{1}{F^2} - 1 \right)} \right) \\ &\times \left[1 + \mu'^2 \left(\frac{1}{F^2} - 1 \right) \right]^{-2} \\ &\times \left[1 + \mu'^2 \left(\frac{\beta + 1}{F^2} - 1 \right) \right]^2 D \left(\frac{k'_{\parallel} \sigma_p}{f_{\parallel}} \right), \end{split}$$

Ballinger et al. 1996

Measuring the growth rate

- Peculiar velocities come from $f_a(a)=d \ln \delta / d \ln a$
- But measure $\beta = f_g / b$ – b from bispectrum?
- Safer to say b = $\sigma_{gal} I \sigma_m$ (CMB | pars) – But remember σ_{gal} is affected by A-P

VVDS redshift-space distortions

10k z's: Guzzo et al. Nature 2008

VImos Public Extragalactic Redshift Survey

- New ESO VLT programme
- P.I. Guzzo (Milan)
- 24 deg² to I_{AB} < 22.5 in CFHTLS fields
- 100k targets at z > 0.5, >50% sampling
- 440 VLT hours
- Main aim is to probe modified gravity via RSD

RSD Precision

% error in β = (V / 20 h⁻³ Gpc³)^{-1/2} x (n / 4x10⁻⁴ h³ Mpc⁻³)^{-0.44}

Guzzo et al. 2007; see White & Percival for more accurate Fisher-matrix estimates

Would probably expect a function of V_{eff} :

$$V_{\text{eff}} = V \left(\frac{1+nP}{nP}\right)^2$$

RSD predictions for VIPERS

Approved 400h VLT programme: 100k z's over 3 years: predict $\Delta f_g = 0.1$ in 2 bins

DETF figure of merit

 $w(a) = w_0 + w_a(1 - a)$: $w = w_0$ today & $w = w_0 + w_a$ in the far past Marginalize over all other parameters and find uncertainties in w_0 and w_a

Figures of merit

- DE is just a term in Friedmann: probing non-GR is at least as important as measuring w
- But most people are happy not to consider $\gamma(a)$; thus should avoid too much emphasis on variation in w
- $w = w_0 + w_a (1-a)$ is better regarded as measuring w_p . Rejection of w = -1 less likely from poorly measured w_a
- PCA of w(a) interesting, but not a strong driver
- Suggests focus on γw_p plane

Combining RSD and BAO

BAO depend on just w if matter content is known (assumed from CMB). RSD depend on both w and γ .

DE-gravity degeneracy

 γ + w = x1 ± y1

 $w = x2 \pm y2$

Good to have both errors comparable.

Good case for FoM based on joint area of confidence ellipsoid in this plane

Allowing for Alcock-Paczynski

Fergus Simpson + JAP:

Overall uncertainty in γ can be ~2.5 x figure for w = -1

Base FoM on area in γ–w plane

Effect of redshift on degeneracy direction

Effect of assuming flat

Galaxy And Mass Assembly – GAMA

- 250 deg² in 5 fields
- to r < 19.4 / 19.8 (GAMA deep) in one field cf. SDSS 17.8
- Aim for >200,000 redshifts
- First 2 observing seasons:
 - 40 AAT nights 08/09 80% clear
 - 90k new z's; 96% success
 - Over 100k including 2dFGRS/SDSS

Open questions

- Fundamental cosmology issues
 - Baryon oscillations
 - Evolution of dark energy
 - Testing modified gravity
- Formation of galaxies and nonlinear structures
 - Hierarchical collapse & nature of DM
 - Feedback and galaxy downsizing
 - Environmental context
 - Require new deeper survey

2PIGG: Groups in 2dFGRS

Eke + 2dFGRS 2003

Measuring the Halo Mass Function

2PIGG: empirical halo galaxy contents

Eke et al. 04: Factor of 4 decrease in M/L from rich clusters to poor groups

But really want to probe behaviour below total mass M = $10^{12.5}$ M_{sun}

and evolution

$2dF/AA\Omega$ on the AAT

AAΩ: new VPH spectrographs

PCA sky subtraction

Hannah Parkinson

GAMA: year-1 N(z)

GAMA-improved SDSS photo-z's

Zphot

Hannah Parkinson

GAMA Team

WORKING GROUPS/HEADS

SCIENCE Peacock (ROE)

CATS DATABASE Baldry Liske (LJMU) (ESO)

OBS MOCKS Driver (PI, St And) (ROE)

Norberg (USyd)

Hopkins

Loveday (Sussex)

RADIO SPEC. PIPE. IMAGE. PIPE. **Bamford** (Nott.)

Bridges (AAO) Bland-Haw'n (U.Syd) Cameron (St And) **Conselice (Nott.)** Couch (Swin.) Croom (U.Syd) Cross (Edin.) Frenk (Durham) Graham (Swin) Hill (StA)

TEAM MEMBERS

Edmonson (Ports) Jones (AAO) Kuijken (Leiden) Lahav (UCL) Nichol (Ports.) Oliver (Sussex) Parkinson (Edin.) **Phillipps (Bristol)** Popescu (UCLan) Eales (Cardiff)

Ellis (USyd) Prescott (LJMU) **Proctor (Swin.)** Sharp (AAO) **Staveley-Smith (UWA)** Sutherland (Camb.) Tuffs (MPIK) van Kampen (Innsbruck) Warren (Imperial) **Dunne (Nottingham)**

TEAM AFFILIATIONS:

UKIRT/LAS, VST/KIDS, VISTA/VIKING, HERSCHEL-ATLAS, DURHAM ICC

WEBSITE: http://www.eso.org/~jliske/gama/

GAMA: redshift-space clustering

redshift-space models

Detailed models

Fitting with fixed σ_v changes β by $\simeq 0.1$. Need to do 10 times better

In Summary

- Must consider exotic DE and modified gravity equally
 - e.g. must not claim new gravity if w=-1 is assumed
- Galaxy surveys probe BAO+RSD combination
 - Result is w- γ anticorrelation
- Need to demonstrate robust modelling of RSD as f(galaxy type)
 - GAMA ideal test case at z<0.4
 - And interesting in other ways