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Abstract

We use high-quality Subaru/Suprime-Cam imaging data to conduct a detailed weak-lensing study of
the distribution of dark matter in a sample of 30 X-ray luminous galaxy clusters at 0.15≤ z ≤ 0.3. A weak-
lensing signal is detected at high statistical significance in each cluster, the total signal-to-noise ratio of the
detections ranging from 5 to 13. We concentrate on fitting spherical models to the tangential distortion
profiles of the clusters. When the models are fitted to the clusters individually, we are unable to discriminate
statistically between singular isothermal sphere (SIS) and Navarro Frenk & White (NFW) models. However
when the tangential distortion profiles are combined and then models are fitted to the stacked profile,
the SIS model is rejected at 6σ and 11σ, respectively, for low (Mvir < 6× 1014h−1M¯) and high (Mvir >
6×1014h−1M¯) mass bins. We also use the individual cluster NFW model fits to investigate the relationship
between cluster mass and concentration, finding that concentration (cvir) decreases with increasing cluster
mass (Mvir). The best-fit cvir −Mvir relation is: cvir(Mvir) = 8.75+4.13

−2.89 × (Mvir/1014h−1M¯)α with α ≈
−0.40± 0.19: i.e. a non-zero slope is detected at 2σ significance. This relation gives a concentration of
cvir = 3.48+1.65

−1.15 for clusters with Mvir = 1015h−1M¯, which is inconsistent at 4σ significance with the
values of cvir ∼ 10 reported for strong-lensing-selected clusters. We then investigate the optimal radius
within which to measure cluster mass, finding that the measurement error on cluster mass is smaller at
higher over-densities ∆ ' 500− 2000, than at the virial over-density ∆vir ' 110; typical fractional errors
at ∆ ' 500− 2000 are improved to σ(M∆)/M∆ ' 0.1− 0.2 compared with 0.2–0.3 at ∆vir. Furthermore,
comparing the 3D spherical mass with the 2D cylinder mass, obtained from the aperture mass method of
a given aperture radius θ∆, reveals M2D(< θ∆)/M3D(< r∆ = Dlθ∆) ' 1.46 and 1.32 for ∆ = 500 and ∆vir,
respectively. The amplitude of this offset agrees well with that predicted by integrating an NFW model
of cluster-scale halos along the line-of-sight. Overall, our results demonstrate the power of high-quality
imaging data for making detailed weak-lensing studies of the matter distribution on both individual cluster
and statistical bases.

Key words: cosmology: observations – dark matter – gravitational lensing – galaxies: clusters

1. INTRODUCTION

The mass and internal structure of galaxy clusters re-
flect the properties of primordial density perturbations
and the nature of dark matter. A most striking predic-
tion from numerical simulations based on the cold dark
matter (CDM) model of structure formation is that dark
matter halos can be described by a universal mass density
profile as found by Navarro, Frenk & White (1996, 1997,
hereafter NFW; also see Moore et al. 1999; Fukushige &
Makino 2001; most recently Navarro et al. 2008 and refer-
ences therein). These results have shown that cluster-scale
halos should have relatively shallow, low-concentration
mass profiles, where the power-law slope of density profile
∗ Based in part on data collected at Subaru Telescope and ob-

tained from the SMOKA, which is operated by the Astronomy
Data Center, National Astronomical Observatory of Japan.

becomes more negative with increasing radius, approach-
ing an asymptotic slope of −3 around the virial radius.
The dark matter halo mass function, of which galaxy clus-
ters represent the high mass tail, is also sensitive to cosmo-
logical parameters, including for example the dark energy
equation of state parameter w (e.g. White et al. 1993;
Kitayama & Suto 1997; Haiman et al. 2001; Vikhlinin et
al. 2008). Testing predictions from numerical dark mat-
ter simulations and probing dark energy require precise
measurements of galaxy cluster masses, however it is non-
trivial to define what is meant by the mass of a cluster
because clusters do not have any clear boundary between
themselves and the surrounding large-scale structure. By
convention cluster mass is therefore defined as the mass
enclosed within a three-dimensional sphere of a given ra-
dius with respect to the halo center such as the virial mass
(e.g., White 2002). Given a working definition of mass, a
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method of mass measurement must be chosen, each of
which suffers a number of advantages and disadvantages,
as discussed below.

The deep potential well of a galaxy cluster causes weak
shape distortions of background galaxy images due to
differential deflection of light rays, resulting in a coher-
ent distortion pattern around the cluster center, known
as weak gravitational lensing (Narayan & Bartelmann
1996; Bartelmann & Schneider 2001; Schneider 2006).
Measuring this coherent distortion pattern allows us to
map directly the mass distribution in a cluster without re-
quiring any assumptions on the dynamical/physical state
of the system (e.g., Kaiser & Squires 1993; Fahlman et al.
1994). Other methods rest on some assumptions: the ve-
locity dispersion of member galaxies invoke assumptions
on the velocity anisotropies, dynamical equilibrium of the
cluster, and the geometry of the system. Methods based
on observations of X-ray and the Sunyaev-Zel’dovich (SZ)
effect usually rest on assumptions of hydrostatic equilib-
rium and spherical symmetry. However, lensing-based
methods also suffer several limitations. First, lensing ob-
servables are sensitive to the total mass distribution pro-
jected along the line of sight from an observer to source
galaxies. Therefore mass concentrations along the line of
sight through a given cluster, which are not physically
associated with the cluster, increase the uncertainty on
cluster mass measurements from the lensing observables
(Metzler et al. 2000; White et al. 2001; Hoekstra 2001;
Hamana et al. 2004). Second, exhaustive spectroscopic
redshift information is not available for cluster lensing
observations. The limited information on source galaxy
redshifts derived from the available broad-band photom-
etry results in degeneracies between cluster parameters
and the estimated source galaxy redshifts. Furthermore,
in practice it is not straightforward to isolate background,
therefore lensed, galaxies based on the photometric data
alone. In fact including unlensed galaxies (mostly clus-
ter members for low-z clusters of interest) into the lens-
ing analysis appears to cause a significant dilution of the
lensing distortion signals, thereby yielding biased estima-
tions on cluster parameters (e.g., Broadhurst et al. 2005;
Medezinski et al. 2007; Limousin et al. 2007; Hoekstra
2007; Umetsu & Broadhurst 2008).

Recently a possible tension between the CDM model
predictions and the lensing observations has been re-
ported: anomalously high concentration parameter esti-
mates have been obtained for A1689, Cl0024 and MS2137
(Gavazzi et al. 2003; Kneib et al. 2003; Broadhurst et al.
2005; Broadhurst et al. 2008; Oguri et al. 2009). However,
before a serious problem with CDM may be claimed, it
is important (among other things) to address carefully
the selection bias inherent in studying strong lensing clus-
ters. Specifically, strong lensing clusters are likely biased
towards clusters with high concentrations and/or signifi-
cantly non-spherical mass distribution (e.g., Oguri et al.
2005; Hennawi et al. 2007; Corless et al. 2009). A sys-
tematic weak lensing study of a large cluster sample is
therefore an essential step towards resolving, or confirm-
ing, this tension. An important aspect of such a study is

to minimize possible selection biases towards clusters with
simpler (presumably “relaxed”) or more complex (pre-
sumably “unrelaxed”) gravitational potentials. A selec-
tion function that is blind to such factors would support
increased understanding of possible biases in cluster mass
estimates as a function of the dynamical state and shape
of clusters (Dahle et al. 2002; Smith et al. 2005; Clowe
et al. 2006; Bardeau et al. 2007; Hoekstra 2007; Okabe &
Umetsu 2008).

Such a systematic weak lensing study would also be
invaluable as the foundation for a careful comparison of
lensing-based mass estimates with those from other meth-
ods, en route to measuring precisely the shape, scatter and
normalization of mass-observable scaling relations and to
calibrating the systematic errors inherent in each mass
measurement method (Smith et al. 2003, 2005; Hicks et
al. 2006; Zhang et al. 2007, 2008; Mahdavi et al. 2008;
Miyazaki et al. 2007; Hamana et al. 2008; Vikhlinin et al.
2008a; Henry et al. 2008; Bergé et al. 2008, Umetsu et al.
2008). In particular, well-calibrated mass-observable scal-
ing relations are critically important for the use of cluster
counting experiments to constrain the nature of dark en-
ergy (e.g., Lima & Hu 2005). Such studies are complemen-
tary to the cross-correlation method of background galaxy
shapes around clusters binned on cluster richness, X-ray
luminosity, etc. – the so-called stacked lens (Mandelbaum
et al. 2008; Sheldon et al. 2007a,b; Johnston et al. 2007),
where the average properties of cluster mass profile as well
as the average mass-observable relation can be obtained,
but the information on individual clusters is lost.

In this paper, we use Subaru/Suprime-Cam observa-
tions of 30 galaxy clusters at 0.15≤ z ≤ 0.3 to study in de-
tail the dark matter density profile of the clusters. These
clusters are a sub-set of those studied by the Local Cluster
Substructure Survey (LoCuSS) project1 (PI: G. P. Smith;
also see Smith et al. in preparation), and have therefore
been selected in a manner blind to the dynamical status
and cluster morphology – see §2 for more details. The
superb image quality, wide field capability, and 8-m aper-
ture of Subaru/Suprime-Cam (Miyazaki et al. 2002) al-
low us to investigate in detail the accuracy achievable on
cluster mass measurements with ground-based weak lens-
ing data. It is also important to note that the redshift
range of the clusters in this study is well-matched to the
field-of-view of Suprime-Cam (about one-quarter square
degrees) – one pointing spans the entire virialized region
of each cluster (cluster-centric radii of ∼ 1− 2rvir), which
is essential to achieve robust constraints on cluster virial
masses. We explore different methods of cluster mass es-
timation, specifically, fitting of several different paramet-
ric mass profiles and the model-independent lensing aper-
ture mass method. We discuss the pros and cons of each
method, and compare the results quantitatively. We also
identify the optimal radial scale at which to measure clus-
ter masses with weak lensing data. In studying all of these
issues, we pay particular attention to possible systematic
errors inherent in the lensing methods. Most importantly,

1 http://www.sr.bham.ac.uk/locuss
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we demonstrate the importance of correcting for dilution
of the lensing signal by faint cluster galaxies when seeking
to measure robustly cluster mass and concentration.

The structure of this paper is as follows. We describe
the details of our cluster sample and lensing analysis in
Section 2, and define background galaxy samples to use
for the lensing analysis in Section 3. After describing our
methods to estimate cluster parameters from the lensing
observables in Section 4, we present the main results in
Section 5. Section 6 is devoted to summary and discussion
of our findings. To improve the readability of the paper
for the non-lensing expert, several technical discussions
are presented in the appendices, for example, Appendix 1
describes details of how the background galaxy samples
are defined based on the available broad-band photom-
etry. We also present the two-dimensional mass maps
and distortion profiles of all the clusters in Appendix 3.
Throughout this paper we will assume the concordance
ΛCDM model that is specified by Ωm0 = 0.27, ΩΛ = 0.73
and H0 = 72.0 kms−1Mpc−1 (Komatsu et al. 2009).

2. CLUSTER SAMPLE AND DATA
ANALYSIS

2.1. LoCuSS

The Local Cluster Substructure Survey (LoCuSS; Smith
et al. in prep.; also see Zhang et al. 2008) is a sys-
tematic multi-wavelength survey of X-ray luminous clus-
ters (LX [0.1 − 2.4keV] >∼ 2 × 1044 erg/s) at redshifts of
0.15 ≤ z ≤ 0.3 and declinations of −70◦ ≤ δ ≤ +70◦, se-
lected from the ROSAT All Sky Survey (RASS; Ebeling
et al. 1998, 2000; Böhringer et al. 2004). The LoCuSS
selection function is deliberately blind to the physical
properties of clusters, other than the requirement to be
bright enough in the X-ray band to lie above the RASS
flux limit. The sample is therefore expected to span a
broad range of dynamical stages of cluster evolution, in-
cluding extreme merger and extreme “relaxed” systems.
One of the main goals of the survey is to calibrate mass-
observable scaling relations, and to identify the main as-
trophysical systematic uncertainties in the use of these
relations for cluster cosmology, in a similar vein to Smith
et al.’s (2003) preliminary results on σ8. The Subaru data
presented in this paper form the backbone of the scal-
ing relation aspects of the survey. More generally, stud-
ies of the LoCuSS sample are in progress combining data
from a wide range of ground-based (Gemini, Keck, VLT,
Subaru, SZA, Palomar, MMT, NOAO and UKIRT) and
space-based (HST, GALEX, Spitzer, Chandra and XMM-
Newton) facilities.

The Subaru prime focus camera, Suprime-Cam
(Miyazaki et al. 2002), has the widest field-of-view (FoV)
(27′ × 34′) among 8-m class telescopes, and can cover the
entire region of a cluster at low redshift z ' 0.2 (up to
a few Mpc in radius) with one pointing. The large tele-
scope aperture, wide FoV, and superb image quality of
Subaru/Suprime-Cam therefore mean this is a uniquely
powerful facility for an efficient ground-based weak-lensing
study of a large sample of low redshift galaxy clusters.

Fig. 1. The open square symbols denote the cluster
sample studied in this paper in 2D plane of the
ROSAT X-ray luminosity and cluster redshift, while the
cross symbols show all sample of the LoCuSS clus-
ters. The box denotes our “High-LX” sample defined by
LX/E(z)2.7 > 4.2×1044 erg s−1 as 0.15<z < 0.3, where E(z)
is the redshift evolution of the Hubble expansion rate. Also
for comparison the solid curve denotes the luminosity with
constant flux fX = 3× 10−12erg/s/cm2 assuming our fiducial
cosmological model.

2.2. Sample and Observations

Clusters at declinations of −20◦ ≤ δ ≤ +60◦ are are
observable with Subaru at sufficiently high elevations
( >∼ 50◦) to ensure that high quality data suitable for faint
galaxy shape measurements can be obtained. Through
the open use program (S05B, S06A and S07A; PI: T.
Futamase) we collected Suprime-Cam data for 20 clus-
ters, selected solely on the observability on the allocated
observing nights. We also added 10 cluster data from the
Subaru archive (SMOKA; ?). In total we study 30 clusters
in this paper.

Figure 1 shows our cluster sample in the LX/E(z)2.7 −
redshift plane, where the vertical axis is plotted in the
unit of LX/E(z)2.7 (E(z) is the normalized Hubble ex-
pansion rate at redshift z: E(z) ≡ H(z)/H0). Note
that the vertical axis roughly scales with cluster mass as
LX/E(z)2.7 ∝ M as studied in Popesso et al. (2005).
The LX distribution of our cluster sample appears to
be similar to that of an X-ray luminosity limited sam-
ple with LX/E(z)2.7 >∼ 4.2× 1044erg s−1 (Fig 1). To test
this quantitatively, we drew 3,000 random samples of 29
clusters2 from the parent sample (cross symbols) defined
by LX/E(z)2.7 ≥ 4.2×1044erg s−1. The average luminos-
ity distribution of these samples are statistically indistin-
guishable from our representative sample of 29 clusters:
the 3000 samples have 〈LX/E(z)2.7〉 = 6.22× 1044erg s−1

2 All 30 clusters minus ZwCl0740 - see below for the details).
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and σ(LX/E(z)2.7) = 0.53× 1044erg s−1 for the average
and the standard deviation, respectively, which contain
the average of Subaru sample, 〈LX/E(z)2.7〉 = 6.12 ×
1044erg s−1 within the 1σ range. Our sample is there-
fore statistically indistinguishable from a volume-limited
sample. The observed clusters and the basic parameters
of the observations are listed in Table 1.

As discussed in detail in §3 & Appendix 1, we use two
filter data, if available, in order to minimize, via color
selection, dilution of the weak-lensing signal caused by
contamination of the background galaxy catalog by faint
cluster and foreground galaxies.

2.3. Image Processing and Photometry

The data were reduced using the same algorithm as
that described by Okabe & Umetsu (2008). Briefly, the
standard pipeline reduction software for Suprime-Cam,
SDFRED (?; ?), was used for flat-fielding, instrumental
distortion correction, differential refraction, PSF match-
ing, sky subtraction and stacking. The size of the seeing
disk in the final reduced data is very important for suc-
cessful weak-lensing measurements. The full width half
maximum (FWHM) of point sources in the reduced data
is listed for each cluster in Table 1. A small seeing disk
of FWHM ' 0.′′7 was achieved. An astrometric solution
was obtained for each cluster observations by comparing
the final mosaiced image with the 2MASS catalog (?).
The typical residuals on these fits were less than the CCD
pixel size (0.′′22) – i.e. sufficient for our lensing study.
Photometric calibration was achieved by reference to stan-
dard star observations that were interspersed between the
science observations, and SDSS photometry where avail-
able (Adelman-McCarthy et al. 2008). Uncertainties
on the photometric calibration were typically <∼ 0.1mag.
Photometric catalogs were constructed from the mosaic
images using SExtractor (?).

2.4. Weak Lensing Distortion Analysis

Our weak lensing analysis was done using the IMCAT
package kindly provided by N. Kaiser3, which was devel-
oped based on the formalism described in Kaiser, Squires
& Broadhurst (1995; hereafter KSB). We also incorpo-
rated modifications by ? into the analysis pipeline (see
Okabe & Umetsu 2008 for the details).

In order to obtain accurate lensing measurements, it is
of critical importance to correct for atmospheric distor-
tion effects due to seeing smearing and PSF anisotropy.
After constructing object catalogs of galaxies and stars
that are detected with significant signal-to-noise (> 6σ for
our study), yet unsaturated, we first measure the image el-
lipticity of individual galaxies by computing the weighted
quadrupole moments of the surface brightness with re-
spect to the galaxy center. Then, according to the KSB
method, the PSF anisotropy is corrected for as

e′α = eα −Pαβ
sm q∗β , (1)

where Pαβ
sm is the smear polarisability matrix being close

3 http://www.ifa.hawaii/kaiser/IMCAT

to diagonal, and q∗α = (P ∗
sm)−1

αβeβ
∗ is the stellar anisotropy

kernel (hereafter quantities with asterisk denote the quan-
tities for stellar objects). We select bright unsaturated
stars identified in the half-light radius, rh, vs. (either
of i′, Rc and Ic) magnitude diagram to estimate q∗α for
individual stellar objects. To obtain an estimate on q∗α
at each galaxy position in Eq. (1), we need to construct
a map of q∗α that smoothly varies with angular position.
We therefore divide the frame into several chunks the sizes
of which are determined based on the typical coherent
scale of the measured PSF anisotropy pattern. We then
fit the discrete distribution of q∗ in each chunk indepen-
dently to second-order bi-polynomials of vector θ to ob-
tain qα

∗ (θ) at each galaxy position, in conjunction with
iterative σ-clipping rejection on each component of the
residual, e

∗(res)
α = e∗α −Pαβ

∗smq∗β(θ).
Table 2 summarizes the results of the PSF anisotropy

correction in each cluster field. While the mean and rms of
the original stellar ellipticities are typically both a few per
cent, the correction described above reduces the residual
ellipticities to |e∗resα | <∼ 10−4 and the rms of the residuals,
σ(e∗res) to less than 10−2 for all clusters, even down to
a few times 10−3 for a few clusters. Measurements of
cluster distortion signals of > 10−2 should therefore be
robust, based on this PSF anisotropy correction.

Next we correct for the isotropic smearing of galaxy im-
ages caused by seeing and the Gaussian window function
used for the shape measurements. An estimate on the
pre-seeing reduced distortion signal, gα, for each galaxy
can be obtained from

gα = (P−1
g )αβe′β , (2)

where P g
αβ is the pre-seeing shear polarizability tensor. To

reduce noise, we employ the following procedures. First
the tensor P g

αβ for each galaxy is estimated based on the
scalar correction approximation (?; ?; ?) as

(Pg)αβ =
1
2
tr[Pg]δαβ ≡ P s

gδαβ . (3)

The tensor P s
g for individual galaxies is still noisy, espe-

cially for small and faint galaxies, and therefore we employ
a practically useful procedure developed by van Waerbeke
et al. (2000; see also ?; ?). We first identify 30 neighbor-
ing galaxies around each galaxy in the magnitude-rg plane
where rg is the Gaussian smoothing radius used in the
KSB method, and then compute, over the defined neigh-
boring sample, the median value 〈P s

g〉 as an estimate on
Pg used in Eq. (3). We thus use the following estimator
for the reduced distortion signal of each galaxy:

gα =
e′α〈
P s

g

〉 . (4)

Using this equation we also compute the variance σ2
g(≡

σ2
g1

+ σ2
g2

) for each galaxy over the neighboring sample.
We will below use the dispersion σ2

g to estimate a sta-
tistical error in measuring the lensing distortion signals
as described around Eq. (8). Typically σg ∼ 0.4 for our
galaxy samples.
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Table 1. Cluster Sample

Name RA Dec Redshift LX i′ V seeing
(J2000) (J2000) z (1044ergs−1) (min) (min) (arcsec)

(1) (2) (3) (4) (5) (6) (7) (8)
A68 00 37 05.28 +09 09 10.8 0.2546 8.81 16.0a 30.0a 0.83
A115 00 55 59.76 +26 22 40.8 0.1971 8.63 25.0a 9.0d 0.71

ZwCl0104.4+0048 01 06 48.48 +01 02 42.0 0.2545 5.80 35.0a - 0.65
A209 01 31 53.00 −13 36 34.0 0.2060 7.27 22.0d 30.0d 0.63

RXJ0142.0+2131 01 42 02.64 +21 31 19.2 0.2803 5.86 40.0a 30.0a 0.67
A267 01 52 48.72 +01 01 08.4 0.2300 8.11 40.0a 30.0a 0.61
A291 02 01 44.20 −02 12 03.0 0.1960 5.65 36.0a 30.0a 0.71
A383 02 48 02.00 −03 32 15.0 0.1883 5.27 36.0a 30.0a 0.67
A521 04 54 6.88 −10 13 24.6 0.2475 9.46 22.0d,g 22.0d 0.61
A586 07 32 22.32 +31 38 02.4 0.1710 6.58 35.0c 20.0b 0.83

ZwCl0740.4+17401 07 43 23.16 +17 33 40.0 0.1114 - 25.0c 20.0c 0.83
ZwCl0823.2+0425 08 25 57.84 +04 14 47.5 0.2248 4.41 35.0c 16.0c 0.71
ZwCl0839.9+2937 08 42 56.07 +29 27 25.7 0.1940 3.79 35.0c - 0.77

A611 08 00 55.92 +36 03 39.6 0.2880 8.05 30.0c 16.0c 0.79
A689 08 37 25.44 +14 58 58.8 0.2793 17.99 40.0c 20.0c 0.69
A697 08 42 57.84 +36 21 54.0 0.2820 9.64 40.0c 16.0c 0.73
A750 09 09 11.76 +10 59 20.4 0.1630 5.50 28.0d 32.0d 0.71
A963 10 17 01.20 +39 01 44.4 0.2060 6.16 Ic, 50.0d,f - 0.75
A1835 14 01 02.40 +02 52 55.2 0.2528 22.80 20.0b 20.0b 0.89

ZwCl1454.8+2233 14 57 14.40 +22 20 38.4 0.2578 7.80 36.0b 15.0b 0.81
A2009 15 00 20.40 +21 21 43.2 0.1530 5.40 Rc, 26.0d,e,g - 0.75

ZwCl1459.4+4240 15 01 23.13 +42 20 39.6 0.2897 6.66 Rc, 27.0d 18.0d 0.57
A2219 16 40 22.56 +46 42 21.6 0.2281 12.07 Rc, 24.0d 18.0d 0.99

RXJ1720.1+2638 17 20 08.88 +26 38 06.0 0.1640 9.54 32.0b 20.0b 0.71
A2261 17 22 27.60 +32 07 37.2 0.2240 10.76 Rc, 27.0d 18.0d 0.63
A2345 21 27 11.00 −12 09 33.0 0.1760 4.95 30.0a - 0.77

RXJ2129.6+0005 21 29 37.92 +00 05 38.4 0.2350 11.00 44.0a 30.0a 0.85
A2390 21 53 36.72 +17 41 31.2 0.2329 12.69 Rc, 38.0d 12.0d 0.65
A2485 22 48 31.13 −16 06 25.6 0.2472 5.90 40.0a 30.0a 0.67
A2631 23 37 40.08 +00 16 33.6 0.2780 7.85 Rc, 24.0d 12.0d 0.65

NOTES Column (1): cluster name; Column (2), (3): right ascension (RA) and declination (Dec) (J2000.0); Column
(4): redshift; Column (5): the ROSAT X-ray luminosity in the 0.1-2.4keV band; Column (6), (7): exposure times in
the i′ and V , respectively. Note that a case such as Ic,50.0 means 50 min exposures for the Ic filter. Column (8): the
seeing FWHMs for either of i′, Rc and Ic filters that are used for our weak lensing analysis.
1 ZwCl0740.4+1740 was observed by an incorrect pointing, and is nevertheless added to our sample because a cluster
exists in the field. The redshift is taken from NED.
a Observed in the semester S05B
b Observed in the semester S06A
c Observed in the semester S07A
d Data retrieved from SMOKA
e Data of w67c1 chip is not usable
f Data taken without AG (acquisition and guide) probe for guide stars
g Data taken without performing focus test before taking images
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Table 2. PSF Anisotropy Correction

Cluster ē∗1 ē∗2 σ(e∗) ē∗res1 ē∗res2 σ(e∗res) N∗ r̄∗h
10−2 10−2 10−2 10−4 10−4 10−3 (arcsec)

(1) (2) (3) (4) (5)
A68 +1.59 +1.10 2.11 −0.49± 2.69 −0.80± 1.81 6.49 402 0.44
A115 +0.86 −1.98 3.52 +2.73± 2.46 +1.01± 1.51 6.80 554 0.37

ZwCl0104 −4.28 +0.79 3.07 +3.48± 3.34 −1.38± 1.77 8.13 463 0.32
A209 +0.85 −4.74 3.29 +0.33± 2.33 +6.05± 2.26 6.64 418 0.33

RXJ0142 +1.80 −2.07 2.91 +0.21± 1.80 +2.34± 1.26 5.35 594 0.35
A267 −1.98 −0.85 2.91 −0.25± 2.17 +0.90± 1.63 5.59 425 0.32
A291 +0.61 +1.94 2.52 −1.45± 1.51 −0.28± 1.37 4.14 412 0.38
A383 −0.66 +2.19 2.18 +0.27± 1.86 −1.21± 1.51 4.25 316 0.35
A521 −0.29 +1.47 2.53 −1.25± 1.68 −1.37± 1.01 6.34 1046 0.33
A586 −0.99 +0.53 2.22 −0.09± 0.76 +0.91± 0.56 3.28 1196 0.47

ZwCl0740 −3.11 −1.50 1.90 +1.24± 1.14 +0.69± 0.61 4.35 1126 0.44
ZwCl0823 +1.24 −0.36 2.68 +0.10± 1.01 +0.30± 0.68 4.79 1543 0.39
ZwCl0839 −1.86 +3.32 3.01 +0.14± 1.42 −2.97± 1.38 4.63 544 0.41

A611 −2.06 −2.56 2.81 −0.41± 1.01 +2.14± 1.08 3.62 596 0.42
A689 −2.55 −1.77 2.51 +2.46± 1.71 +0.78± 1.02 4.66 549 0.36
A697 −0.74 −0.13 4.28 +0.10± 0.86 +0.07± 0.66 1.95 325 0.38
A750 +0.15 +0.81 2.04 +1.11± 1.67 −1.88± 1.07 5.63 806 0.38
A963 −1.02 −0.17 2.50 −2.65± 2.03 +0.86± 1.56 4.42 298 0.39
A1835 −1.52 +1.88 1.67 +0.26± 1.24 −0.24± 0.90 3.57 547 0.47

ZwCl1454 −1.28 −0.30 1.99 −0.13± 1.40 +0.92± 0.87 3.83 538 0.43
A2009 +2.10 −0.48 1.82 −0.56± 2.46 +0.05± 1.10 6.30 546 0.40

ZwCl1459 −0.94 −1.73 2.25 +4.27± 2.97 +3.95± 1.73 7.83 518 0.31
A2219 1.83 0.27 0.97 −0.94± 0.85 0.32± 0.53 2.58 657 0.51

RXJ1720 +1.16 +0.12 2.60 −0.96± 1.15 −0.39± 0.61 4.11 998 0.39
A2261 +0.85 −1.36 1.53 −0.20± 1.21 +1.32± 0.61 4.08 911 0.34
A2345 +2.92 +0.89 3.23 +1.10± 1.79 +1.36± 1.22 6.86 994 0.39

RXJ2129 +1.20 +4.92 2.50 −0.55± 0.91 −2.95± 0.84 4.72 1446 0.45
A2390 −2.39 −1.41 2.17 +1.13± 1.34 +0.79± 0.70 6.44 1811 0.36
A2485 −2.03 +2.21 2.36 +0.32± 2.11 −0.96± 1.34 5.46 476 0.35
A2631 −2.35 +1.02 2.58 +0.63± 1.73 −0.18± 1.01 4.78 571 0.34

NOTES Column (1): cluster name (we used the abbreviation for some clusters’ names); Column (2): mean and
standard deviation for two components of stellar ellipticities before PSF correction; Column (3): mean and standard
deviation after the PSF anisotropy correction; Column (4): number of stellar objects used in the analysis; Column
(5): median stellar half-light radius in unit of arcseconds

2.5. Tangential Distortion Profile

As indicated in Eq. (4), the reduced distortion is given
by two components reflecting the spin-2 field nature (e.g.
see Bartelmann & Schneider 2000): g = (g1,g2). For clus-
ter lensing it is useful to define, for each galaxy, the tan-
gential distortion component, g+, and the 45 degree ro-
tated component, g×, with respect to the cluster center:

g+(i) = −(g1(i) cos2ϕ + g2(i) sin2ϕ),
g×(i) = −g1(i) sin2ϕ + g2(i) cos2ϕ, (5)

where subscript (i) denotes the i-th galaxy, and ϕ is the
position angle between the first coordinate axis on the
sky and the vector connecting the cluster center and the
galaxy position. The minus sign for the definition of g+ is
introduced so that g+ becomes positive or negative when
a background galaxy shape is tangentially or radially de-
formed with respect to the cluster center, respectively.

The tangential distortion contains the full information on
the lensing signals if the lensing mass distribution is ax-
isymmetric on the sky. Clusters can be considered as grav-
itationally bound spherical objects to zeroth order, there-
fore studying the tangential distortion profile is a sensible
first step. The position of the brightest cluster galaxy
(BCG) is adopted as the cluster center for this analysis
(see also § 1.2).

The weak lensing signal of a cluster is typically 0.01−0.1
in ellipticities and cannot be distinguished from the intrin-
sic ellipticity of individual galaxies. The coherent weak-
lensing distortion pattern is therefore only measurable at
high significance when averaged over sufficient background
galaxies, thus beating down the “shape noise” attributable
to the (assumed) random intrinsic ellipticity distribution
of background galaxies. Note that the assumption of ran-
dom intrinsic galaxy ellipticities and orientations is safe
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because the majority of galaxies considered are separated
by cosmological distances and therefore are not physically
associated with each other. The tangential distortion pro-
file is estimated as

〈g+〉(θn) =
∑

i w(i)g+(i)∑
i w(i)

, (6)

with The weight function w(i) being given by

w(i) ≡
1

α2 +σ2
g(i)

. (7)

In Eq. (6) the summation runs over all the galaxies re-
siding in the n-th radial bin θn with a given bin width.
The weighting w(i) is used to down-weight galaxies whose
shapes are less reliably measured, based on the uncer-
tainty in the shape measurement, σg(i), estimated for the
i-th galaxy (see § 2.4), following Van Waerbeke et al.
(2000). We use α = 0.4 throughout this paper.

The other distortion component, g× (see Eq. [5]), should
vanish after the azimuthal average in the weak lensing
regime. Therefore, the measured 〈g×〉(θn) in each radial
bin serves as a monitor of systematics errors, most likely
arising from imperfect PSF correction.

The statistical uncertainty on the tangential distortion
profile in each radial bin can be estimated as

σ2
g+

(θn) =
1
2

∑
i w

2
(i)σ

2
g(i)(∑

i w(i)

)2 , (8)

where the prefactor 1/2 accounts for the fact that σg(i)

is the r.m.s. for the sum of two distortion components
(see below Eq. 4). The statistical error in 〈g×〉(θn) is the
same as that given in Eq. (8). Here we have assumed
that dominant source of the measurement errors is the
intrinsic ellipticities that are uncorrelated between differ-
ent radial bins. We thus, for simplicity, ignore the er-
ror contribution arising from cosmic shearing effects on
galaxy images caused by large-scale structures along the
line-of-sight through a cluster. As discussed in Hoekstra
(2003; also see Dodelson 2004), the cosmic shear contri-
bution may reduce an accuracy of cluster mass estimation
from the distortion profile. However we checked that the
cosmic shear contamination is insignificant, because the
shot noise turns out to be more significant than assumed
in Hoekstra (2003), due to a smaller number of galaxies
used in the lensing analysis after our background galaxy
selection (see Oguri et al. 2010 for the detail).

3. GALAXY SAMPLE SELECTION AND
SOURCE REDSHIFT ESTIMATION

3.1. Galaxy Sample Selection

Including unlensed galaxies, mainly cluster members in
the case of our low-z clusters, into the background galaxy
catalog dilutes the measured lensing strengths. Therefore
it is of vital importance to minimize contamination of the
background galaxy catalogs in order to obtain robust lens-
ing measurements (Broadhurst et al. 2005; Limousin et al.
2007). For the clusters for which data in two filters are

Fig. 2. The color-magnitude diagram and our galaxy sam-
ples for A68 as one representative example (see text for de-
tails). Green points are the member galaxy sample for E/S0
galaxies of this cluster, where the two dashed curves denote
the width of the red sequence. The red and blue points are the
background galaxy samples redder and blue than the red-se-
quence, respectively, used for the lensing distortion analy-
sis. Note that these shear catalogs are chosen imposing an-
other condition that galaxies are well resolved to make reli-
able shape measurements, so do not include all the red/blue
galaxies in the diagram.

available (see Table 1), we therefore define the following
four galaxy samples:

• Member galaxy sample: brightest cluster galaxy
(BCG) plus galaxies that are contained in the clus-
ter red sequence and brighter than 22 mag (AB) in
the red-band magnitude (either of i′, Rc, and Ic).

• Faint galaxy sample: galaxies that are in the magni-
tude range listed in Table 3 (typically fainter than
22 mag) and are well resolved so as to be usable for
weak lensing analysis.

• Red galaxy sample: galaxies contained in the faint
galaxy sample, but redder than the cluster red se-
quence at least by a finite color offset that is chosen
to reduce the monitored dilution effect on the lens-
ing distortion signal.

• Blue galaxy sample: galaxies contained in the faint
galaxy sample, but bluer than the red sequence at
least by a finite color offset.

As one example, Figure 2 shows these galaxy samples in
the color-magnitude diagram of A68. For the clusters for
which single filter data are available, we use the faint
galaxy sample for our lensing analysis. In Appendix 1
we describe in detail how the galaxy samples are defined
based on the color-magnitude information of galaxies, con-
structed from two filter data. We briefly summarize the
method below.

Broadhurst et al. (2005) showed that selecting galaxies
redder than the cluster red sequence yields galaxy samples
dominated by background galaxies because the red galaxy
colors are caused by larger k-corrections than for lower
redshift objects. These photometric results have also been
confirmed spectroscopically by Rines & Geller (2008).
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Table 3. Background Galaxy Samples and the Lensing Distortion Signals

Cluster rh mag nall
g 〈〈g+〉〉 (S/N) nred+blue

g 〈〈g+〉〉 (S/N)
(pix. scale) (AB mag) (arcmin−2) (10−2) (arcmin−2) (10−2)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
A68 [2.25− 10.00] [22.0− 26.0] 19.85 2.60± 0.53 6.20 9.61 3.65± 0.94 5.83
A115 [1.96− 4.00] [22.0− 26.0] 14.23 1.80± 0.60 5.99 5.94 3.79± 1.05 5.39

ZwCl0104 [1.70− 10.00] [22.0− 26.0] 42.88 2.44± 0.42 7.60 - - -
A209 [1.79− 10.00] [22.0− 25.8] 37.13 3.78± 0.66 14.30 20.90 5.83± 1.10 12.85

RXJ0142 [1.85− 10.00] [22.0− 26.0] 36.92 3.56± 0.68 9.78 20.71 6.60± 1.18 9.47
A267 [1.66− 10.00] [22.0− 26.0] 42.82 4.61± 0.64 11.90 24.10 5.48± 0.85 9.30
A291 [2.04− 10.00] [21.5− 26.3] 36.84 2.23± 0.44 9.50 18.06 3.17± 0.68 8.26
A383 [1.81− 10.00] [22.0− 26.2] 48.15 4.01± 0.40 12.57 33.81 4.95± 0.52 12.00
A521 [1.74− 10.00] [22.0− 26.2] 43.65 3.02± 0.54 11.74 27.26 3.98± 0.78 9.81
A586 [2.50− 10.00] [22.0− 26.0] 22.02 6.73± 0.86 11.31 7.48 11.20± 1.99 9.08

ZwCl0740 [2.25− 10.00] [21.5− 25.5] 21.55 1.89± 0.48 7.19 16.73 2.23± 0.60 6.56
ZwCl0823 [2.11− 10.00] [22.0− 25.9] 26.61 3.64± 0.51 11.24 16.92 4.08± 0.60 10.38
ZwCl0839 [2.23− 10.00] [22.1− 26.0] 26.82 3.67± 0.61 7.67 - - -

A611 [2.15− 10.00] [22.0− 26.0] 31.23 3.04± 0.47 9.63 21.00 4.08± 0.59 9.81
A689 [1.86− 10.00] [22.0− 26.0] 39.80 0.52± 0.42 6.38 22.08 1.49± 0.58 5.29
A697 [2.04− 10.00] [22.0− 26.2] 39.10 3.01± 0.49 12.53 20.58 5.21± 0.76 12.06
A750 [2.06− 10.00] [22.0− 26.0] 31.67 2.80± 0.38 13.70 13.59 4.51± 0.67 10.30
A963 [2.08− 10.00] [21.5− 26.1] 43.57 3.15± 0.44 11.45 - - -
A1835 [2.44− 10.00] [20.0− 24.5] 19.76 4.16± 0.52 11.79 14.93 4.60± 0.66 11.11

ZwCl1454 [2.21− 10.00] [21.8− 24.8] 20.85 3.90± 0.88 7.39 9.78 4.05± 1.12 5.84
A2009 [2.14− 10.00] [22.4− 26.1] 25.47 3.85± 0.56 9.42 - - -

ZwCl1459 [1.64− 10.00] [22.0− 26.3] 56.26 3.13± 0.56 9.80 11.18 5.93± 1.66 7.45
A2219 [2.65− 10.00] [22.0− 26.0] 25.77 4.13± 0.52 12.13 10.33 9.26± 1.10 11.27

RXJ1720 [2.03− 10.00] [20.0− 24.2] 20.12 2.92± 0.52 6.70 10.72 4.77± 0.77 7.75
A2261 [1.76− 10.00] [22.0− 26.0] 44.77 4.13± 0.37 16.49 16.76 6.85± 0.71 12.90
A2345 [2.01− 4.00] [22.0− 25.8] 15.68 2.26± 0.63 6.78 - - -

RXJ2129 [2.34− 10.00] [22.0− 25.5] 26.51 2.80± 0.50 8.42 15.49 3.97± 0.71 7.89
A2390 [1.89− 10.00] [22.0− 26.2] 33.58 5.91± 0.67 14.73 10.70 9.55± 1.31 10.66
A2485 [1.81− 10.00] [22.0− 25.9] 38.35 2.79± 0.49 9.52 15.06 3.50± 0.82 6.78
A2631 [1.79− 10.00] [22.0− 26.3] 47.11 3.25± 0.43 10.55 30.89 5.47± 0.61 11.30

NOTES Column (1): cluster name; Column (2): the range of half light radius used in selecting the background
galaxy sample; Column (3): the magnitude range of the background galaxy sample; Column (4): the angular number
density of background galaxies for the faint galaxy sample (see text for the details); Column (5): the mean strength
of the tangential distortion profile averaged over radii from ' 1′ up to the outermost radius, measured for the faint
galaxy sample (see Eq.[A2] for the definition); Column (6): the total signal-to-noise ratio for the tangential distortion
signal (see Eq. [9]); Column (7): the number density for the red plus blue background galaxy sample (the row marked
“–” denotes the cluster where no color information on galaxies is available); Columns (8) and (9): similar to Columns
(5) and (6), but for the red+blue galaxy sample.
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Fig. 3. The radial profiles of galaxy number density stacked
over 21 clusters with two passband data, for the faint back-
ground galaxy samples (square symbols) and the red+blue
galaxy samples (circle), respectively. The profiles are com-
puted by stacking the number densities in each radial bins
normalized by the virial radius of each cluster for the galaxy
samples of 21 clusters. The profile for the faint galaxy sam-
ples shows increasing number densities with decreasing radius,
indicating contamination of member galaxies. On the other
hand, the red+blue galaxy sample does not show any excess
at the inner radii.

However, using solely red galaxies for weak-lensing analy-
sis generally leads to low signal-to-noise ratios because of
the relatively small number density of red galaxies. We
therefore use combined red plus blue galaxy samples as our
fiducial sample of background galaxies in order to obtain a
higher statistical precision for our lensing measurements.

In brief the method for determining the appropriate
color cuts with which to define the red and blue galaxy
samples – i.e. how much redder or bluer than the clus-
ter red sequence needs to qualify as a red or blue galaxy
respectively – consists of plotting the mean distortion pro-
file strength 〈〈g+〉〉 (see Eq. [A2] for the definition) as a
function of color offset from the cluster red sequence. In
regions of high contamination (i.e. small color offsets) the
value of 〈〈g+〉〉 is depressed due to the stronger dilution of
distortion signals. The optimal color offsets are thus cho-
sen to minimize this effect (e.g., see Figs. 12) – the typical
color cuts are |∆color| ' [0.1,0.4] for the redder and bluer
galaxies than the cluster red-sequence.

A justification on the effectiveness of the red and blue
color selection method is given by Figure 3 showing the
stacked number density profiles as a function of cluster-
centric radius for the faint and red+blue galaxy samples,
respectively. These stacked profiles are constructed from
the 21 clusters for which data are available in two filters,
excluding ZwCl0740 (the lowest redshift cluster). The
number density profile of the faint galaxy sample shows
increasing densities at smaller cluster-centric radii as ex-

pected for a catalog that is contaminated by faint cluster
members. On the other hand, the number density profile
of red+blue galaxies does not show any evidence of excess
in the number densities at the small radii, and consistent
with a constant density within the Poisson errors. One
may notice that a slight depression in the number den-
sity at small radii, for the red+blue galaxy sample. This
is probably due to an overestimation in the solid angle in
computing the number density. Since the red+blue galaxy
sample is defined from the faint galaxy sample by exclud-
ing galaxies around the red-sequence, we have to take into
account the masking effect of the excluded galaxies on the
solid angle on the sky, and this masking contamination is
more significant at smaller radii due to the increased con-
tribution of member galaxies. However we ignored this
effect, and this likely causes to underestimate the num-
ber densities at the small radii for the red+blue galaxy
sample. Furthermore the number densities at such small
radii may be affected by the magnification effect on back-
ground galaxies that causes the galaxies to be included or
excluded in the sample within a given magnitude range.

Table 3 summarizes the background galaxy samples ob-
tained based on the methods outlined above, the num-
ber density of galaxies in the faint and red+blue galaxy
samples, the mean strength of tangential distortion pro-
file and the total signal-to-noise ratio measured for each
galaxy sample. Here the signal-to-noise ratios are defined
from Eqs. (6) and (8) as(

S

N

)2

≡
Nbin∑
n=1

[〈g+〉(θn)]2

σ2
g+

(θn)
. (9)

We emphasize that the Subaru data allow us to achieve
a significant detection of the tangential distortion at
(S/N) >∼ 5 for all the cluster fields. Comparison of the
5th and 8th columns in Table 3 also confirms quantita-
tively the impact of dilution on weak lensing signal – the
mean distortion signal is larger for the red+blue galaxy
sample than for the faint galaxy sample in every cluster
for which two filter data are available. However, the num-
ber density of galaxies in the red+blue samples is a factor
of ∼ 1.5− 3 lower than in the faint galaxy samples (see
4th and 7th columns of Table 3). Nevertheless, as a result
of the balance between these competing effects, the total
signal-to-noise ratios are only degraded by <∼ 20% in most
cases, and by ∼ 30% for a few clusters (see 6th and 9th
columns).

3.2. Source Redshift Estimation

The overall normalization of lensing distortion signals
depends on the redshift distribution of background galax-
ies. An uncertainty in the source redshift causes biases in
parameter estimations.

The lensing amplitude for a given cluster of known red-
shift scales with the mean distance ratio averaged over the
population of source galaxies:〈

Dls

Ds

〉
=

∫
dz

dpwl

dz

Dls

Ds
, (10)
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Table 4. Distance ratio averaged over the redshift distribu-
tion of background galaxy sample

Name 〈Dls/Ds〉faint 〈Dls/Ds〉red+blue

A68 0.655 0.660
A115 0.701 0.715
ZwCl0104 0.657 −
A209 0.709 0.714
RXJ0142 0.628 0.635
A267 0.683 0.687
A291 0.723 0.744
A383 0.732 0.733
A521 0.667 0.668
A586 0.728 0.738
ZwCl0740 0.820 0.827
ZwCl0839 0.709 −
A611 0.615 0.626
A697 0.623 0.637
A963 0.686 −
A1835 0.584 0.603
ZwCl1454 0.622 0.633
A2009 0.779 −
ZwCl1459 0.637 0.706
RXJ1720 0.697 0.727
A2219 0.684 0.762
A2261 0.697 0.733
RXJ2129 0.667 0.672
A2390 0.691 0.736
A2485 0.670 0.688
A2631 0.639 0.655

NOTES Column (1): cluster name; Column (2): dis-
tance ratio averaged over the redshift distribution of faint
galaxy sample, calibrated based on the COSMOS pho-
tometric redshift catalog Column (3): distance ratio av-
eraged over the redshift distribution of red+blue galaxy
sample

where Dls and Ds are the angular diameter distances from
the lens to source and from the observer to source. The
probability distribution function dpwl/dz is the redshift
distribution of source galaxies used in the lensing analysis.

Since redshifts of our imaging galaxies are not available,
we instead employ a statistical approach as follows. In or-
der to estimate dpwl/dz we used the COSMOS photomet-
ric redshift catalog given in Ilbert et al. (2008). The pho-
tometric redshifts were estimated by combining 30 broad,
intermediate and narrow bands covering a wide range of
wavelengths from UV, optical to mid infrared, and also
calibrated using the spectroscopic subsample. Hence the
catalog provides currently the most reliable redshift distri-
bution, for magnitude limited galaxy sample selected with
i < 25 in the Subaru i-band data. In addition the catalog
is constructed from the sufficiently large survey area of
about 2 square degrees, therefore it can be considered as
a fairly representative sample of distant galaxies.

To estimate redshifts of our galaxy samples, we first

construct a subsample of galaxies from the COSMOS cat-
alog by imposing the same color cut used in our weak
lensing analysis for each cluster field (see Table 3 for the
cuts). Then we compute the average distance ratio (10)
using the redshift distribution of the COSMOS subsam-
ple based on the available photo-z information. Although
our source galaxies contain galaxies fainter than i = 25
as listed in Table 3, we ignored the contribution because
the fraction of such faint galaxies in our source galaxies is
not large, and the redshift distribution does not so much
change for the range of limiting magnitudes, 25 < i < 26.
Table 4 shows the estimated distance ratio for each cluster
field. Note that the distance ratio for a faint galaxy sam-
ple varies with clusters because of the different ranges of
magnitudes used to define the faint galaxy sample as well
as the differences of cluster redshifts. A typical error in-
ferred from the statistical errors of photometric redshifts
is found to be, at most, a few per cent in 〈Dls/Ds〉. We
will come back to a possible residual uncertainty in source
redshifts in § 5.7.2, and it turns out the uncertainty, even if
it exists, does not cause any significant changes on cluster
parameters because our clusters are all at low redshifts,
[0.15,0.3].

4. MODELING OF LENSING DISTORTION
SIGNALS

In this section we describe the modeling methods that
will be applied to the data to constrain cluster mass and
density profile shape presented in §5.

4.1. Model-Dependent Estimate of 3D Cluster Mass

The definition of mass most often used in the literature
is the three-dimensional mass enclosed within a spherical
region of a given radius r∆ inside of which the mean in-
terior density is ∆ times the critical mass density, ρcr(z),
at redshift of a cluster:

M∆ =
4π

3
r3
∆ρcr(z)∆. (11)

Conventionally either a constant over-density such as ∆'
200 or the virial over-density ∆ = ∆vir(z) (e.g., Nakamura
& Suto 1997 for the definition of ∆vir; see also Tomita
1969; Gunn & Gott 1972) are used. Note that ∆vir ' 112
for halos at redshift z = 0.2 for our fiducial cosmologi-
cal model. This spherical over-density mass is very use-
ful from a theoretical viewpoint because the dark mat-
ter halo mass function derived from numerical simulations
is well fitted by a simple analytical formula such as the
Press-Schechter function (Press & Schechter 1974; see also
White 2002) if halo masses are computed using the spher-
ical top-hat average of mass distribution in each halo re-
gions in simulations.

However weak-lensing observables do not provide direct
estimates of the three-dimensional masses of clusters be-
cause the lensing signal probes the two-dimensional pro-
jected mass distribution. We therefore estimate M∆ by
fitting a three-dimensional model to the data. In short
this consists of projecting the three-dimensional model to
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predict the observables based on a given set of model pa-
rameters, and then varying those model parameters to
find the best-fit model and associated parameter uncer-
tainties: M∆ is then estimated by marginalizing over the
other parameters. The tangential distortion profile (6) is
one-dimensional, and expressed as a function of cluster-
centric radius. If we simply assume a spherically sym-
metric mass distribution that corresponds to a circularly
symmetric mass distribution on the sky after projection,
the model distortion profile can be expressed, in the ab-
sence of noise, as

g+(θ) =
γ(θ)

1−κ(θ)
, (12)

where κ(θ) and γ(θ) are the convergence and shear profiles
of the cluster (note that the shear has the tangential com-
ponent alone for a circularly symmetric lens). It should
be also noted that, exactly speaking, the equation above
is valid for a single source redshift, and needs to be mod-
ified when source galaxies have redshift distribution (e.g.
see § 4.3.2 in Bartelmann & Schneider 2000), but this ef-
fect is very small for low-redshift clusters at z ' 0.2, given
the deep Subaru data.

We now discuss briefly the choice of parametric form for
the cluster mass models. The NFW model is a theoret-
ically well-motivated mass model based on dark matter
only numerical simulations. NFW found that the mass
density profile of “equilibrium” CDM halos is well fitted
by the following analytic function over a wide range of
halo masses:

ρNFW(r) =
ρs

(r/rs)(1+ r/rs)2
, (13)

where ρs is the central density parameter and rs is the
scale radius to divide the two distinct regimes of asymp-
totic mass density slopes ρ ∝ r−1 and r−3. The NFW
profile is thus specified by two parameters. The enclosed
mass within a sphere of radius r∆ can be obtained by
integrating the NFW profile up to r∆:

MNFW,∆ =
4πρsr

3
∆

c3
∆

[
ln(1+ c∆)− c∆

1 + c∆

]
, (14)

where we have introduced the concentration parameter,
the ratio of r∆ relative to the scale radius, c∆ ≡ r∆/rs.
By equating Eqs. (11) and (14), the NFW profile can be
specified in terms of the two parameters M∆ and c∆, in-
stead of ρs and rs, once cosmological parameters and the
spherical top-hat over-density ∆ are specified. We will use
this parametrization of the NFW profile throughout the
rest of this paper.

It is then straightforward to compute the lensing pro-
files, κ(θ;M∆, c∆) and γ(θ;M∆, c∆), given the NFW pro-
file (Bartelmann 1996; Wright & Brainerd 2000; Takada
& Jain 2003). Inserting these profiles into Eq. (12) gives
the NFW prediction for the tangential distortion profile to
be compared with the measurement. In doing this, note
that the lensing fields are dimension-less and given in the
units of the critical projected mass density defined as

Σcr ≡
c2

4πG
D−1

l

〈
Dls

Ds

〉−1

, (15)

where Dl is the angular diameter distance to a given clus-
ter, and the average distance ratio 〈Dls/Ds〉 is estimated
for source galaxy samples in each cluster field as described
in § 3.2.

An alternative simpler model often used in the literature
is a singular isothermal sphere (SIS) model. This model is
specified by one parameter, the one-dimensional velocity
dispersion σ2

v , and the density profile is given by:

ρSIS(r) =
σ2

v

2πG

1
r2

. (16)

Integrating this profile over a spherical region of radius r∆

gives the enclosed mass:

MSIS,∆ =
2σ2

v

G
r∆. (17)

Again by equating Eqs. (11) and (17), the SIS model is
fully specified by either of σ2

v or the over-density mass
M∆. The lensing fields, obtained by integrating the profile
above along the line-of-sight, are found to be

κ(θ) = γ(θ) =
θE

2θ
, (18)

where θE is the Einstein radius defined as θE ≡
4π(σv/c)2Dls/Ds (e.g. see Bartelmann & Schneider 2001
for further details).

We also consider a cored isothermal sphere (CIS) model
that is obtained by introducing a softening “core” into an
SIS model in an empirical manner. We use the CIS model
given as

κCIS(θ) =
θE

2(θ + θc)
, (19)

where θE is not exactly same as that for the SIS model
given by Eq. (18), so should be considered as a model
parameter, and θc is the core radius parameter. Note that,
for the limit θc → 0, the CIS model becomes equivalent to
the SIS model. The CIS model above is given by two
parameters, similarly to the NFW model.

By comparing the goodness-of-fit of each model to the
measured distortion profile for each cluster, we will discuss
which of these mass models are preferred for real clusters.

4.2. Model-Independent Estimate of 2D Cluster Mass

It is also possible and very useful to derive a model-
independent estimate of cluster mass from weak-lensing
data. In the weak lensing limit, the azimuthally averaged
tangential distortion in each circular annulus of radius θ,
〈g+〉(θ) (see Eq. 6), is related to the projected mass den-
sity (e.g., Bartelmann & Schneider 2000) as

〈g+〉(θ) ' 〈γ+〉(θ) = κ̄(< θ)−〈κ〉(θ), (20)

where 〈· · ·〉(θ) denotes the azimuthally averaged shear
in the circular annulus, and κ̄ is the mean convergence
within a circular aperture of radius θ defined as κ̄(< θ) ≡
(1/πθ2)

∫
|θ′|≤θ

d2θ′κ(θ′). Note that the relation (20) holds
for an arbitrary mass distribution.
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As implied by Eq. (20), if the tangential distortion pro-
file 〈g+〉 can be measured out to sufficiently large radii
from the cluster center, where the local convergence likely
drops down to κ ≈ 0, the measured tangential distor-
tion at a large radius gives a direct estimate on the two-
dimensional mass enclosed within the circular aperture:
〈γ+〉(θ) ' κ̄(< θ) = M2D(< θ)/πθ2. The large Suprime-
Cam FoV is ideally suited to such measurements because
the single pointing observations used in this study span
cluster-centric radii of ∼ 1− 2rvir.

In this paper we employ the so-called ζc-statistics
(slightly modified version made in Clowe et al. 2000 from
the original method developed in Fahlman et al. 1994):

ζc(θm,θo1,θo2) ≡ 2
∫ θo1

θm

d lnθ 〈γ+〉(θ)

+
2

1− θ2
o1/θ2

o2

∫ θo2

θo1

d lnθ 〈γ+〉(θ)

= κ̄(< θm)− κ̄(θo1 ≤ θ ≤ θo2), (21)

where the radii θm, θo1 and θo2 satisfy θm < θo1 < θo2.
If the radius θm is also taken to be sufficiently large so
that the weak lensing limit g+ ≈ γ+ holds, the quantity
ζc can be directly estimated from the measured tangen-
tial distortion profile, although the discrete summation for
the radial binned profile, instead of the radial integration,
needs to be employed. The radius θm is the target radius
which encloses the projected mass we aim to measure (see
below). On the other hand, the two outermost radii θo1

and θo2 are taken to be sufficiently far from the cluster
center and are also, as suggested in Clowe et al. (2004),
chosen so that any prominent substructures in the annu-
lus of θo1 ≤ θ ≤ θo2, regardless of being associated with
the cluster or not, are absent in the reconstructed mass
map. Once these outer radii are set, we can safely con-
sider κ̄(θo1 ≤ θ≤ θo2)∼ 0 to be valid in the second equality
on the r.h.s. of Eq. (21), and therefore the enclosed mass
can be estimated as

M2D(< θm) ' πθ2
mΣcrζc(θm,θo1,θo2). (22)

More precisely, the estimated mass above, M2D(< θm),
gives a lower limit on the true mass because there may
be a non-vanishing mass contribution from the annulus
region of θo1 ≤ θ ≤ θo2 as well as a constant mass-sheet
contribution that does not change the measured distortion
signals at all.

The uncertainty in ζc is estimated as

σ2(ζc) = 4
No1∑

i=Nm

(
∆θi

θi

)2

σ2
g+

(θi)

+
(

2
1− θ2

o1/θ2
o2

)2 No2∑
i=No1

(
∆θi

θi

)2

σ2
g+

(θi), (23)

where we have again assumed that the lensing measure-
ment uncertainty is dominated by the intrinsic ellipticity
noise, and Nm, No1 and No2 are the indices of the dis-
cretized radial bins corresponding to the radii, θm, θo1

and θo2 in Eq. (21), respectively.

The weak lensing measurements thus offer a unique and
powerful method to estimate the projected mass of a clus-
ter in a model-independent way.

5. RESULTS

This section presents our main results, i.e. constraints
on cluster masses and density profile shapes based on the
weak-lensing measurements.

In the following we will often show the results using dif-
ferent subsamples of clusters each of which is defined ac-
cording to the available information on color and lensing
properties. Table 5 gives a brief summary of the subsam-
ples.

5.1. Tangential Distortion Profiles

All of our results are based on the tangential distor-
tion profile of galaxy images for each cluster, which are
shown in Appendix 3 for all 30 clusters. Our X-ray lu-
minous clusters at low redshifts (z ' 0.2) typically show
the lensing distortion strength of O(0.1) on small an-
gular scales ∼ 1′. On these small scales, the nonlin-
ear correction to the lensing shear, g+ = γ+/(1− κ) (see
Eq. [12]), must be included in the model fitting. The
distortion signals decrease down to a few per cent on
large scales ∼ 10′ (a few Mpc scales). Impressively, a 1%
shear signal is detected at >∼ 2σ significance in most of
our clusters (A209, A267, A291, A383, A586, ZwCl0740,
ZwCl0823, ZwCl0839 A611, A697, A750, A963, A1835,
A2219, A2261, A2345, RXJ2129, A2390 and A2631), thus
highlighting the unique capability of Subaru/Suprime-
Cam data for accurate weak lensing measurements thanks
to its excellent image quality and depth (Broadhurst et al.
2005; and also see Kneib et al. 2003 for the space-based
lensing observation). Given the trade-off between the ra-
dial dependence of the number of background galaxies and
the distortion strengths of clusters at z ' 0.2, the distor-
tion signals are most accurately measured around radii of
∼ 5′.

The figures in Appendix 3 also show the radial profile
of the g× distortion component for each cluster, providing
a monitor of the systematic errors inherent in the lensing
measurements, as described below Eq. (6). The g× profiles
are consistent with a null signal in most of radial bins,
confirming the reliability of our lensing measurements.

5.2. Two-dimensional Mass Reconstruction

To understand the broad-brush features of the cluster
mass distributions, and thus understand the distortion
profiles better, we use the Kaiser & Squires (1993) al-
gorithm to reconstruct the projected mass distribution in
each cluster field, as shown in Appendix 3.

Some clusters have depressions in the tangential distor-
tion profiles spanning a few radial bins. When compared
with the corresponding mass map, it becomes apparent
that these depressions correspond to prominent structures
in the annulus of the same radius – e.g., A115 has a big
depression in the distortion signals at 2−3′; the mass map
contains three structures at this distance from the cluster
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Table 5. Summary of Cluster Subsamples

Name # of clusters Comments Main Results
All 30 clusters As given in Table 1 App.3 for the mass map and shear profile
Complex 4 clusters Complex mass maps ZwCl0823, A689, A750 and A2345 (App. 3)
Two filters 25 clusters Color used to correct for dilution –

(include ZwCl0823, A689 and A750)
Shear profile 22 clusters Compared with spherical mass models Figs. 4, 5, 9, 10 and 11
NFW 19 clusters Well fitted by NFW model Figs. 6, 7 and 8

NOTES Column (1): name of cluster subsamples studied in this paper; Column (2): the number of clusters
contained in each subsample; Column (3): comments used to define each subsample; Column (4): the figures and
tables showing the main results derived from each subsample

center. The mass maps therefore provide a useful cross-
check on the distortion profiles. However in this paper we
concentrate on a simple one-dimensional (i.e. tangential
distortion profile) analysis as the first step in a series of
papers on this sample. Future papers will employ more
sophisticated modeling schemes, including substructures
and halo triaxiality in order to model more precisely the
full two- and three-dimensional structure of the cluster
mass distributions (e.g. Oguri et al. 2010).

5.3. Parametrized Distortion Profile Models

First we use the tangential distortion profile of each
cluster to constrain the spherical mass profile models dis-
cussed in § 4: NFW, SIS and CIS models. Table 6 summa-
rizes the best-fit parameters of each model. The clusters
in parentheses have been observed through just one filter,
and the results are thus likely to be adversely affected by
the dilution effect discussed in §3. Note that the results
are not shown for 4 clusters (ZwCl0823, A689, A750 and
A2345) because the complex mass distribution revealed
by the mass maps in Appendix 3 suggest strongly that a
spherically symmetric model is wholly inappropriate for
these systems. The 4 clusters are “complex cluster sub-
sample” in Table 5.

We quantify the goodness-of-fit of each model by us-
ing the significance probability Q(ν/2,χ2/2) that the data
gives as poor fit as the observed value of χ2 by chance (see
§ 15.2 in Press et al. 1992). Specifically, Q values greater
than 0.1 indicate a satisfactory agreement between the
data and the model; if Q >∼ 0.001, the fit may be accept-
able, e.g. the measurement errors may be moderately un-
derestimated; if Q <∼ 0.001, the model may be called into
question. Note that the Q value can be computed from
the chi-square value and the degrees-of-freedom given in
Table 6. For simplicity we adopt the threshold Qth = 0.1
as the dividing line between acceptable (Q>Qth) and un-
acceptable (Q < Qth) fits to the measured profile. By this
criterion three clusters (A383, A2219 and A963) are not
well fitted by any of the three models. Of the remaining
23 clusters, four (A209, A521, A697 and A1835) are not
well fitted by an SIS model having Q' 6×10−5,0.03,0.02,
and 0.08, respectively, while either of CIS or NFW models
gives an acceptable fit. In fact, as shown in Appendix 3,
these 4 clusters display a clear radial curvature in the

measured distortion profile, which cannot be fitted by a
the unbroken power law of SIS. The remaining 19 clus-
ters are all well-fitted by the three models. Note that we
checked that, even if we include the ‘poor-fit’ 3 clusters
in the analysis, the following results shown below are not
largely changed. To be more precise, for example, the
best-fit virial masses obtained from the χ2-fitting of an
NFW model to the stacked shear profile (see below for
the details) are changed by less than 5%.

With the exception of the 4 clusters noted above, we
cannot discriminate statistically between the three mass
models – i.e. we cannot make statistically robust choice as
to which model is a better description of the observational
data. This is partly because the statistical precision of the
lensing measurements is insufficient, and partly because
the radial range of the data is not wide enough to dis-
criminate characteristic radial curvatures of CIS or NFW
models from a single power law of SIS model. Specifically,
the weak-lensing information at radii smaller than a few
arcminutes is limited by the smaller number densities of
background galaxies due to the small solid angle sub-
tended by annuli at these radii. There are several ways
to overcome this limitation: (i) the statistical precision,
especially on small scales, can be boosted by stacking the
distortion profiles over cluster samples (see below), and
(ii) the weak-lensing information presented here can be
combined with strong-lensing constraints on small scales,
allowing the the cluster-by-cluster mass distribution to be
measured to high precision over a wider range of radii
(e.g., Kneib et al. 2003; Broadhurst et al. 2005). Strong-
lensing constraints are available for most of the clusters
from Hubble Space Telescope observations (GO:11312; PI:
G. P. Smith) plus ground-based spectroscopic follow-up
(Richard et al. 2009). The improved constraints on the
mass profile parameters for the joint fitting to the strong
and weak lensing information will be presented elsewhere
(Smith et al. in preparation).

We now turn to constraints on the virial mass of each
cluster, Mvir; from a theoretical perspective this is the
most useful cluster mass measurement. In Table 6 we list
the best-fit virial mass and the 1σ statistical uncertain-
ties obtained from the NFW model fits. The marginalized
error on one parameter, obtained by projecting the confi-
dence region in a higher dimensional parameter space onto
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Table 6. Best-fit Mass Profile Parameters for SIS, CIS and NFW Models

Cluster SIS CIS NFW
σSIS χ2

ν(d.o.f) θE θC χ2
ν(d.o.f) Mvir cvir χ2

ν(d.o.f)
(km s−1) (arcmin) (arcmin) (1014h−1M¯)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
A68 869.03+70.82

−75.14 0.15(11) 0.30+0.13
−0.09 0.11+0.37

−0.11 0.13(10) 5.49+2.56
−1.81 4.02+3.36

−1.82 0.14(10)
A115 818.02+86.85

−86.08 0.66(12) 0.27+0.19
−0.08 0.06+0.58

−0.06 0.71(11) 5.36+4.08
−2.45 3.69+5.03

−2.04 0.75(11)
[ZwCl0104] 665.85+42.71

−57.95 1.29(12) 0.14+0.03
−0.14 0.00+0.06

−0.00 1.41(11) 1.73+0.58
−0.47 8.08+8.20

−3.43 1.35(11)
A209 918.76+34.06

−40.37 3.36(12) 0.70+0.13
−0.11 0.65+0.30

−0.21 0.89(11) 14.00+3.31
−2.60 2.71+0.69

−0.60 0.84(11)
RXJ0142 886.80+43.55

−46.56 0.56(12) 0.27+0.06
−0.27 0.03+0.08

−0.03 0.56(11) 4.49+1.23
−1.01 7.12+2.71

−1.89 0.49(11)
A267 778.05+45.65

−37.28 0.63(12) 0.26+0.05
−0.05 0.07+0.09

−0.06 0.54(11) 3.85+1.08
−0.88 6.00+2.11

−1.58 0.58(11)
A291 801.74+53.89

−51.28 1.17(12) 0.42+0.17
−0.11 0.50+0.59

−0.33 0.86(11) 7.02+3.10
−2.06 2.36+1.34

−0.94 0.87(11)
A383 875.19+34.37

−41.47 1.95(12) 0.27+0.03
−0.27 < 0.04 2.13(11) 3.62+1.15

−0.86 8.87+5.22
−3.05 2.78(11)

A521 789.23+43.63
−43.87 1.89(12) 0.33+0.08

−0.07 0.28+0.23
−0.15 1.50(11) 5.85+1.45

−1.22 3.06+1.01
−0.79 1.29(11)

A586 1035.32+40.04
−67.58 0.90(11) 0.46+0.11

−0.46 0.07+0.12
−0.07 0.87(10) 7.37+2.89

−2.08 8.38+3.52
−2.52 1.08(10)

ZwCl0740 726.93+66.62
−58.09 0.80(12) 0.47+0.29

−0.17 0.94+1.34
−0.67 0.54(11) 5.89+5.48

−2.39 2.85+2.03
−1.37 0.53(11)

[ZwCl0839] 766.05+57.14
−47.89 0.40(10) 0.20+0.06

−0.02 < 0.12 0.45(9) 2.91+1.08
−0.82 7.24+5.04

−2.72 0.49(9)
A611 929.34+57.70

−45.26 1.45(12) 0.33+0.08
−0.07 0.11+0.19

−0.11 1.47(11) 6.65+1.75
−1.42 4.23+1.77

−1.23 1.37(11)
A697 1021.91+41.13

−45.14 2.07(12) 0.56+0.11
−0.09 0.38+0.23

−0.16 1.13(11) 12.36+2.68
−2.21 2.97+0.85

−0.69 1.04(11)
[A963] 816.53+37.85

−42.83 2.25(13) 0.40+0.10
−0.08 0.46+0.35

−0.23 1.72(12) 6.96+2.17
−1.59 2.57+1.00

−0.79 1.76(12)
A1835 1050.55+56.49

−41.65 1.65(11) 0.61+0.14
−0.11 0.46+0.27

−0.20 0.71(10) 13.69+3.65
−2.86 3.35+0.99

−0.79 0.56(10)
ZwCl1454 702.37+69.49

−67.89 0.91(11) 0.20+0.10
−0.20 0.09+0.28

−0.09 0.94(10) 3.45+2.02
−1.36 4.01+3.44

−1.96 0.99(10)
[A2009] 800.80+40.11

−49.15 1.20(12) 0.31+0.08
−0.07 0.13+0.18

−0.11 1.14(11) 3.86+1.20
−0.93 6.59+2.40

−1.71 0.89(11)
ZwCl1459.4 864.90+53.43

−71.78 1.21(12) 0.28+0.08
−0.28 0.04+0.12

−0.04 1.28(11) 4.40+1.50
−1.20 6.55+3.34

−2.18 1.17(11)
RXJ1720 879.13+61.09

−54.04 0.52(12) 0.28+0.09
−0.03 < 0.14 0.57(11) 4.07+1.65

−1.22 8.73+5.60
−3.08 0.57(11)

A2219 1132.87+43.65
−58.12 1.73(12) 0.47+0.08

−0.47 < 0.07 1.89(11) 9.11+2.54
−2.06 6.88+3.42

−2.16 2.26(11)
A2261 1078.32+54.66

−29.73 0.77(12) 0.50+0.09
−0.08 0.08+0.11

−0.07 0.68(11) 9.49+2.01
−1.69 6.04+1.71

−1.31 0.67(11)
RXJ2129 879.92+62.12

−52.16 0.52(12) 0.33+0.12
−0.09 0.15+0.33

−0.15 0.48(11) 6.71+2.73
−1.96 3.32+2.16

−1.34 0.56(11)
A2390 951.38+55.34

−31.23 1.05(12) 0.49+0.08
−0.07 0.13+0.09

−0.07 0.53(11) 8.20+1.93
−1.63 6.20+1.53

−1.28 0.61(11)
A2485 777.49+60.07

−64.03 0.82(12) 0.28+0.11
−0.08 0.17+0.34

−0.16 0.78(11) 4.56+1.84
−1.38 3.52+2.24

−1.44 0.77(11)
A2631 959.71+50.90

−35.71 0.86(12) 0.30+0.04
−0.30 < 0.04 0.93(11) 5.24+1.15

−0.98 7.84+3.54
−2.28 1.09(11)

NOTES Column (1): cluster name (clusters with name in brackets have only one filter data available, and the rest
has two filter data); Column (2): best-fit velocity dispersion for SIS model (Eq. [16]); Column (3): reduced χ2 for the
best-fit SIS model, and the degrees-of-freedom in parenthesis; Column (4): the Einstein radius parameter for the CIS
model (see Eq. [19]); Column (5): The core radius; Column (6): the reduced χ2; Column (7): best-fit viral mass for
the NFW model (Eq.[14]); Column (8): the best-fit NFW concentration parameter; Column (9): the reduced χ2.
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Fig. 4. Comparison of the virial mass estimates derived from
the fitting of SIS and NFW models to the tangential distortion
profile measured for each of the 22 clusters that have color in-
formation of galaxies (to define the red+blue galaxy sample).
The clusters are classified into 3 different groups based on
the results of Table 6: the triangle symbols with error bars
show the clusters for which any of SIS, CIS and NFW models
does not give an acceptable fit (A383 and A2219); the star
symbols show clusters for which an SIS model is disfavored
compared with CIS and NFW models (A209, A521, A697
and A1835); the square symbols denote the other clusters for
which all the three modes give an acceptable fit. While the
star symbols show a significant smaller mass from SIS than
that from NFW, an agreements within 1σ error bars can be
found for other clusters, but the scatter around the relation
MSIS

vir -MNFW
vir is rather substantial.

one particular parameter axis, can be obtained by mea-
suring the range of the parameter that satisfies ∆χ2 ≤ 1
while varying other parameter(s) (e.g. see Section 15.3 in
Numerical Recipes in Press et al. 1992).

In Fig. 4 we compare the virial masses derived from
the NFW models with the masses derived from the SIS
models, where the latter are estimated by inserting the
best-fit σSIS values from Table 6 into Eq. (17). Note
that here we consider only clusters with data available
in two filters, which corresponds to the subsample named
“shear profile” in Table 5 consisting of 22 clusters (25
clusters with two filter data minus 3 clusters showing
the complex mass distribution). The two mass estimates
agree within the uncertainties for 13 out of 22 clusters.
Adopting a fixed slope of unity, the relationship between
the two model-dependent mass measurements is found to
be MNFW

vir /MSIS
vir = 1.20± 0.25, where the quoted uncer-

tainty is the scatter around the mean, and is dominated by
the measurement errors. Nevertheless, SIS mass is system-
atically smaller than the NFW mass by ∼ 20%, implying
that model choice does influence the mass measurement.
We defer consideration of the origin of the difference be-
tween the SIS and NFW mass estimates to §5.5 in which

Fig. 5. Upper panel: Relative accuracies of the cluster mass
estimations, from the NFW model fitting, as a function of
the average over-density assumed, ∆, by which the enclosed
mass M∆ is defined based on Eq. (14). The solid, dashed
and dotted curves show the clusters that are marked with the
square, star and triangle symbols in Figure 4, respectively.
For most clusters, the cluster mass can be estimated at a best
precision when assuming ∆ ' 500 – 2000. The arrow denotes
the virial over-density at z ' 0.2: ∆vir ' 110. Lower panel:
The similar plot, but for the concentration parameter.

we study stacked distortion profiles.
The fractional error on virial masses in Table 6 is typi-

cally 20−30%. The precision to which cluster masses can
be measured is central to attempts to measure intrinsic
scatter in cosmological scaling relations. We therefore ex-
plore whether alternative definitions of cluster mass yield
similar or, hopefully, greater precision.

Despite its theoretical appeal, the virial mass is neither
a unique nor necessarily the most observationally appeal-
ing choice of cluster mass measurement. There are many
alternative cluster mass definitions, the use of which de-
pends to a large extent on the nature of observational
data available (strong-lensing, weak-lensing, X-ray, SZ)
to constrain the cluster mass. In Fig. 5 we plot the vari-
ation of the fractional error on cluster mass and concen-
tration with the over-density ∆ at which the parameters
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are defined. More precisely, for each ∆, we first express
the NFW model in terms of the two parameters (c∆,M∆),
instead of their virial counterparts, and then estimate the
best-fit parameters and statistical uncertainties from the
model fitting. While the best-fit NFW model is unchanged
for any ∆, given the measured distortion profile, the sta-
tistical uncertainties in the parameters M∆ and c∆ change
because the variations in NFW profile are given with re-
spect to r∆ corresponding to the enclosed over-density ∆.

The upper panel of Figure 5 indeed shows that the ac-
curacies of cluster mass determination do vary with ∆.
Interestingly, the optimal over-density is ∆ ' 500− 2000
for majority of our clusters. This result can be understood
as follows. These clusters are found to be well fitted by an
NFW model with concentration cvir

<∼ 5, which roughly
matches the ΛCDM simulation predictions for cluster-
scale halos (e.g. Bullock et al. 2001; Dolag et al. 2004;
Neto et al. 2007). Given the cluster redshifts (z ' 0.2)
and the number densities of background galaxies available
from Subaru, the weak lensing signals have a maximum
signal-to-noise ratio over a range of radii corresponding to
the over-density ∆ ' 500− 1000.

The lower panel shows the results for the concentration
parameter. The concentration parameter is not as tightly
constrained as mass, with the fractional error in excess of
20% in every case, at all ∆. The precision does increase
slowly with decreasing ∆ or increasing the pivot radius
r∆. This reflects the fact that the larger pivot radius
r∆ gives greater leverage when measuring the curvature
of an NFW profile with respect to the scale radius, rs(≡
r∆/C∆), yielding a superior precision on the concentration
parameter for smaller ∆.

5.4. The Mvir–cvir Relation

Numerical simulations based on the CDM model have
revealed that the two parameters of NFW halos, e.g.
cvir and Mvir, are correlated, i.e. halo concentration is
a weakly decreasing function of mass (e.g. Bullock et al.
2001). Such a correlation is expected to naturally arise
from the nature of hierarchical clustering. According to
the CDM structure formation scenario, less massive halos
first form and then more massive halos form as a result
of mergers of smaller halos and/or mass accretion onto
halos. Hence, since the progenitors of more massive halos
should have formed at lower redshifts at which the mean
background mass density is lower, more massive halos at
a given observing redshift tend to possess a less centrally
concentrated profile, given the fact that the mean over-
density within the virial radius is fixed for all halos. Thus
the properties of halo profile contain rich information on
cosmological models as well as mass assembly history of
halos.

We can therefore use our large cluster sample to explore
whether such a correlation between cvir and Mvir is present
in real clusters, concentrating on 19 clusters (the “NFW”
subsample in Table 5) – i.e. we exclude 3 clusters from the
22 with 2-filter data: A383 and A2219 are not well fit by
an NFW profile, and ZwCl0740 because its redshift is esti-
mated photometrically. Figure 6 shows how these 19 clus-

Fig. 6. The observed distribution of the concentration pa-
rameters cvir as a function of the cluster masses Mvir, for 19
clusters that are better fitted by NFW than SIS models. The
solid line indicates the median relation found from the CDM
simulations for the WMAP5 cosmological model, while the re-
gion enclosed within the dashed lines correspond to the range
of σ(log10 cvir) = 0.1 within which most of simulated clusters
are distributed (Duffy et al. 2008). The dotted-dashed line de-
notes the best-fit model of cvir = cN (Mvir/1014h−1M¯)−α to
the cluster distribution that is given by cN =8.55 and α=0.40.
The two circle symbols are the results for the stacked lensing
signals obtained from the low- and high-mass samples that are
divided with mass threshold, Mvir,thresh = 6 × 1014h−1M¯
(see § 5.5 for the details). The star and square symbols are
as in Fig. 4.

ters are distributed in the (cvir,Mvir) plane. Interestingly
visual inspection of the data suggests a marginal trend
that the measured cvir becomes smaller for more massive
halos, although the scatter is large. It is also interest-
ing to note that none of our morphologically unbiased
X-ray selected sample of clusters, including those with
the highest masses ( >∼ 1015M¯), show very high concen-
trations of cvir

>∼ 10 as had been found for some strong
lensing clusters (e.g., Gavazzi et al. 2003; Kneib et al.
2003; Broadhurst et al. 2005, 2008).

We quantify the possible trend by fitting the following
function to the cvir-Mvir data points:

cvir = cN

(
Mvir

1014h−1M¯

)−α

. (24)

This form is motivated by the simulation based studies
(e.g. Bullock et al 2001) and specified by two free param-
eters: normalization cN and mass slope α. The best-fit
parameters and 1σ uncertainties are: cN = 8.75+4.13

−2.89 and
α = 0.40 ± 0.19. Thus the mass scaling of cvir(Mvir) is
marginally detected at a 2σ level. Our results are more
significant than the earlier weak lensing result (Comerford
& Natarajan 2007; Mandelbaum et al. 2008).

Note that the two parameters Mvir and cvir are corre-
lated for each cluster: the measured shear profile can be
explained by NFW profiles with larger Mvir and smaller
cvir than the best-fit values and vice versa. We therefore
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Table 7. Best-fit parameters for the mass-concentration relation of c(M) = cN (M/1014h−1M¯)−α

cN α σ(log10 c)
cvir(Mvir) 8.75+4.13

−2.89 0.40± 0.19 0.17
Duffy+08: cvir(Mvir) 4.96 0.086 ∼ 0.15
Buote+07: cvir(Mvir) 7.5± 0.33 0.172± 0.026 ∼ 0.1
c200(M200) 5.75+2.47

−1.90 0.37+0.20
−0.21 0.18

Duffy+08: c200(M200) 3.71 0.089 ∼ 0.15

NOTES: The row labeled as “Duffy+08” shows the results obtained from numerical simulations for the WMAP 5-year
cosmological model in Duffy et al. (2008), corrected for clusters at z = 0.24, the mean redshift of our sample clusters.
The row labeled as “Buote+07” shows the results obtained from the X-ray data sets of 39 galaxy- and cluster-scale
halos in Buote et al. (2007).

check whether this intrinsic correlation might be exagger-
ating the significance of our result. We randomly draw
Mvir and cvir for each cluster from the respective poste-
rior distributions, and re-calculate the best-fit Mvir-cvir

30000 times. From the mean relation derived from these
samples, and the scatter around the mean, we estimate
that the significance of our detection of anti-correlation
between mass and concentration is unchanged, and con-
clude that the intrinsic correlation has a negligible effect
on our results.

We also checked whether the parameter fitting above
causes a bias in the best-fit slope α of the scaling relation
cvir(Mvir) by using simulated data. First, we generated
3000 simulated catalogs of the tangential shear profiles
for 19 clusters including the errors at each radial bins that
are modeled to reproduce the measured errors. In mak-
ing this simulations the mass and concentration of each
cluster are randomly chosen from the observed ranges of
2 ≤ Mvir/(1014h−1M¯) ≤ 15 and 2 ≤ cvir ≤ 10, and the
redshift of all clusters is fixed to a single redshift zl = 0.23
corresponding to the mean redshift of the 19 Subaru clus-
ters. Note that the simulated cluster catalogs have no in-
trinsic scaling relation between cvir and Mvir on average,
i.e. α = 0. Then we estimated Mvir and cvir parameters
for each simulated cluster from the shear profile fitting to
an NFW model, and made a fitting of the distribution of
Mvir and cvir for 19 clusters to the model cvir-Mvir rela-
tion (Eq. [24]). From the 3000 catalogs we found that the
estimated slope of cvir(Mvir) ∝ M−α

vir tends to be slightly
biased as 〈α〉=0.06 from the input value α=0. The origin
of this bias can again be ascribed to the degeneracy be-
tween mass and concentration for the shear profile fitting.
Nevertheless the amount of the bias is smaller than the 1σ
statistical errors of α estimation, σ(α)=0.19, therefore we
conclude that this effect is also insignificant.

The observed concentration-mass relation can be com-
pared with the theoretical predictions based on large N -
body simulations. The solid line in Figure 6 shows the
median relation obtained by Duffy et al. (2008, hereafter
Duffy08), and given by (cN ,α) = (4.96,0.086) in Eq. (24),
where the relation was obtained assuming the concordance
ΛCDM model that is constrained by the WMAP 5-year
data. Note that the redshift dependence of cvir(Mvir) is
corrected to match halos at the mean redshift z = 0.23,
based on the fitting results in Table 1 of Duffy08. The ob-

served concentrations of Mvir ∼ 5× 1014M¯ clusters, i.e.
cvir ∼5 are consistent with the prediction, however the ob-
served slope is steeper than the prediction, albeit at very
modest statistical significance. It is also important to note
that the clusters (star symbols) that are well fitted by an
NFW profile have low concentrations of cvir ∼ 3, while the
distribution of clusters (squares) for which we cannot dis-
criminate between CIS and NFW models extends to much
large concentrations.

The region enclosed by the two dashed lines shows the
range of σ(log10 cvir) = 0.1 in which simulated clusters are
typically distributed as shown in Duffy08 (also see Jing
2000). The scatter for the observed concentrations is given
by σ(log10cvir)'0.17, which is estimated by weighting the
cluster distribution with the inverse square of the statis-
tical error of each cluster concentration. The observed
statistical errors are so large that it’s not possible to say
whether there is any intrinsic scatter contribution.

Our results for the concentration distribution are sum-
marized in Table 7, together with the predictions of
Duffy08 and Buote et al.’s (2007) observational results
based on X-ray data. Note that the X-ray results are
derived using a much wider range of halo masses than
our results – from galaxy to galaxy cluster scales. Both
the lensing and X-ray observations imply a significantly
higher normalization cN than the simulations, and also a
steeper dependence (higher α) on halo masses. Comparing
the lensing and X-ray results, the lensing results indicate
a steeper dependence than the X-ray results, but the dis-
crepancy is not yet conclusive due to the large statistical
errors. A further, careful study will be needed to resolve
these possible discrepancies.

In Figure 7 we show the one-dimensional distribution
of the concentration parameters for the 19 clusters in
Figure 6. The mean values and error bars in each bin
are computed from 3000 Monte Carlo redistributions of
the clusters, assuming that the halo concentration of each
cluster obeys the Gaussian distribution with width given
by the measurement error σ(cvir). Note that the data
points in different bins are correlated. Interestingly the
observed distribution contains a dip at cvir ' 4, suggest-
ing that a single log-normal model distribution may not
fit the distribution very well. The solid and dashed curves
show the results of fitting one and two log-normal distri-
butions, respectively. Given the large error bars, the two
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Fig. 7. The one-dimensional distribution of the observed
concentration parameters for 19 clusters, obtained by pro-
jecting the cluster distribution in Figure 6 onto the axis of
log10 cvir. The square symbols and error bars in each bin are
computed from the mean and variance of 3000 Monte Carlo
redistributions of the cvir distribution, taking into account the
uncertainties in cvir for each clusters. The solid and dashed
curves show the best-fit models of one- and two-lognormal
distributions, respectively.

models both give an acceptable fit to the data: the two
log-normal distributions (additional two model parame-
ters compared to the one lognormal distribution) improve
the χ2 value only by ∆χ2 '0.9. Nevertheless it is interest-
ing to note that simulations have found similar structure
in the distribution of predicted concentrations (Jing 2000;
Shaw et al. 2006; Neto et al. 2007; Duffy08). It is argued
in these studies that the physical origin of the structure
lies in the dynamical status of clusters: more relaxed clus-
ters tend to have high concentrations and vice versa (also
see Smith & Taylor 2008). It will therefore be impor-
tant to explore further the concentration distribution by
enlarging the sample size of clusters.

5.5. Stacked Lensing Signal

In this section we study the stacked weak-lensing signal
of 19 clusters in Figure 6. This approach has several im-
portant advantages. First, the average distortion profile
is less sensitive to substructures within and asphericity
of the individual cluster mass distributions and also to
uncorrelated large-scale structure along the same line-of-
sight. This is because these “contaminating signals” are
averaged out via the stacking, under the assumption that
the universe is statistically homogeneous and isotropic.
Second, stacking should boost the signal-to-noise ratio of
the distortion signal at very small and large radii. The
signal-to-noise ratio at small radii is limited for a single
cluster because the solid angle subtended by a radial bin
shrinks at small radii thus reducing the number of galaxies
over which the mean distortion signal is calculated. Hence
the signal-to-noise ratio suffers despite the signal peak-
ing in these regions. On the other hand, at large radii,

the binned solid-angle is much larger, helping to maintain
signal-to-noise, however the signal becomes very small,
and thus the signal-to-noise ratio declines. As discussed in
§ 5.3, the signal-to-noise ratio is optimized at intermediate
radii. Therefore, stacking helps to improve signal-to-noise
as a function of radius, thus enabling a clearer investiga-
tion of (i) the curvature of the density profile that is a
characteristic signature of the NFW prediction, helping
us potentially to address the nature of dark matter (e.g.
Yoshida et al. 2000), and (ii) the distribution of mass out-
side the virial radius to address whether or not the outer
slope of the NFW profile, ρ ∝ r−3, continues outside the
virial radius (e.g. Bertschinger 1985; Busha et al. 2003).

To study the stacked lensing signal, we divide the 19
clusters into two mass bins, based on whether the NFW
model fits to individual clusters yielded a virial mass esti-
mate of greater than or less than Mvir = 6× 1014h−1M¯.
This results in two sub-samples of 10 low-mass and 9 high-
mass clusters. Figure 8 shows the average distortion pro-
file as a function of the projected radius in the physi-
cal length scale. Note that the effect of different clus-
ter redshifts was taken into account by using the weight-
ing method in terms of the lensing efficiency functions
of averaging clusters (Mandelbaum et al. 2006; also see
Sheldon et al. 2007), and the projected radius is computed
from the weighted mean redshift of the sampled clusters.
However, we checked that, even if we use the single lens-
ing efficiency for the mean cluster redshift, the results are
almost unchanged due to the narrow redshift coverage of
our cluster samples. Note that the mean lens redshifts are
〈zl〉=0.251 and 0.236 for the low- and high-mass samples,
respectively.

First, unsurprisingly, the stacked profiles yield very sig-
nificant detections: the total signal-to-noise ratios are
S/N = 24 and 30 for the low- and high-mass samples
respectively. Second, the lensing distortion signals are
recovered over a wide range of radii, from 70h−1kpc to
3h−1Mpc scales, spanning a factor of 50 in radius. Note
that the outer radial boundary corresponds to the size of
the Suprime-Cam’s FoV for clusters at z ' 0.24, and is a
factor ∼ 1.5−2 beyond the cluster virial radii determined
from the individual NFW model fits. Visual inspection of
the stacked profiles also reveals that they are clearly not
described by a single power law model, displaying very ob-
vious curvature, reminiscent of the NFW prediction. We
therefore fitted SIS and NFW models to the stacked pro-
files, and show as solid and dashed curves are the best-fit
NFW and SIS models respectively. The non-linear correc-
tions in the measured reduced shear are taken into account
in these fits following the method in Mandelbaum et al.
(2006), however for simplicity we ignore uncertainties in
the alignment of cluster halo centers; we will discuss this
effect in detail in § 5.7.3. Now very clearly the SIS model
is strongly disfavored at 6σ and 11σ significance for the
low- and high-mass samples, respectively, estimated from
the difference between the χ2 values of the best-fit NFW
and SIS models: ∆χ2 ≡χ2

SIS,min−χ2
NFW,min ' 41 and 127,

respectively. The NFW model gives an acceptable fit to
the data (the CIS model is also acceptable).
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Fig. 8. Left panel: The mean distortion profile with 1σ statistical uncertainties as a function of the projected radius, which is
obtained by stacking the distortion signals for 10 clusters that are selected with the virial masses Mvir ≤ 6 × 1014h−1M¯ from
19 clusters in Figure 6. Note that the distortion profile is plotted in the unit of the projected mass density, and the projected
radius is computed from the weighted mean redshift of clusters. The dashed and solid curves are the best-fit SIS and NFW models,
respectively. Right panel: The similar plot, but for 9 halos with Mvir > 6× 1014h−1M¯. For both the results, the SIS model is
strongly disfavored: ∆χ2 ≡χ2

SIS,min−χ2
NFW,min '41 and 127 for the low- and high-mass cluster samples, respectively. The combined

results also show a 2σ-level evidence that the NFW concentration is greater for more massive halos, which is exactly consistent with
the result in Figure 6.

The best-fit NFW parameters are cvir = 4.68+0.55
−0.50,

Mvir = 4.79+0.46
−0.42 × 1014h−1M¯ for the low-mass sample,

and cvir =3.58+0.34
−0.32, Mvir =9.68+0.80

−0.74×1014h−1M¯ for the
high-mass sample, i.e. relative accuracies of about 10% for
both cvir and Mvir, an improvement by factor of 2-5 com-
pared to the individual cluster constraints in Figure 5.
Comparing the two mass bins reveals that the concen-
tration parameter appears to be greater for the low-mass
sample than for the high-mass one at 2σ significance. It is
re-assuring that this difference is exactly consistent with
the relation found from the individual cluster analysis of
19 clusters in Figure 6, even though the individual-cluster
and stacked analyses involve non-trivial differences in the
averaging procedures that are not necessarily equivalent
for real clusters (e.g. due to non-spherical mass distribu-
tion and substructures).

The measured distortion profile outside the virial ra-
dius is consistent with the outer slope of NFW profile,
i.e. we could not find any evidence that the mass distri-
bution outside the virial radius, which mostly contains
gravitationally unbound mass, declines more rapidly than
is predicted by NFW. This is in contrast to the sharply
truncated profile at the virial radius discussed by Busha et
al. (2005; see also Takada & Jain 2004; Prada et al. 2006;
Baltz et al. 2007). The stacked distortion profiles also do
not show any signature of associated large-scale structures

such as filamentary structures surrounding the clusters,
unlike the SDSS stacked lensing results (Johnston et al.
2007). However the large-scale structure lensing signals
are only expected to dominate at projected radii greater
than ∼ 10Mpc. Hence, by further extending the observed
fields to obtain more radial range covered, it would be in-
teresting to explore the lensing signals outside the virial
radius to test the CDM structure formation scenarios sit-
ting more in the linear regime.

Finally, we note that the results presented in this section
help to explain the systematic difference between virial
mass estimates between SIS and NFW model fits to the
individual clusters as found in Fig. 4. The virial mass esti-
mates are dominated by the integral of the density profile
on large radii around the virial radius. Figure 7 reveals
that when an SIS model is fitted to distortion profile data
from an NFW halo, the inability of the SIS model to cap-
ture the curvature of the distortion profile causes it to
underestimate the amount of mass in the cluster on large
radii. This short-fall on large scales is compensated to
some extent, but not entirely by the overestimation of the
cluster mass on small scales.

5.6. Results for Model-Independent Mass Estimates

We now turn to model-independent estimates of the
projected mass of each cluster, using the ζc-method de-
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Table 8. Weak Lensing Mass Estimates for the 22 Clusters

Cluster M2D(< 500h−1kpc) M2D(< θ500) M2D(< θvir) MNFW
2500 MNFW

500 MNFW
200

(1) (2) (3) (4) (5) (6) (7)
A68 2.62± 0.69 4.17± 1.13 7.87± 3.02 1.00+0.42

−0.43 2.92+0.86
−0.75 4.45+1.75

−1.35

A115 3.23± 1.00 5.20± 1.82 8.79± 6.61 0.86+0.46
−0.47 2.70+1.15

−0.93 4.24+2.60
−1.79

A209 4.71± 0.49 8.40± 1.11 13.16± 4.00 1.53+0.33
−0.33 6.19+0.95

−0.86 10.62+2.17
−1.81

RXJ0142 2.36± 0.62 3.97± 0.98 5.60± 2.91 1.37+0.22
−0.22 2.85+0.60

−0.53 3.86+0.98
−0.82

A267 1.87± 0.45 3.14± 0.68 3.94± 1.93 1.01+0.18
−0.18 2.31+0.48

−0.43 3.23+0.82
−0.69

A291 2.55± 0.48 3.79± 0.84 5.23± 3.12 0.63+0.30
−0.27 2.88+0.70

−0.62 5.19+1.80
−1.34

A383 2.54± 0.45 3.72± 0.79 8.69± 2.53 1.23+0.17
−0.17 2.37+0.51

−0.43 3.11+0.88
−0.69

A521 3.85± 0.61 5.35± 1.15 9.29± 4.58 0.77+0.22
−0.22 2.78+0.51

−0.48 4.58+1.00
−0.88

A586 3.75± 0.99 7.54± 2.53 12.69± 8.57 2.41+0.45
−0.42 4.74+1.40

−1.14 6.29+2.26
−1.69

ZwCl0740 2.25± 0.48 2.77± 0.85 6.31± 3.66 0.64+0.27
−0.26 2.55+1.11

−0.75 4.36+3.14
−1.60

A611 3.86± 0.59 5.78± 1.11 8.77± 3.52 1.30+0.33
−0.34 3.63+0.70

−0.64 5.47+1.31
−1.11

A697 3.86± 0.56 7.74± 1.12 11.09± 3.62 1.60+0.38
−0.38 5.87+0.89

−0.82 9.73+1.86
−1.61

A1835 5.53± 0.82 9.15± 2.53 16.39± 10.02 2.03+0.40
−0.41 6.78+1.20

−1.07 10.86+2.53
−2.08

ZwCl1454 2.90± 0.82 3.12± 1.17 5.42± 4.04 0.63+0.27
−0.29 1.83+0.69

−0.57 2.80+1.39
−1.03

ZwCl1459 3.24± 0.66 3.92± 1.08 3.25± 2.83 1.26+0.30
−0.30 2.74+0.71

−0.63 3.77+1.17
−0.98

RXJ1720 2.17± 0.64 3.13± 1.05 6.31± 3.11 1.36+0.28
−0.26 2.64+0.78

−0.66 3.48+1.28
−0.99

A2219 4.54± 0.71 7.68± 1.62 12.45± 4.92 2.65+0.41
−0.44 5.67+1.05

−0.95 7.75+1.89
−1.60

A2261 4.32± 0.61 7.94± 1.44 10.64± 4.75 2.49+0.31
−0.31 5.70+0.86

−0.78 7.97+1.51
−1.31

RXJ2129 2.53± 0.57 4.78± 1.02 8.17± 3.36 0.97+0.37
−0.38 3.28+0.77

−0.69 5.29+1.76
−1.38

A2390 4.69± 0.68 8.84± 1.31 18.32± 3.74 2.21+0.31
−0.30 4.97+0.90

−0.82 6.92+1.50
−1.29

A2485 2.84± 0.72 3.36± 1.11 8.04± 3.97 0.71+0.30
−0.30 2.30+0.63

−0.56 3.63+1.26
−1.02

A2631 3.13± 0.49 3.97± 0.87 8.16± 2.49 1.70+0.25
−0.26 3.40+0.53

−0.49 4.54+0.89
−0.78

NOTES Column (1): cluster name; Column (2): the aperture mass within the projected radius of 500h−1kpc at
the cluster redshift, in the unit of 1014h−1M¯; Columns (3,4): the aperture masses within the radius corresponding
to the over-density ∆ = 500 and the virial radius, respectively, where the radii are computed from the best-fit NFW
model to the tangential distortion profile; Columns (5-7): the three-dimensional masses estimated from the NFW
model fitting, M2500, M500 and M200, for the over-densities ∆ = 2500, 500 and 200, respectively.

scribed in § 4.2.
The first three columns of Table 8 list, for the 22 clusters

in Table 6, the aperture masses within several different
radii. Note again that these 22 clusters have color infor-
mation – the results in Table 6 are therefore based on the
red+blue background galaxy samples. The statistical ac-
curacy of the aperture mass within a given aperture radius
θm is determined by the measurement accuracy of the ζc-
statistics (see Eq. [21]) that is computed by integrating the
measured distortion profile over the annulus taken outside
the aperture radius θm. Therefore, the aperture mass ac-
curacy decreases with increasing aperture radius, because
at larger radii the cluster lensing signal become weaker
and thus noisier. Table 8 shows that, at the viral radius
and r500, the typical accuracies are σ(M2D)/M2D ∼ 50%
or 25%, respectively. Note that the aperture mass at the
virial radius is somewhat sensitive to the choice of the
control annulus (θo1 ≤ θ ≤ θo2 – see Eq. [21]). However
the M2D estimates vary within the 1σ statistical errors
quoted in Table 6 when the control annulus is varied –
this is therefore not a dominant source of errors. The sec-
ond column shows the results for a fixed projected radius,
r = 500h−1kpc.

For comparison we also list the model-dependent re-
sults for the three-dimensional masses obtained from the
NFW model fitting, at several over-densities: ∆ = 2500,
500 and 200 (the virial mass and the errors were already
given in Table 6). The masses M2500 and M500 are of-
ten used when estimating cluster masses based on X-ray
observations (e.g. Vikhlinin et al. 2008).

Figure 9 compares the aperture masses with the three-
dimensional best-fit NFW messes for 22 clusters. The up-
per panel shows the comparison at the virial radius – on
this scale the mass estimates agree within the error bars,
the scatter around the equality line being dominated by
measurement error. A formal fit to the data points, hold-
ing the slope of the line fixed at unity, gives a best fit
ratio of M2D(< θvir)/MNFW

vir = 1.32± 0.19. Note that the
fit is done in the linear scale of masses, rather than the
log space. On average the aperture masses are therefore
∼ 32% higher than the 3D NFW masses, at ∼ 2σ signifi-
cance. The comparison at r500 is shown in the lower panel.
In this case a systematic excess of aperture masses over
3D NFW masses is immediately obvious for most of clus-
ters. Repeating the fit described above to the data at r500

gives a ratio of M2D(< θ500)/MNFW
500 = 1.46± 0.12, i.e. a
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Fig. 9. Comparing the lensing aperture mass with the three-
-dimensional mass that is obtained from the NFW model fit-
ting, for each of 22 clusters as in Figure 4. The upper panel
shows the results obtained when the virial radius of the best–
fit NFW model is assumed for the aperture radius, while the
lower panel shows the results for the radius of the over-den-
sity ∆ = 500. The 2D aperture masses are systematically
greater than the 3D mass for both the cases. In each panel
the numbers labeled as “ratio” are the ratio of the 3D and
2D masses and the dispersion over all the clusters. For com-
parison, the solid line denotes the mass difference expected
from a cluster-scale NFW profile with concentration param-
eters 〈cvir〉 = 3.6 and 〈c500〉 = 1.7, computed using Eq. (A3):
MNFW

2D /MNFW
3D ' 1.29 and 1.43 for the radii with ∆ = ∆vir

and 500, respectively, which are in good agreement with the
actual measurements. Note that the dashed line denotes
M2D = M3D. The different symbols are as in Fig. 4.

46% difference at ∼ 4σ significance.
These results are naturally expected as follows.

Recalling that the two-dimensional projected mass in-
cludes all the mass contributions contained in the cylinder
from the observer to the source galaxies along the line-of-
sight, the aperture mass has an additional mass contribu-
tions to the three-dimensional spherical mass within the
same radius. The main contribution arises from integra-
tion of the cluster mass distribution itself along the line of
sight to calculate the mass within a cylinder of the same
radius on the sky as the sphere used in the calculation of
the 3D NFW mass. Aperture masses are therefore always
expected to be larger than the 3D NFW mass. For ex-
ample, the amplitude of the mass biases calculated above
is well explained by a cluster-scale NFW profile. As de-
scribed explicitly in Appendix 2, the ratio of the projected
2D and 3D masses of such an NFW halo are calculated an-
alytically to be: MNFW

2D (<θm)/MNFW
3D (<r =Dlθm)'1.29

and 1.43 for ∆ = ∆vir and 500, respectively, assuming the
concentration parameter 〈cvir〉= 3.6, the mean concentra-
tion for all the clusters. These biases are shown by the
solid lines in Figure 9, showing nice agreement with the
measured biases. In other words the three-dimensional
spherical mass can be estimated from the aperture mass
by correcting for the mass bias, assuming an NFW profile
(see Mahdavi et al. 2008 for such an example). Note that
the correction factor is not so sensitive to the assumed
concentration parameter, because the aperture mass does
not measure shear signals at inner radii, which are sensi-
tive to halo concentration. Even if cvir =8 is assumed, the
correction factor becomes smaller only by about 10%.

5.7. Discussion of Systematic Errors

There are several sources of systematic errors involved
in the weak lensing measurements. In this subsection we
discuss possible effects of the systematic errors on our re-
sults.

5.7.1. Dilution contamination
One of the most important systematic errors to which

we have paid particular attention is the dilution of the
weak-lensing signal due to contamination of background
galaxy catalog by faint cluster galaxies.

As described in § 3, we defined several samples of back-
ground galaxies according to different color/magnitude se-
lection criteria: the magnitude-selected faint galaxy sam-
ple that is often used in the literature and a more se-
cure “red+blue” galaxy sample, defined as faint galaxies
redder and bluer than the cluster red-sequence by a min-
imum color offset. Figure 10 demonstrates the impact
of dilution on estimates of the cluster parameters, com-
paring the best-fit NFW parameters obtained when us-
ing the faint and red+blue galaxy samples. It is clear
that the concentration parameter for the faint galaxy
sample is systematically smaller than for the red+blue
sample for most of the clusters, i.e. underestimated due
to the dilution effect inherent in the faint sample. The
bias is measured to be c

(red+blue)
vir /c

(faint)
vir ' 1.60 ± 0.22.

On the other hand, the virial mass constraints are con-
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Fig. 10. Comparison of the best-fit parameters of NFW model obtained using the “faint” galaxy sample and the “red+blue”
galaxy sample in the weak lensing analysis for the 22 clusters as in Figure 4, where the faint galaxy sample is likely to be more
contaminated by unlensed member galaxies and therefore suffer from the dilution effect (see § 3). The left panel shows the results for
the concentration parameter, and the right panel for the virial mass. The concentration parameter is systematically underestimated
by the dilution effect, while the virial mass is little affected. This is because the dilution effect is indeed caused mainly by member
galaxies, which reduces the measured distortion signals on small radii, but preserves the signals at large radii to which the virial
mass is sensitive.

sistent between the two samples within the error bars:
M

(red+blue)
vir /M

(faint)
vir ' 1.14 ± 0.11. This is because the

virial mass is mainly sensitive to the overall shear ampli-
tudes at large radii ( >∼ 10′), and relatively insensitive to
the distortion signals at small radii to which the concen-
tration parameter is particularly sensitive. It is impor-
tant to remember here that the dilution effect increases
as cluster-centric distance decreases because the number
density of faint cluster galaxies that contaminate the faint
galaxy catalog is expected to roughly follow the underly-
ing density profile of the cluster. Thus our results indicate
that correcting for the dilution effect is important to ob-
tain unbiased, accurate constraints on cluster parameters,
especially on the concentration parameter.

It is nevertheless worth noting that, due to the limited
information on galaxy colors and redshifts, the red+blue
galaxy sample we have used may still be contaminated
by member and foreground galaxies. According to the
results in Figure 10, we should also bear in mind that the
virial mass estimates are relatively unbiased, but the best-
fit concentration parameters given in Table 6 may still
underestimate the true value (if an NFW profile represents
the true mass distribution).

However, unsurprisingly given the expected variation of
dilution as a function of radius, the amplitude of the bias
in mass measurements depends on the chosen aperture ra-
dius within which mass is measured. Figure 11 shows the
variation of the ratio of mass estimates from the faint and
red+blue galaxy samples change as a function of the over-
density used to define the cluster mass. As ∆ increases the
cluster masses become progressively underestimated due
to more significant dilution of the weak-lensing signal by

Fig. 11. The solid curve shows the ratio of NFW mass esti-
mates for the red+blue galaxy sample and for the faint galaxy
sample, as a function of the over-density used to define cluster
mass. The shaded, gray region around the solid curve is the
dispersion of 19 clusters. The dilution effect causes cluster
masses to be more significantly underestimated with increas-
ing the over-density.
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cluster members. This is an important result when con-
sidering studies in which lensing-based mass estimates are
compared with cluster observables at other wavelengths
that are conventionally measured at over-densities exceed-
ing ∆vir. For example, X-ray observations, especially with
Chandra, are typically sensitive out to ∆=2500. Figure 11
shows that, in this case, weak lensing may underestimate
M2500 by a factor of 2 if the faint galaxy sample, based
solely on the magnitude selection, is employed. Therefore,
the dilution effect should be carefully corrected for if weak
lensing is used to estimate cluster masses with higher over-
densities.

5.7.2. Source redshift uncertainty
As described in § 3.2, we estimated redshifts of source

galaxies using the well-calibrated COSMOS photo-z cat-
alog. However, our analysis includes faint galaxies some-
times down to i = 26, while the COSMOS galaxies are
available only down to i = 25. Hence our lensing results
may be affected by a residual uncertainty in the source
redshift, although such faint galaxies are generally as-
signed a smaller weight.

A 5% or 10% change in the average distance ratio, which
controls the overall amplitude of distortion signal, corre-
sponds to ' 10% or 20% in the mean source redshift for
a cluster at z ' 0.2 or 0.3, respectively. A typical un-
certainty in the mean source redshift, inferred from the
photo-z errors in the COSMOS catalog, is a few % at
most, therefore a 10% level change in the mean redshift is
unlikely. Recall that a bias in the average distance ratio is
linearly propagated into a bias in cluster mass estimates
(a 10% change in 〈Dls/Ds〉 yields a 10% change in the
best-fit mass parameter). On the other hand, the con-
centration parameter is less affected by the bias in the
distance ratio about by a factor of 2, because the concen-
tration is constrained by the shape of distortion profile.
Therefore we believe that a residual uncertainty in source
redshifts is insignificant for our results.

5.7.3. Misalignment of the BCG position and halo center
Our analysis has so far adopted the angular position of

the BCG as the cluster center around which to measure
the tangential distortion profile. However the BCG might
be offset from the true center of dark matter halo host-
ing the cluster. Such a misalignment may cause a bias in
measuring the tangential distortion profile and thus clus-
ter model parameters. One advantage of our weak lensing
analysis is we can measure variations in the goodness-of-
fit of the NFW model fitting to the distortion profile by
varying the cluster center, on an individual cluster basis;
this can be contrasted to the the stacked cluster-galaxy
lensing where the cluster center of each cluster has to be
a priori assumed before stacking (Johnston et al. 2007).
In our case, if the BCG position is close to the true center,
the χ2 value should be close to its true minimum when the
BCG is taken as the cluster center in the analysis. On the
other hand, if we adopt the BCG as the cluster center
in a cluster in which the BCG is significantly offset from
the true center, then the resulting χ2 value may become
significantly degraded.

Fig. 12. The diamond symbols show typical biases in the
best-fit parameters, cvir (upper panel) and Mvir (lower), when
the cluster center is randomly taken from arbitrary point in
the vicinity of BCG within 10′′ in radius. Note that the y-axis
is plotted in a logarithmic scale. The squares show typi-
cal biases in the best-fit parameters obtained when shifting
the innermost radial bin by ∆θmin = ±0.′2 in the tangential
distortion profile, while the triangles show the biases in the
parameters when changing the number of radial bins in the
range of Nrad = [7,16], instead of their fiducial choices. For
comparison, the filled symbols show the statistical accuracies
of these parameter estimations given in Table 6.

In Figure 12 we examine the impact of the uncertainty
in the assumed cluster center on the NFW model param-
eters. For each of 22 clusters shown in Figure 4, the open
diamond symbols show typical variations in the best-fit
parameters when taking a random point as the cluster
center that is away from the BCG position by within 10′′
in radius. More precisely, the results are computed from
the variance of the best-fit parameters obtained from 100
Monte Carlo realizations of random cluster center iden-
tifications. The range of 10′′ radius is based on the fact
that the χ2 value for the best-fit model significantly de-
grades for most of our clusters if the cluster center is taken
to be offset from the BCG position by more than 10′′,
and is also consistent with the distribution of offsets be-
tween BCG centres and X-ray centroids (Sanderson et al.
2009). Comparing the results with the filled symbols, one
finds that possible variations in the true cluster center
around the BCG position cause negligible biases in the
parameters, typically smaller by almost one order of mag-
nitude than the statistical errors on our fiducial analysis
(i.e the BCG is taken as the cluster center). Physically,
the cluster parameters we are interested in are sensitive
to the weak lensing distortions at larger radii compared
to the size of cluster center variations. Therefore, the
relative inaccuracy in the cluster center position is neg-
ligible. These results are also consistent with numerous
strong lensing studies (e.g. Kneib et al. 1996; Smith et
al. 2001, 2002, 2005; Sharon et al. 2005; Richard et al.,
2007) in which negligible BCG-cluster center offsets were
found. We are also testing this more thoroughly with our
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new HST data (SNAP:10881; Hamilton-Morris et al., in
prep., and GO:11312; Richard et al., 0911.3302) and the
new Bayesian version of lenstool (Jullo et al., 2008).
5.7.4. Radial binning

Our fiducial analysis did not use the distortion signals
at very small radii to avoid the effect of noisy measure-
ments in bins that subtend small solid angles on the sky,
in addition to seeking to minimize the impact of any mis-
identification of the cluster center on the model fitting
(see the tangential distortion plots for each cluster field
in Appendix 3 to find the range of angular scales used).
The square symbols in Figure 12 show the mean varia-
tion in the NFW parameters obtained when shifting the
innermost radial bin used in the analysis by ∆θmin =±0.′2
with the cluster center being fixed to the BCG position.
This uncertainty has a similar-level impact on the model
parameters to the diamonds, and is again considered as
an insignificant effect compared to the current statistical
precision.

Finally we also study the effect of the radial binning
scheme on the model fitting. We typically use 13 bins in
the tangential distortion profiles; finer or coarser binning
may change the results, because the intrinsic ellipticity
noise contribution to the measurement errors is sensitive
to the radial binning that determines the number of back-
ground galaxies contained in each radial annulus. The
triangles show typical variations in the parameters when
varying the bin number in the range Nrad = [7,16], con-
firming that the best-fit parameters do not change sig-
nificantly. This is partly because the effect of substruc-
tures on the azimuthally averaged tangential profile do not
largely change with the radial bin variations. The possible
biases are again small compared to the statistical errors.

5.7.5. Projection effect
A chance projection of foreground/background mass

structures can potentially affect the cluster parameter de-
termination based on the “non-local” distortion profile,
which is sensitive to the total interior mass in projec-
tion. It can locally boost the surface mass density, and
hence can affect the tangential distortion measurement if
this physically unassociated mass structure is contained
within the measurement radius. For the determination of
the NFW concentration parameter, it can lead to either an
under- or over-estimation of the concentration depending
on the apparent position of the projected mass structure.
One way to overcome this is to utilize the convergence pro-
file to examine the cluster mass profile, by locally masking
out the contribution of the known foreground/background
structure in the reconstructed mass map (Appendix 3; also
see Umetsu et al. 2008 for the case of A2261). It should
be again worth noting that these projection effects are av-
eraged out in the stacked lensing signals. Since our results
for the individual clusters are consistent with the stacked
lensing results (see Figure 6), the projection effect does
not seem to cause significant biases in our results. The
projection effect is studied in more detail in our subse-
quent paper, confirming an insignificant projection effect
for the current measurements (Oguri et al. 2010).

5.7.6. Shape measurement
The shape measurement method may involve system-

atic errors. As studied in detail by the STEP project
(Massey et al. 2007; Heymans et al. 2007), the various
shape measurement methods developed to date differ in
galaxy ellipticity measurements by up to a multiplicative
bias of ∼ 10%. It is important to note It is important to
note that STEP was conceived to inform analysis strate-
gies for cosmic shear experiments, and thus concentrated
on weak lensing lensing signals of <∼ 5% in contrast to clus-
ter signals that typically reach >∼ 10%. STEP also used
exclusively synthetic data. Nevertheless, possible method-
dependent systematic biases in galaxy shape measurement
are also relevant for cluster lensing studies. We therefore
repeated the galaxy shape measurement steps of our anal-
ysis for a representative sub-set of our sample using the
im2shape method (Bridle et al., 2002) as implemented by
Smith et al. (2009, in prep.). The resulting distortion pro-
files were identical within the measurement errors to those
based on the KSB methods described earlier in this pa-
per. In summary, whilst further careful tests are required
to validate the shape measurement methods on both syn-
thetic and real cluster lensing data, we found no evidence
for shape measurement systematic biases in our analysis,
and do not expect them to be a dominant source of errors.

5.8. Characteristics of Mass Maps vs. X-ray and Radio
Information

Two-dimensional maps of projected mass density can
be reconstructed from the measured ellipticity distribu-
tion of background galaxy shapes (e.g. Kaiser & Squires
1993). The mass maps of individual clusters are shown in
Appendix 3. Since the shear and mass density fields are
equivalent in the weak lensing regime, the mass maps do
not carry any additional information on cluster parame-
ters. Also, in practice uncertainties in reconstructed mass
maps are highly correlated between different pixels – it
is therefore important to include the error covariance in
order to properly propagate the measurement uncertain-
ties into accuracies of parameter estimations from mass
maps (see Oguri et al. 2006 and Umetsu & Broadhurst
2008 for such studies). Nevertheless mass maps are useful
when comparing the total matter distribution with cluster
properties obtained from other wavelengths (optical, X-
ray, etc.), in order to study the evolutionary processes and
dynamical stages of each cluster (e.g. Clowe et al. 2006;
Okabe & Umetsu 2008). Here we comment on features in
the mass maps from a multi-wavelength perspective.

Our cluster samples contain 2 cold-front clusters that
have sharp discontinuities of X-ray cores observed in
the X-ray surface brightness: ZwCl1454 (also known as
MS1455.0+2232: Mazzotta et al. 2001b) and RXJ1720
(Mazzotta et al. 2001a). The formation of cold fronts is
one of the outstanding problems in cluster physics. In fact
the mass maps of these two clusters suggest a bi-modal
mass distribution in the core of each cluster. In both
clusters, one sub-clump of the bi-modal mass distribution
appears to be the “counterpart” of hot intra-cluster gas at
a similar position, while the other does not have any clear
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counterpart (see Okabe, Mazzotta et al. in preparation for
a more quantitative study). This bi-modal structure is
consistent with results on the other three cold-front clus-
ters studied to date, including the bullet cluster, A2034
and A2142 (Clowe et al. 2006; Okabe & Umetsu 2008).

The origin of diffuse radio emission within clusters, em-
anating from synchrotron radiation of relativistic non-
thermal electrons, remains an unsolved mystery. One
possible scenario discussed in the literature is that the
non-thermal electrons are produced by hierarchical merg-
ers that every cluster universally experiences in the CDM
scenario. Weak-lensing mass maps are useful tools with
which to test this picture because they allow to search for
direct merging signatures, e.g. prominent substructures in
the mass maps due to cluster-cluster mergers. An impor-
tant advantage of this approach is that the collisionless na-
ture of dark matter should result in the merger signatures
surviving longer in the dark matter distribution that dom-
inates weak-lensing maps compared to the intra-cluster
hot gas (e.g., see Okabe & Umetsu 2008 and Tormen et
al. 2004 for the observational and theoretical studies, re-
spectively). On the other hand, X-ray substructures may
not be a good tracer of mass substructures, indeed some-
times they are not associated with the lensing substruc-
tures, depending on the stage that the merger has reached
(Okabe & Umetsu 2008; see also Smith et al. 2005 for a
strong-lensing/X-ray comparison).

Our cluster sample contains 8 clusters in which diffuse
radio emissions have been found to date: A209 (?), A697
(?), RXJ1720 (?), ZwCl1454 (?), A115 (?), A2345 (?),
A521 (?), and A2219 (?). These clusters appear to show
the substructures that are seen more prominent than those
in other clusters, and the substructure locations generally
match well the morphology of the radio emission. This
trend was also reported for other clusters with diffuse ra-
dio sources (Clowe et al. 2006; Okabe & Umetsu 2008). A
more quantitative comparison between the mass map and
the radio sources, further including the X-ray informa-
tion, will be presented elsewhere (Okabe et al. in prepa-
ration).

6. SUMMARY AND DISCUSSION

In this paper we have presented a systematic weak-
lensing study of 30 X-ray luminous clusters at 0.15 <
z < 0.3 as part of the Local Cluster Substructure Survey
(LoCuSS), based on high-quality Subaru/Suprime-Cam
data. Our findings are summarized as follows:

• The high-quality Subaru data allowed a significant
detection of the individual cluster lensing signals
(Table 3). The total signal-to-noise (S/N) ratios
for the tangential distortion profile, integrated over
the range of radii probed, are 5 <∼ S/N <∼ 13 for all
30 clusters.

• We made a detailed comparison of the measured dis-
tortion profile with mass profile models (Table 6 and
Figure 4) – among the secure 22 clusters (with color
information and suitable for the spherical model fit-

ting), 3 clusters favor an NFW profile compared to
an SIS model, 2 clusters cannot be well fitted by ei-
ther model, and the other clusters are well-fitted by
either model.

• The virial mass estimates from NFW and SIS mod-
els are in good agreement, albeit with large mea-
surement errors. However, the best-fit mass tends
to be underestimated if an SIS model is employed.
We understand this, in the context of the stacked
analysis discussed below, to be caused by the SIS
model under-predicting the amplitude of the gravi-
tational distortion on large scales due to its inability
to describe the curvature of the distortion profile of
an NFW halo.

• We detect anti-correlation between mass and
concentration at 2σ significance: cvir(Mvir) =
8.75+4.13

−2.89 × (Mvir/1014h−1M¯)α with α ≈ −0.40 ±
0.19. This is in qualitative agreement with predic-
tions from numerical simulations, but with a ten-
tative detection of a steeper slope than predicted
(Figure 6).

• The distribution of cvir for our morphologically-
and strong-lensing-unbiased sample does not con-
tain any clusters with extremely high concentrations
as have been reported in the literature for spectacu-
lar strong-lensing clusters. More precisely, our best-
fit cvir-Mvir scaling predicts cvir ' 3.48+1.65

−1.15 for mas-
sive clusters with Mvir = 1015h−1M¯. Therefore the
high concentrations of cvir ∼10 inferred from strong-
lensing-selected clusters are inconsistent with our
statistical analysis of X-ray selected clusters at 4σ
significance.

• The stacked distortion signals, for the two sub-
samples of 19 clusters binned into mass bins, show
a pronounced radial curvature over radii ranging
from 70h−1kpc to 3h−1Mpc (Figure 8). The pro-
files are well-fitted by a curved (cored isothermal
or NFW) density profile, supporting the individual
cluster lensing results, and strongly rule out the SIS
model at 6σ and 11σ for low (Mvir <6×1014h−1M¯)
and high (Mvir > 6×1014h−1M¯) mass bins respec-
tively.

• The projected 2D mass within the cylinder enclosed
within a given projected radius, estimated from the
model-independent aperture mass method, tends to
be greater than the 3D spherical masses enclosed
within the same radius in 3D, obtained from the
NFW model fitting (Table 8 and Figure 9). The
ratio of 2D to 3D mass is ' 1.32 and ∼ 1.46 at ∆ =
500 and ∆ = ∆vir respectively, which can be well
explained by the projected mass contribution of a
cluster-scale NFW halo with cvir ' 4.

Our results are an important step towards a more thor-
ough empirical understanding of the mass distribution in
galaxy clusters, and thus towards testing the nature of
dark matter and dark energy (through the cluster mass
function for the latter). However the results are limited
by (i) the modest statistical precision available from a
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sample of ∼ 20 clusters, (ii) the limited color informa-
tion available on the background galaxy samples, (iii) the
simplistic spherical mass modeling approach applied to
the data, and (iv) we have ignored other data available
to constrain the cluster mass distributions, most notably
strong-lensing arcs in the cluster cores.

For example, the detection of a slope in the observed
cvir(Mvir) relation is significant at just 2σ. Simply dou-
bling or quadrupling the sample size would improve this
to a 3 or 4σ result respectively. Measurements of con-
centration parameters appear to be more sensitive to sys-
tematic errors than measurements of cluster mass. We
therefore plan to combine the Subaru weak-lensing con-
straints with strong-lensing constraints available from our
HST and Keck data (Richard et al., 2009) to build joint
strong/weak-lensing models of the clusters, from which to
obtain more robust concentration measurements (Smith et
al., 2009, in prep.). An important feature of these models
will be the use of pseudo-elliptical NFW models (Golse
et al., 2001) and inclusion of multiple halos in the mod-
els to capture the full two-dimensional structure of the
clusters in the plane of the sky. Jing & Suto (2002) have
also used numerical simulations to show that CDM ha-
los are better fitted by a triaxial mass distribution than a
spherical NFW model even in the statistical average sense,
as naturally expected from collision-less nature of CDM
particles. This is a very interesting possibility that has
been explored recently by Oguri et al. (2005) and Corless
& King (2008), and can be explored in a straightforward
manner using the same data sets used in this paper (Oguri
et al. 2010).

It is also interesting to compare our results on the distri-
bution of cluster concentrations with the high concentra-
tion results obtained for several well-known strong lensing
clusters, notably A 1689, Cl 0024 and MS2137 (Gavazzi
et al. 2003; Kneib et al. 2003; Broadhurst et al. 2005;
Limousin et al. 2007; Broadhurst et al. 2008; Oguri et
al. 2009). The important difference, beyond sample size,
between these detailed single-object studies and our sta-
tistical study is that our cluster sample is unbiased with
respect to the prevalence of strong-lensing arcs in the clus-
ter cores (Figure 1). As shown in Figure 6, the massive
clusters in our sample generally have the lowest statisti-
cal errors, and indeed have low concentrations, cvir ∼ 3;
i.e. consistent with the simulation results. On the other
hand, there are clusters displaying relatively high concen-
trations cvir ∼ 8. An important test of the joint interpre-
tation of our statistical results with those of single-object
studies will be whether the presence of strong-lensing arcs
in clusters is correlated with the high concentration of the
cluster. Increased sample size and joint strong/weak-lens
modeling will both be central to this investigation.

Vikhlinin et al. (2008) recently claimed very tight cos-
mological constraints based on the cluster mass functions
at ∆ = 500 derived from Chandra observations under the
assumption of hydrostatic equilibrium. The relationship
between X-ray observables and mass was calibrated us-
ing numerical simulations (Kravtsov et al. 2006; Nagai et
al. 2007; Vikhlinin et al. 2008), and the level of residual

uncertainty in the absolute mass calibration was assessed
by comparing the X-ray derived masses with the lensing
mass estimates of Hoekstra (2007), claiming possible 5%-
level residual uncertainties in the mass estimate. However,
our results indicate that the lensing masses estimated at
∆=500 are sensitive to dilution of the weak-lensing signal
by faint cluster galaxies, cluster masses being underesti-
mated by >∼ 20% at ∆ = 500 if dilution is not properly
corrected for. Therefore, if the absolute mass calibra-
tion primarily rests on the comparison with the lensing
masses, the X-ray derived masses may still involve addi-
tional biases. In this sense, a further large detailed com-
parison of X-ray and lensing masses for joint X-ray and
lensing cluster samples is crucial. In particular detailed
cluster-by-cluster comparison will be very important to
pin down the sources of systematic errors due to physical
differences between the clusters. The mass maps shown
in Appendix 3 will be useful for this purpose because the
mass distribution directly reflects the dynamical stages of
a cluster (relaxed, merging, etc.). These studies will be
presented elsewhere (Okabe et al. in preparation).
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Appendix 1. Defining Galaxy Samples

We have concentrated on clusters for which Suprime-
Cam data are available in two filters, and used the fol-
lowing galaxy samples to select background galaxies ro-
bustly for our weak-lensing analysis: member galaxy sam-
ple, faint galaxy sample, red galaxy sample and blue galaxy
sample. In this appendix, we describe how the four galaxy
samples are defined based on the color-magnitude diagram
of each cluster.

A.1.1. Color-Magnitude Diagram

We typically used the color-magnitude information, e.g.
the (V − i′)-i′ information, to separate cluster members
from non-members. Note that because we focus on rela-
tively low-redshift clusters, most non-member galaxies are
very likely background galaxies thanks to the deep imag-
ing data and the limited volume that lies between us and
each cluster. To define the galaxy samples, we first ana-
lyze the data using SExtractor (Bertin & Arnouts 1996)
in the dual-image mode, using the redder passband (typ-
ically i′-band) for source detection. We extract all ob-
jects with isophotal areas larger than 10 contiguous pixels
where each pixel (2.′′02) needs to be ≥ 3σ pixel−1 of the
local sky background. We calculate for each source the
total magnitude in the AB-magnitude system using the
MAG AUTO parameter. Colors are calculated using the
MAG APER parameters with the aperture size being set
to 10 pixels in diameter.

A.1.2. Member Galaxy Sample

Early-type cluster galaxies occupy a narrow well-defined
locus, the so-called red sequence, in the color-magnitude
diagram. Red sequence galaxies were selected as follows.
First, point-sources were removed from the object cata-
log, and then the following relation (or its equivalent in
the case that different filters were available) was fitted to
galaxies brighter than 22nd magnitude in the redder filter:

(V − i′)E/S0 = ai′ + b. (A1)

The best-fit values of a and b were determined such that
the number of galaxies contained in the red-sequence
is maximized allowing the red-sequence to have a finite
width such as δ(V −i′)'±0.1 mag depending on the tight-
ness of the observed color-magnitude relation. For exam-
ple, the green points in Figure 2 show the member galaxy
sample for A68.

In a few cases, multiple combinations of the parameters
a and b were found to fit the data. In such cases we iden-
tified the sequence that is most likely one inferred from
the cluster redshift based on a passive evolution model of
galaxy color and magnitude. Interestingly, as discussed in
Appendix 3, galaxies sitting in other red-sequences gener-
ally coincide with peaks in the weak-lensing mass maps,
suggesting that they correspond to over-densities at other
redshifts.

We also identify the brightest cluster galaxy (hereafter
BCG) in each cluster, and defined the nominal center of
each cluster as the angular position of the BCG in each

cluster. Note that in some clusters the BCG does not sit
on the red-sequence – we therefore visually checked such
clusters to ensure correct identification of BCGs.

The BCGs and the galaxies contained in the red-
sequence with a finite width, which are all brighter than 22
mag (AB), gives our member galaxy sample. This member
galaxy sample is used to estimate the number density field
as well as the luminosity density field of cluster galaxies
for comparison with the lensing mass maps in Appendix 3.

A.1.3. Faint Galaxy Sample

Magnitude-selected background galaxy samples have of-
ten been used in previous studies of cluster weak lensing.
Although our main results are based on color-selected
galaxies, we first define here our magnitude-selected, or
“faint” galaxy samples. These samples are mainly used
as a suite of reference samples against which our more
sophisticated color-selection methods can be compared.

To ensure that the shape of galaxies can be measured
reliably, the “background” galaxies used for weak-lensing
analyses are required to be both well-resolved and have
a sufficiently large integrated signal-to-noise ratio. On
the latter point, we restrict our attention to galaxies with
signal-to-noise ratios of ν ≥ 10σ as calculated with the
IMCAT software. We also select galaxies with a half-light
radius, rh, in the range r̄∗h +σ(r∗h) < rh < 10pixels, where
r̄∗h and σ(r∗h) are the median and rms of the half-light
radii of stellar objects selected over the entire Suprime-
Cam FoV. Note that the upper limit of rh = 10pixels is
chosen based on trial and error to avoid galaxies with sat-
urated pixels and/or strange shapes typically originating
from superpositions of two or more galaxies (e.g. Okabe &
Umetsu 2008)4. Then the faint galaxy sample is defined
from the resolved, high signal-to-noise galaxies as those
lying in the apparent magnitude ranges listed in Table 3
– typically 22≤ i′ ≤ 26. The bright magnitude limit is de-
signed to minimize contamination of this sample by bright
cluster members, and corresponds to the apparent magni-
tude of ∼ i′? +3.5 for an early-type galaxy at the median
redshift of a cluster in our sample. The faint limit is a
consequence of the signal-to-noise and size cuts discussed
above.

A.1.4. Background Red/Blue Galaxy Samples

Several authors have shown that faint galaxy samples
such as those described above suffer contamination by
faint cluster galaxies, and therefore weak-shear measure-
ments based on such samples are diluted by cluster and
foreground (and thus unlensed) galaxies (e.g. Broadhurst
et al. 2005; Limousin et al. 2007). In this paper we em-
ploy the method described by Medezinski et al. (2007) and
Umetsu & Broadhurst (2008). First, to quantify the di-
lution effect we calculate the mean distortion strength of
each cluster by averaging the tangential distortion profile
(Eq. [6]) over a range of radial bins:

4 For the clusters A115 and A2345, we impose more restrict con-
ditions on the half-light radius due to poor seeing as listed in
Table 3.
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〈〈g+〉〉 ≡
1

Nrad

∑
n;1′≤θn

<∼ 20′

〈g+〉(θn), (A2)

where n runs over the radial bin labels, θn, in Eq. (6)
and Nrad is the total number of the radial bins used.
The cluster lensing signals are greater with decreasing
cluster-centric radius, and therefore this calculation as-
signs a greater weight to the lensing signals closer to the
cluster center than those towards the edge of the FoV.
This is useful when quantifying the effect of dilution, be-
cause dilution is expected to be more significant at smaller
cluster-centric radii as it roughly traces the cluster mass
distribution, while the lensing distortion signals are non-
local (non-vanishing even beyond the virial radius) and
slowly decreasing with increasing radius. Note that we do
not include the lensing signals at very small radii θn ≤ 1′,
because on these scales the signals are very noisy due to
the small numbers of galaxies in these radial bins, in ad-
dition to the impact of uncertainties in the cluster center
position.

As described above, SExtractor was used to build
the photometric catalogs, while IMCAT was used to
measure galaxy shapes. Therefore, before varying the
color-selection criteria, it was necessary to match the
SExtractor and IMCAT catalogs. In doing so, we define
the following matching criteria. For each object in the
IMCAT catalog, the closest neighbor on the sky in the
SExtractor catalog is identified; if positional difference
between the two catalogs is less than 2 pixels (0.′′404),
then the two objects are regarded as the same object, and
otherwise are rejected. If we find multiple candidates in
this matching procedure, although very rare, we take the
one with the closest total magnitude as the corresponding
object.

Figure 13 shows, for A68 as a typical example, the mean
distortion strengths as a function of the varying back-
ground galaxy samples, where each galaxy sample is se-
lected from the faint galaxy sample by further requiring
that galaxies are redder or bluer than the red-sequence
(the vertical dashed line) by a given color offset in the
horizontal axis5. Note that the data points in the dif-
ferent color bins are highly correlated because each data
point includes all galaxies at larger color offsets than the
offset at which the point is plotted.

First let us consider the results for galaxy samples red-
der than the red-sequence – i.e. right-ward of the verti-
cal dashed line. The distortion strength changes as the
color-cut becomes progressively redder due to both re-
duced cluster member contamination and to the change in
average redshift of galaxies. All other things being equal
the distortion strength should, in principle, become insen-
sitive to color-offset when the color-cut is sufficiently large
so as to render contamination and thus dilution negligi-
ble. In the case of A68, we therefore adopt a color cut of
∆color ≡ (V − i′)− (V − i′)E/S0 = 0.34, as shown by the
vertical red line. The background galaxy redshift distribu-

5 The errors on the mean distortion strengths are estimated as
σ2
〈〈g+〉〉 = (1/N2

rad)
∑

n
σ2

g+
(θn) from Eq. (8).

Fig. 13. The total number of galaxies (upper panel) and the
mean tangential distortion strength (lower; also see Eq.A2)
over the radii of 1′≤ r≤17′, as a function of the varying back-
ground galaxy samples, for A68. The background samples are
defined with galaxies redder or bluer than the red-sequence
at least by the color offsets given by x-label. The distortion
strength is changed due to the dilution by cluster members
and also partly due to the change in average source redshift.
The two solid lines in the lower panel denote our choices of
the color cuts used to define the red/blue background galaxy
samples shown in Figure 2 (see text for the details).

tion is expected to vary slowly with color offset, suggesting
that the relatively abrupt jump in distortion strength ei-
ther side of the vertical red line is contamination-related6.
Similar red-side color-cuts are adopted for the other clus-
ters, with values lying in the range ∆color ' [0.1,0.35].
Following the same logic on the blue-side we adopt a color-
cut of ∆color = −0.32 and mark this with a vertical blue
line; in this case the insensitivity of distortion strength at
the blue-side cut is more obvious than the red-side dis-
cussed above. The blue-side color-cuts are in the range of
∆color ' [−0.4,−0.1] for the entire cluster sample.

We then use the combined red+blue galaxy samples
in our lensing analysis throughout this paper. Despite
the care that we have taken over the color-selection of
background galaxies, the rather limited color information
that we have used here will inevitably allow some un-
lensed galaxies to leak into the red+blue galaxy catalogs.
Nevertheless, we are able to prove that our red+blue sam-
ples are less affected by the contamination than the faint
galaxy sample. The effectiveness of our color selection
methods is demonstrated in Fig. 3.

Our method may be compared to alternative method
where the dilution effect is corrected for by multiplying
the measured distortion signal at a given radial bin with a

6 However, note that, for fewer galaxies defined by the larger color-
cut, additional large scatters may be caused by violation of the
single source redshift assumption.
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Fig. 14. As in Figure 13, but stacked for 21 clusters (22 clus-
ters with color information minus ZwCl0740). A significant
dilution of lensing signals can be found for small color off-
sets, i.e. if including faint galaxies with color closer to that
of cluster red-sequence. The distortion strength becomes al-
most constant for color offsets, |∆color| >∼ 0.3, at both red-
and blue-sides.

correction factor inferred from the increased number den-
sity of faint galaxies at the radius (e.g., see Kneib et al.
2003; Hoekstra 2007). In this method, the stacked num-
ber density profile, as shown in Figure 3, are usually used
to infer the correction factor, because a measurement of
the number density profile is noisy for individual clus-
ter field – we have also found that we cannot necessar-
ily find a clear increase in the number density of faint
galaxies at small cluster-centric radii for a single cluster
field7. Therefore this alternative method does not allow
the cluster-by-cluster correction of dilution. Our method
using a color-selected galaxy sample can thus be recog-
nized as a more direct, unbiased way in a sense that our
method purely rests on the lensing shape measurements
and do not employ any correction factor to obtain cleaner
distortion signals. We are planning to further improve the
dilution correction with more accurate photometric red-
shifts obtained by adding more passband data, which is
also invaluable to calibrate the source redshift uncertain-
ties.

Since a selection of background galaxies is important,
we also made another test as follows. Figure 14 shows
the stacked distortion strength for 21 clusters (22 clusters
with color information minus ZwCl0740) against different

7 This is probably because of the intrinsic clustering contamina-
tion of galaxies and of another lensing effect, magnification bias,
that affects the number counts of galaxies in complex, different
ways for blue and red background galaxies (e.g. Broadhurst et
al. 2005).

background galaxy samples as in Figure 13, but selected
with a single color offset for all the clusters. With the help
of stacking the distortion strength is smoothly varying
against color, and a significant dilution of lensing signals is
clearly seen if including faint galaxies with color similar to
color of red-sequence galaxies. Also evident is the dilution
strength stays constant for the color offset |∆color| > 0.3
at both red- and blue-sides. Note that this color offset is
comparable with the color cut employed for each cluster
region as listed in Table 3, giving another confirmation
that our background galaxy selection is considered secure.

Given the results in Figure 14, Figure 15 studies how
best-fit parameters, Mvir and cvir, change for each cluster
if the background galaxy sample defined with the single
color cut |∆color|= 0.3 is used, compared to the results of
our fiducial red+blue galaxy samples. It can be found that
the results for two different samples are consistent within
the statistical errors. Thus our background galaxy selec-
tion is again considered robust. Even so, we believe that
it is more secure to define background galaxy catalog by
setting the color cut on cluster-by-cluster basis, because
the slope and normalization of red-sequence is different
for each cluster, and the populations of member galaxies
may also significantly differ for different clusters. More
color information is needed to further refine background
galaxy selection based on improved photo-z information,
which is our future project.

Appendix 2. 2D and 3D Aperture Masses for an
NFW Model

The 3D mass enclosed within a sphere of a given ra-
dius r∆ (see Eq. [11] for the definition of r∆ in terms of
the mean over-density ∆) is an important parameter to
characterize the cluster mass. The lensing fields at the
projected radius θ∆ = r∆/Dl from the cluster center (Dl

is the angular diameter distance up to the cluster) are
sensitive to the 2D mass enclosed within a cylinder of the
radius θ∆ between an observer and source galaxies. For
an isolated NFW halo, the 2D and 3D masses are found
to be related as

MNFW
2D (< θ∆ = r∆/Dl)

MNFW
3D (< r∆)

= f(c∆)g(x = c∆), (A3)

where f(c)≡1/[log(1+c)−c/(1+c)] and the function g(x)
is defined below Eq. (5) in Golse & Kneib (2002). By us-
ing the equation above, the 3D mass can be inferred from
the 2D mass that is directly estimated from the lensing
observables in a model-independent way. This inversion
holds valid if the cluster mass distribution is well repre-
sented by an NFW profile (see §4.2 for the detailed dis-
cussion).

Appendix 3. Mass Maps

The coherent distortion pattern measured from back-
ground galaxy images also allows to directly reconstruct
the two-dimensional map of the (projected) total mat-
ter distribution (Kaiser & Squires 1993). The mass den-
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Fig. 15. Comparing the best-fit parameters, cvir (left panel) and Mvir, for each cluster field when using different samples of blue+red
galaxies. The vertical axis in each panel shows the result obtained by using background galaxy sample defined with a single color
cut |∆color| = 0.3, while the horizontal axis shows the result for our fiducial background galaxy sample. The two results agree well
within the statistical errors.

sity fields between different pixels in the mass map are
highly correlated, so the correlations need to be prop-
erly taken into account when extracting some useful infor-
mation from the mass map (e.g., Umetsu & Broadhurst
2008). Even so, the mass map is sometimes useful: com-
paring the mass map with other wavelength information
(member galaxy distribution, X-ray and/or SZ maps, and
so on), and inferring the dynamical stages of a cluster from
the mass distribution (the presence of substructures and
asphericity). For this reason, we show in this Appendix
the mass maps for the individual clusters of our sample,
comparing with the number density and luminosity den-
sity maps of member galaxies.

In the following mass maps we also show the significance
contours of the mass density, relative to the 1σ noise level
expected from the intrinsic ellipticity noise. Following the
method developed in Van Waerbeke (2000) we use the
Gaussian smoothing function to quantify the noise level
at an arbitrary angular position in the mass map, which
is given as

σ2
κ =

σ2
g

2
1

2πθ2
gn̄g

, (A4)

where σ2
g is the intrinsic ellipticity noise computed in the

similar manner as in Eq. (8): σ2
g =

∑
i w

2
(i)σ

2
g(i)/[

∑
i w(i)]2

using all the galaxies used in the mass map reconstruction.
The angular scale θg is the width of the Gaussian smooth-
ing function, W (θ)= 1/(πθ2

g)exp(−|θ|2/θ2
g), and n̄g is the

mean number density of galaxies over the field. Thus the
noise level in the mass map varies for each cluster, depend-
ing on the number density of background galaxies and the

smoothing scale used.
For the following mass maps, we use the faint back-

ground galaxy sample, because some of our cluster sam-
ples do not have color information, so only the background
galaxy selection is available for the whole sample, yield-
ing fair comparisons between the mass maps of different
clusters. Note that we also show the measured radial pro-
files of tangential and its 45◦ rotated components of the
galaxy images for the clusters listed in Table 6: the clus-
ters whose lensing distortion profiles are used to constrain
cluster parameters (mass profiles and cluster masses).
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Fig. 16. The results for A68 (z =0.25). Panel A: The contours show the lensing convergence field κ(θ) (the normalized mass density
field) above the 1σ noise level, i.e. κ(θ) ≥ σκ (see Eqn.[A4]). The contours are spaced in units of ∆κ = 1σκ. The region shown is

12×12 sq. arcmins, the noise level σκ =0.033 and the Gaussian smoothing scale FWHM=1.2 arcmin (FWHM=2
√

ln2θg). Overlaid
is the Subaru redder band image (see Table 1, and the i′ band image for the case of A68). Panel B: The mass map in color scales,
overlaid on the same contours in the panel A. Panel C: The luminosity density map in the redder band image for the member galaxy
sample (see § 3), smoothed with the same Gaussian function as in the mass map. Panel D: Similar to the panel C, but the smoothed
number density map for the member galaxy sample. Panel E: The upper panel shows the radial profile of tangential distortion
component for the red+blue galaxy sample, with respect to the cluster center (BCG position). The error bars at each radial bins
show the 1σ measurement error bars, which are estimated based on Eqn. (8). The solid and dashed curves show the best-fitting
NFW and SIS profiles, respectively. The lower panel shows the radial profile of the 45◦ rotated component of background galaxy
shapes, g×, for the same background galaxy sample. The g× component does not arise from weak lensing and serves as a monitor of
the shape measurement systematics, and our measured profile is consistent with a null signal over all the radial bins (except for the
innermost bin, which is sometimes noisy due to smaller background galaxies and perhaps due to the nonlinear lensing distortion).
Note that, for other clusters shown below, the panels C and D are shown if the cluster has color information. The panel E is shown
if the distortion profile is compared to the mass profile models to constrain cluster parameters. See Tables 1 and 6, respectively.
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Fig. 17. Similarly to the previous figure, but for A115 (z = 0.20). The region shown is 14× 14 sq. arcmins, the smoothing scale
FWHM = 1.5 arcmin, and the noise level σκ = 0.031.
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Fig. 18. The results for ZwCl0104 (z = 0.25). The region shown is 12× 12 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin,
and the noise level σκ = 0.025. This cluster has only one passband data, so the comparison with the luminosity and number density
distributions of member galaxy sample cannot be made (similarly for the following clusters with no color information, which are
listed in Table 1).



34 Okabe, Takada, Umetsu et al. [Vol. ,

Fig. 19. The results for A209 (z = 0.21). The region shown is 22× 22 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin, and
the noise level σκ = 0.027.
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Fig. 20. The results for RXJ0142 (z = 0.28). The region shown is 10× 10 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin,
and the noise level σκ = 0.027.



36 Okabe, Takada, Umetsu et al. [Vol. ,

Fig. 21. The results for A267 (z = 0.23). The region shown is 20 × 20 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin,
and the noise level σκ = 0.024. Panel F: The region of the extended X-ray source, RXJ0153.2+0102, zoomed in from the panel A,
indicating a bright central galaxy (z = 0.06) and a possible counterpart of mass sub-clump.
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Fig. 22. The results for A291 (z = 0.20). The region shown is 23 × 23 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin,
and the noise level σκ = 0.027. Panel F: The region displaying sub-clumps around the virial radius (see Table 6), zoomed in from
the panel A. Panel G: The color scale shows the number density map of galaxies redder than the red-sequence of A291, given as
(V − i′) ' (V − i′)A291 +1 with the width |∆(V − i′)| ' 0.1, indicating a higher-redshift cluster.
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Fig. 23. The results for A383 (z = 0.19). The region shown is 20× 20 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin, and
the noise level σκ = 0.024.
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Fig. 24. The results for A521 (z = 0.25). The region shown is 20× 20 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin, and
the noise level σκ = 0.025. Panel F: The red contours present the VLA diffuse sources indicating a radio relic. The contour levels
are spaced as 0.9, 1.35, 2, 4, 8, 16, 32, 64, 128, and 256 mJy/beam.
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Fig. 25. The results for A586 (z = 0.17). The region shown is 16× 16 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin, and
the noise level σκ = 0.035.
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Fig. 26. The results for ZwCl0740 (the photometric redshift z = 0.11). The region shown is 16× 16 sq. arcmins, the smoothing
scale FWHM = 1.7 arcmin, and the noise level σκ = 0.024. For this cluster (similarly as in the following clusters), there is no color
information, therefore the comparison with the maps of member galaxy sample cannot be made.
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Fig. 27. The results for ZwCl0823 (z = 0.22). The region shown is 37× 29 sq. arcmins, the smoothing scale FWHM = 1.7 arcmin,
and the noise level σκ = 0.022. Panel B : Another cluster (A664 at z = 0.27) is located near at the upper-right corner in the mass
map, based on the SDSS catalogue. Panel C: The luminosity map for the member galaxy sample. Panel D: The luminosity density
map of galaxies redder than the cluster red-sequence, as given by (V − i′)' (V − i′)ZwCl0823 +0.75, |∆(V − i′)| ' 0.15, indicating the
galaxy concentrations at higher redshifts (probably z ∼ 0.5) that is superposed on the top of one mass clump located at the north
region from ZwCl0823. Panel E: The radial distortion profiles. However, since there are prominent substructures, more precisely
bimodal mass distribution, seen in the mass map and the clear cluster center cannot be defined, we did not use the measured profile
to constrain the spherical mass profile model for this cluster.
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Fig. 28. The results for ZwCl0839 (z = 0.19). The region shown is 10× 10 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin,
and the noise level σκ = 0.031.
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Fig. 29. The results for A611 (z = 0.29). The region shown is 20× 20 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin, and
the noise level σκ = 0.028. Panel F: A possible sub-clump around the virial radius. Panel G: A newly discovered giant arc near to
the cluster center, zoomed in from the panel A.
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Fig. 30. The results for A689 (z = 0.28). The region shown is 20× 20 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin, and
the noise level σκ = 0.026. Panel E: As in Figure ??, the measured profile was not used to constrain the spherical mass profile
models, because of the presence of prominent substructures in the mass maps.
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Fig. 31. The results for A697 (z = 0.28). The region shown is 16 × 16 sq. arcmins, the smoothing scale FWHM = 1.2 ar-
cmin, and the noise level σκ = 0.027. Panel F: The density map of galaxies redder than the cluster red-sequence, as given by
(V − i′) ' (V − i′)A697 +0.9 with the width of, |∆(V − i′)| ' 0.15
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Fig. 32. The results for A750 (z = 0.16). The region shown is 24× 24 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin, and
the noise level σκ = 0.030. Panel E: As in Figure ??, the measured profile was not used to constrain the spherical mass profile
models, because of the presence of prominent substructures in the mass maps.
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Fig. 33. The results for A963 (z = 0.21). The region shown is 18× 18 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin, and
the noise level σκ = 0.027.
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Fig. 34. The results for A1835 (z = 0.25). The region shown is 18× 18 sq. arcmins, the smoothing scale FWHM = 1.3 arcmin, and
the noise level σκ = 0.031.
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Fig. 35. The results for ZwCl1454 (also known as MS1455.0+2232 at z = 0.26). The region shown is 16 × 16 sq. arcmins, the
smoothing scale FWHM = 1.2 arcmin, and the noise level σκ = 0.031.
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Fig. 36. The results for A2009 (z = 0.15). The region shown is 14× 14 sq. arcmins, the smoothing scale FWHM = 1.0 arcmin, and
the noise level σκ = 0.038.
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Fig. 37. The results for ZwCl1459 (z = 0.29). The region shown is 18 × 18 sq. arcmins, the smoothing scale FWHM = 1.0
arcmin, and the noise level σκ = 0.025. Panel F: The luminosity map of galaxies redder than the red-sequence, given as
(V −Rc) ' (V −Rc)ZwCl1459 +0.4 with the width |∆(V −Rc)| ' 0.1.
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Fig. 38. The results for A2219 (z = 0.23). The region shown is 20× 20 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin, and
the noise level σκ = 0.034.
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Fig. 39. The results for RXJ1720 (z = 0.16). The region shown is 14× 14 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin,
and the noise level σκ = 0.033.
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Fig. 40. The results for A2261 (z = 0.22). The region shown is 20 × 20 sq. arcmins, The smoothing scale FWHM = 1.0 ar-
cmin, and the noise level σκ = 0.029. Panel F: The luminosity map of galaxies redder than the red-sequence of A2261, given as
(V −Rc)' (V −Rc)A2261 +0.6 with the width |∆(V −Rc)| ' 0.1 roughly corresponding to z ∼ 0.5. Panel G: The sub-clump located
at the north-west region from the cluster center, outside the mass map in the panel A. Panel H: The luminosity map of redder
galaxies as in the panel F.
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Fig. 41. The results for A2345 (z = 0.18). The region shown is 20× 20 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin, and
the noise level σκ = 0.037. Panel D: The red contours show VLA diffuse sources indicating double radio relics. The contour levels
are spaced as 0.9, 1.35, 2, 4, 8, 16, 32, 64, 128,256 mJy/beam. Panel E: As in Figure ??, the measured profile was not used to
constrain the spherical mass profile models, because of the presence of prominent substructures in the mass maps.



No. ] 57

Fig. 42. The results for RXJ2129 (z = 0.24). The region shown is 12× 12 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin,
and the noise level σκ = 0.032.
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Fig. 43. The results for A2390 (z = 0.23). The region shown is 24× 24 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin, and
the noise level σκ = 0.028.
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Fig. 44. The results for A2485 (z = 0.25). The region shown is 18× 18 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin, and
the noise level σκ = 0.026. Panel F: The region of 2MASX J22483320-1608278 (z = 0.119).
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Fig. 45. The results for A2631 (z = 0.28). The region shown is 20× 20 sq. arcmins, the smoothing scale FWHM = 1.2 arcmin, and
the noise level σκ = 0.025. Panel F:2MASX J23380982+0012041 (z = 0.116)
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482, 451.


