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Several dark energy experiments are available from a single large-area imaging survey, and may
be combined to improve cosmological parameter constraints and/or test inherent systematics. Two
promising experiments are cosmic shear power spectra and counts of galaxy clusters. However the
two experiments probe the same cosmic mass density field in large-scale structure, therefore the
combination may be less powerful than first thought.

We investigate the cross-covariance between the cosmic shear power spectra and the cluster counts
based on the halo model approach, where the cross-covariance arises from the three-point correlations
of the underlying mass density field. Fully taking into account the cross-covariance as well as non-
Gaussian errors on the lensing power spectrum covariance, we find a significant cross-correlation
between the lensing power spectrum signals at multipoles | ~ 10° and the cluster counts containing
halos with masses M 2 10'*Mg. Including the cross-covariance for the combined measurement
degrades and in some cases improves the total signal-to-noise ratios up to ~ £20% relative to when
the two are independent. For cosmological parameter determination, the cross-covariance has a
smaller effect as a result of working in a multi-dimensional parameter space, implying that the two
observables can be considered independent to a good approximation. We also discuss that cluster
count experiments using lensing-selected mass peaks could be more complementary to cosmic shear
tomography than mass-selected cluster counts of the corresponding mass threshold. Using lensing
selected clusters with a realistic usable detection threshold ((S/N)custer ~ 6 for a ground-based
survey), the uncertainty on each dark energy parameter may be roughly halved by the combined

experiments, relative to using the power spectra alone.

I. INTRODUCTION

In recent years great observational progress has been
made in measuring the constituents of the universe (e.g.
[1,12,3]). It appears that the universe is currently dom-
inated by an unexpected component that is causing the
universe to accelerate in its expansion. This component
is dubbed “dark energy”. Understanding the nature of
dark energy is one of most fundamental questions that re-
main unresolved with the current cosmological data sets
(e.g. M . This is now the focus of several planned

future surveys ﬂH 1, 18,19, 10, 11, .

Whether the accelerating expansion is as a conse-
quence of the cosmological constant, a new fluid or a
modification to Einstein’s gravity, these future surveys
will provide key information. In addition they will pro-
vide a wealth of further cosmological information, such
as constraints on the neutrino mass and the spectrum of
primordial perturbations generated in the early universe
(c.g. [19).

Combining several techniques accessible from different
cosmological observables is often a powerful way to im-
prove constraints on cosmology. However, care must be
taken if the observables are not completely independent.
Two of the most promising methods for constraining the

dark energy are galaxy cluster counts and cosmic shear
(e.g. [14]).

Clusters of galaxies contain galaxies, hot gas and dark
matter in ratio approximately 1:10:100 [15]. They are
the largest gravitationally bound objects in the universe
and the number of clusters of galaxies has long been
reco 1zed as a powerful probe of cosmology ﬂE 17,

@ Counting clusters of galaxies as a func-
t1on of redsh1ft allows a combination of structure growth
and geometrical information to be extracted, thus poten-
tially allowin, Constralnts on the nature of dark energy
, 22, 23, ﬁ If cluster masses can be measured
accurately then the shape of the mass function also helps
to break degeneracies m] The distribution of clusters
on the sky (e.g. two-point correlation function) carries
additional information on dark energy [27, [28].

The bending of light by mass, gravitational lensing,
causes images of distant galaxies to be distorted. These
sheared source galaxies are mostly too weakly distorted
for us to measure the effect in single galaxies, but require
surveys containing a few million galaxies to detect the
signal in a statistical way. This cosmic shear signal has
been observed m, 30, 31, % and used to constrain cos-
mology (most recently ﬂﬁ ). By using redshift
information of source galaxies the evolution of the dark
matter distribution with redshift can be inferred. Hence,
measuring the cosmic shear two-point function as a func-
tion of redshift and separation between pairs of galaxies
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well as the growth of mass clustering. This method has
emerged as one of the most promising to obtain precise
constraints on the nature of dark energy if systematics
are well under control 37, 138, [39].

Future optical imaging surveys suitable for cosmic
shear analysis will also allow the identification of clusters
of galaxies. This could be done either using the colors
of the cluster members (e.g. 40, 41]) or using peaks in
the gravitational lensing shear field (e.g. [42,143,44]). In
addition cluster surveys in other wavebands will overlap
with the cosmic shear surveys allowing detection using
X-rays and the thermal Sunyaev—Zel’dovich (SZ) effect.

Clusters of galaxies produce a large gravitational lens-
ing effect on distant galaxies, therefore cluster counts
and cosmic shear will not be strictly statistically inde-
pendent. The volume surveyed is finite and therefore the
number of clusters observed will not be exactly equal to
the average over all universe realizations. If the num-
ber of clusters happens to be higher for a given survey
region, then the cosmic shear signal is also likely to be
higher. Although the volumes will be large, and thus the
deviation is small, this may amount to a significant un-
certainty in the dark energy parameters as obtained by
cluster counts, and dominates the non-Gaussian errors
on the cosmic shear [45, 46, 47, 4]].

One aspect of this cross-correlation was discussed in
[49] and found to be negligible. However, here we make
a full treatment of this effect using the halo model for
non-linear structure formation, and quantify the result-
ing change in joint constraints on the dark energy pa-
rameters.

The structure of our paper is as follows. In § [l we
describe how our observables, cluster number counts and
lensing power spectra, can be expressed in terms of the
background cosmological model and the density pertur-
bations. In §[[IIl we describe a methodology to compute
covariances of the cluster counts and the lensing power
spectra, and the cross-covariance between the two ob-
servables. The detailed derivations of the covariances are
presented in Appendix. In § [[V] we first study the total
signal-to-noise ratios expected for a joint experiment of
the cluster counts and the lensing power spectrum fully
including the cross-covariance predicted from the ACDM
cosmologies. We then present forecasts for cosmological
parameter determination for the joint experiment, with
particular focus on forecasts for the dark energy param-
eter constraints. Finally, we present conclusions and dis-
cussion in § [Vl

II. PRELIMINARIES
A. A CDM model

We work in the context of spatially flat cold dark mat-
ter models for structure formation. The expansion his-
tory of the universe is given by the scale factor a(t) in a
homogeneous and isotropic universe (e.g., see [50]). We

describe the Universe in terms of the matter density Q.
(the cold dark matter plus the baryons) and dark energy
density Q4. at present (in units of the critical density
3HZ/(87G), where Hy = 100 h km s~' Mpc ™! is the
Hubble parameter at present). In general the expansion
rate, the Hubble parameter, is given by

H2(a) _ Hg Qma_3 +Qdee_3f1a da’(1+w(a’))/a’ 7 (1)

where we have employed the normalization a(tp) = 1
today and w(a) specifies the equation of state for dark
energy as w(a) = pde(a)/pde(a). Note that Oy, + Qge = 1
and w = —1 corresponds to a cosmological constant. The
comoving distance x(a) from an observer at a = 1 to a
source at a is expressed in terms of the Hubble parameter
as

1 a/
X(a)z/am' (2)

This gives the distance-redshift relation x(z) via the re-
lation 1 4+ z = 1/a.

Next we need the redshift growth of density pertur-
bations. In linear theory after matter-radiation equal-
ity, all Fourier modes of the mass density perturbation,
d(x)(= dpm(x)/pm), grow at the same rate, the growth
rate (e.g. see Eq. 10 in [51] for details).

B. Number counts of galaxy clusters

The galaxy cluster observables we will consider in this
paper are the number counts drawn from a given survey
region. Clusters can be found via their notable observa-
tional properties such as gravitational lensing, member
galaxies, X-ray emission and the SZ effect. For number
counts we simply treat clusters as points; in other words,
we do not care about the distribution of mass within a
cluster. Hence, the number density field of clusters at
redshift z can be expressed as

na(z) = Z S(mi; )03 (x — 1), (3)

where 6% () is the three-dimensional Dirac delta func-
tion. The summation runs over halos (the subscript 4
stands for the i-th halo), and S(m,;z) denotes the se-
lection function that discriminates the halos used for the
cluster number counts statistic from other halos.

In this paper, we will consider the following two toy
models for the selection function, to develop intuition
for the importance of cross-correlation between cluster
counts and the lensing power spectrum and to make
a comparison between cosmological parameter estima-
tions derived from different cluster samples. Note that
throughout this paper we will ignore uncertainties asso-
ciated with cluster mass-observable relation, which could
significantly degrade the ability of cluster counts for con-
straining cosmological parameters (e.g. [23]). We shall
discuss this issue in § [V El



A mass-limited cluster sample — The first toy model we
will consider is a mass-limited cluster sample. For this
model, we include all halos with masses above a given
mass threshold:

17 if m > Mmin
S(m; z) = { 0, otherwise.

To a zero-th order approximation, the mass-limited se-
lection may mimic a cluster sample derived from a flux-
limited survey of clusters via the SZ effect, as this effect
is free of the surface brightness dimming effect (e.g. see
(52)).

A lensing-based cluster sample — A lensing measure-
ment allows one to make a reconstruction of the two-
dimensional mass distribution projected along the line
of sight [53]. A high peak in the mass map provides a
strong candidate for a massive cluster (see [42, 43, |44]
for an implementation of this method to actual data).
To be more explicit, one can define height or significance
for each peak in the reconstructed mass map using the
effective signal-to-noise ratio (see [54] for details):

(E) _ ’iclustcr(ma Z) (4)
N cluster ON

Here Kcjuster 18 the convergence amplitude due to a given
cluster at redshift z and with mass m, and on is the
rms fluctuations in x due to the intrinsic ellipticity noise
arising from a finite number of the background galax-
ies. Note that we assume an NFW profile [55] with pro-
file parameters modeled in [56], and consider the conver-
gence field smoothed with a Gaussian filter of angular
scale §; = 1’. To compute the (S/N)cluster for a clus-
ter at redshift z, we take into account the remaining
fraction of background galaxies behind the cluster for
a given redshift distribution of whole galaxy population
(see § [IVA). This accounts for the variation of mean
redshift and number density of the background galaxies
with cluster redshift, which changes both the signal and
the intrinsic noise in Eq. ().

From the reconstructed mass map, a cluster sample
may be constructed by counting mass peaks with heights
above a given threshold, vyi,: the selection function is
given by

. _ 15 if (S/N)Clustcr Z Vmin
S(m; 2) = { 0, otherwise.

As carefully investigated in [54], the minimum mass of
clusters detectable with a given threshold varies with
cluster redshift; clusters at medium redshift between ob-
server and a typical source redshift are most easily de-
tectable, while only more massive clusters can be de-
tected at redshifts smaller and greater than the medium
redshift, as discussed below.

We will employ the halo model to quantify the statis-
tical properties of cluster observables. In the halo model
approach, we assume that all the matter is in halos. Fol-
lowing the formulation developed in |56, |57, 58, 59] (also

see Appendix [AT] and [60] for a thorough review), the
ensemble average of Eq. ([B) can be computed as

M = (na(x)) = <Z S(my; 2)8% (x — :ci)>

= </dm /dw’ZS(m;z)&%(m—w')

X 5D(m — ml)(%(w/ — .’Bl)>
= /dm S(m; z)n(m) /dcc'zs%(m )
= /dm S(m; z)n(m), (5)

where n(m) is the halo mass function corresponding to
the redshift considered and we have used the ensemble
average (>, 0p(m — m;)d% (x; — x')) = n(m). Thus, as
expected, the ensemble average of the cluster number
density field is given by the integral of the halo mass
function, which does not depend on the cluster distribu-
tion and spatial position. For the halo mass function, we
employ the Sheth-Tormen fitting formula |61], modified
from the original Press-Schechter function [62]. Note that
we use parameter values a = 0.75 and p = 0.3 in the for-
mula following the discussion in [63]. We assume that the
mass function can be applied to dark energy cosmologies
by replacing the growth rate appearing in the formula
with that for a dark energy model [64].

A more useful quantity often considered in the liter-
ature is the total number counts of clusters available
from a given survey, which is obtained by integrating
the three-dimensional number density field over a range
of redshifts surveyed. Cluster redshifts are rather easily
available even from a multicolor imaging survey alone be-
cause their central bright galaxies, or red sequence galax-
ies, have secure photometric redshift estimates. Having
these facts in mind we will use as our observable the an-
gular number density averaged over a survey area and
divided into redshift bins:

XH d2V
Ny = /d29 W(e)/o dx dxd?
x Z Sty (mi; 2)0p(x — xi)05 (X0 — xi8:), (6)

where W (6) is the window function of the survey defined
so that it is normalized as [d?0W(0) = 1, xp is the
distance to the Hubble horizon, and the comoving volume
per unit comoving distance and unit steradian is given by
d?>V/dxd§) = x? for a flat universe. The subscript in the
round bracket, (b), stands for the b-th redshift bin for the
cluster number counts. In the following, we will simply
consider the sharp redshift selection function

. S(ml)v ifzb,lwrgzézb,u er
Siptmaz) = { ("0 B i ter <2< Z0wmrer
Note that the redshift z appearing in the argument of

Sv)(mi; z) is related to the comoving distance x via the
relation dy = dz/H(z).



Using the halo model, the expectation value of the an-
gular number density can be computed from the ensemble
average of Eq. (@) as

Nw))

/d20W(0)/XHd dQ—V/dm Sy (m; z)n(m)
0 XdXdQ (b) )

XH d2V
|
0 dxd)
Thus, the expectation value again does not depend on
the cluster distribution. The sensitivity of the number

density to dark energy arises from the comoving volume
and the mass function n(m) [21)].

N(b) =

dm Sy (m; z)n(m). (8)
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FIG. 1: The average angular number density of halos with
masses above a given threshold, per unit square arcminute
and per unit redshift interval. The upper pair and lower pair
of curves are for halos with M/Mg > 10'* and 5 x 10,
respectively. Increasing the dark energy equation state from
w = —1 to w = —0.9 decreases the number density, as shown
by the dashed curves.

Fig.Dlshows the average angular number density of ha-
los with masses greater than a given threshold, per unit
square arcminute and per unit redshift interval assum-
ing the fiducial model defined in [VAl Increasing the
dark energy equation of state from our fiducial model
w = —1.0 to w = —0.9 decreases the number density,
because the change decreases both the comoving vol-
ume d?V/dxdS) and the number density of cluster-scale
halos, for a given CMB normalization of density per-
turbations. Comparing the results for mass thresholds
Muin/Me = 10 and 5 x 10! clarifies that a factor
5 increase in the mass threshold leads to a significant
decrease in the number density, reflecting the mass sen-
sitivity of the halo mass function in its exponential tail.

In Fig.2lwe present the number density for the lensing-
based cluster sample in which clusters having a lensing
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FIG. 2: As in the previous plot, but shown here is the number
density for the lensing-based cluster sample, where clusters
having a lensing signal greater than a given detection thresh-
old are selected in the sample as described around Eq. ().
The dashed, solid and dotted curves show the results for the
detection thresholds (S/N)custer > 6,8 and 10, respectively.
For comparison, the two dot-dashed curves show the num-
ber density for the mass-selected cluster sample with masses
M/Ms > 5,10 x 10*. Increasing wo from wo = —1.0 to
wo = —0.9 leads to a decrease in the number density as shown
by the thin-solid curve, compared to the bold-solid curve. The
lensing selected number densities peak at a redshift z ~ 0.25,
reflecting redshift dependence of the lensing efficiency func-
tion for source galaxies at zs ~ 1.

signal greater than a given detection threshold are in-
cluded in the sample as discussed around Eq. (&). Note
that to compute the results shown in this plot we as-
sumed the redshift distribution of galaxies described in
¢ [V Al and the NFW mass profile to model the cluster
lensing. In practice high detection thresholds such as
(S/N)cluster & 6 are necessary in order to make robust
estimates for cluster counts, because contamination of
false peaks due to intrinsic ellipticities or the projection
effect are expected to be low for such high thresholds (see
154,165 for the details). Comparing with the number den-
sity for a mass-selected sample shown by the dot-dashed
curves, one can roughly find which mass and redshift
ranges of clusters are probed by the lensing-based clus-
ter sample. For example, the cluster sample with lensing
signal (S/N)cluster > 10 contains massive clusters with
masses M 2, 10'° M, over redshift ranges z < 0.4, while
only even more massive clusters are included in the sam-
ple at the higher redshifts. This cluster sample has a
narrower redshift coverage than the simple mass thresh-
old; all the curves peak at a redshift z ~ 0.25. The peak
redshift is mainly attributed to redshift dependence of
the lensing efficiency for source galaxies of z5 ~ 1 in our
redshift distribution. A change of wg from wg = —1.0 to



wo = —0.9 leads to a decrease in the number density, as
seen in Fig.[Il As before the effect comes partially arises
from the decrease in comoving volume and the change in
the halo mass function. Unlike the simple mass thresh-
old case, there is now an additional contribution to the
decrease in number density caused by the lower lensing
efficiency and thus lower S/N for a cluster of a given
mass and redshift.

C. Lensing power spectrum with tomography

Gravitational shear can be simply related to the lensing
convergence: the weighted mass distribution integrated
along the line of sight. Photometric redshift information
on source galaxies allows us to subdivide galaxies into
redshift bins (we will discuss possible effects of photomet-
ric redshift errors on our results in § [VE]). This allows
more cosmological information to be extracted, which is
referred to as lensing tomography (e.g., see [66, 67, |68
for a thorough review, and see |37, 138, 39] for the details
of lensing tomography).

In the context of cosmological gravitational lensing the
convergence field with tomographic information is ex-
pressed as a weighted projection of the three-dimensional
mass density fluctuation field:

oy (6) = / Wi, (03 X8 (9)

where 6 is the angular position on the sky, and W, is
the gravitational lensing weight function for source galax-
ies sitting in the i-th redshift bin (see Eq. (10) in [39] for
the definition). Note that, hereafter, quantities with sub-
scripts in the round bracket such as (i) stands for those
for the i-th redshift bin. To avoid confusion, throughout
this paper we use 4, j or ¢, ' for the lensing power spec-
trum redshift bins, and b, ¥’ for the cluster count redshift
bins.

The lensing tomographic information allows us to ex-
tract redshift evolution of the lensing weight function as
well as the growth rate of mass clustering. These are
both sensitive to dark energy. For example, increasing
the equation of state parameter w from w = —1 lowers
W(i)4 as well as suppressing the growth rate at lower red-
shifts. Therefore when the CMB normalization of density
perturbations is employed, an increase in w decreases the
lensing power spectrum due to both the lower W(;), and
the lower matter power spectrum amplitude. The sensi-
tivity of lensing observables to the dark energy equation
of state roughly arises equally from the two effects (e.g.,
see [69)).

The cosmic shear fields are measurable only in a sta-
tistical way. The most conventional methods used in the
literature are the shear two-point correlation function.
The Fourier transformed counterpart is the shear power
spectrum. The convergence power spectrum is identical
to the shear power spectrum but is easier to work with as
it is a scalar. Using the flat-sky approximation [70], the

(1+1)P(1)/2m

angular power spectrum between the convergence fields
of redshift bins ¢ and j is found to be

XH _ l
Biuppell) = /0 DX Wiig (W05 (00X 2Ps (k— ;;x>,

(10)
where Ps(k) is the three-dimensional mass power spec-
trum. We can safely employ the flat-sky approximation
for our purpose, because a most accurate measurement
for the lensing power spectrum is available around multi-
poles I ~ 1000 for a ground-based survey of our interest
(e.g. see Fig. 1 in [T1]), and the flat-sky approximation
serves as a very good approximation on these small scales
[72].

For [ % 100 the major contribution to P;;. () comes
from non-linear clustering (e.g., see Fig. 2 in [39]). We
employ the fitting formula for the non-linear Ps(k) pro-
posed in Smith et al. [73], assuming that it can be applied
to dark energy cosmologies by replacing the growth rate
used in the formula with that for a given dark energy
model. We note in passing that the issue of accurate
power spectra for general dark energy cosmologies still
needs to be addressed carefully (see [74, [75] for related
discussion). Fig. Bl demonstrates how lensing of back-
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FIG. 3: A lensing power spectrum for the non-tomographic
case (i.e. one redshift bin) for a ACDM model, expected for
a ground-based survey that probes galaxies with mean red-
shift (zs) = 0.9. The two thin dashed curves show the 1- and
2-halo term contributions to the power spectrum, while the
bold curve shows the total power. The three thin solid curves
show the 1-halo term contributions obtained when the lens-
ing effects on background galaxies due to halos with masses
M/Ms > 10'%,10',10'® are included, respectively.

ground galaxies by clusters contributes to the lensing
power spectrum. Note here that we have employed the
halo model developed in Takada & Jain [56,159] to com-
pute the mass power spectrum, although we will use the



Smith et al. fitting formula to compute the lensing power
spectrum in most parts of this paper instead. Briefly, to
compute the spectra based on the halo model approach,
we need to model three ingredients: (i) the halo mass
function (see also the description below Eq. [B]); (ii) the
profile for the mass distribution around a halo; and (iii)
the halo bias parameter.

It is clear that the convergence on scales I 2 100 is sig-
nificantly boosted by the existence of non-linear struc-
tures, halos. In this paper we are especially interested in
using the lensing information inherent in angular scales
153000 ! to constrain dark energy, and a fair fraction
of the power at scales [ ~ 103, up to ~ 60% of the total
power, arises from massive halos with M 2, 10 M. The
1-halo term contribution is given by redshift-space inte-
gral of the halo mass function and halo profiles weighted
with the lensing efficiency. The results imply that, if
massive clusters with M 2 10'*M happen to be less or
more populated in a survey region, amplitudes of the ob-
served lensing power spectrum from the survey are very
likely to be smaller or greater than expected, respectively.
Therefore, a cross-correlation between the lensing power
spectrum and the cluster counts are intuitively expected,
if both of the observables are measured from the same
survey region.

In reality, the observed power spectrum is contami-
nated by the intrinsic ellipticity noise. Assuming that
the intrinsic ellipticity distribution is uncorrelated be-
tween different galaxies, the observed power spectrum
between redshift bins ¢ and j can be expressed as

2
O¢

P(.é??n(l) = Pijn(l) + 5f§ﬁ _ (11)

(@)
where o, is the rms of intrinsic ellipticities per compo-
nent, and 7n(; denotes the average number density of
galaxies in the i-th redshift bin. The Kronecker delta
function, 6%, accounts for the fact that the cross-spectra
of different redshift bins (i # j) are not affected by the
shot noise contamination. We will omit the superscript
‘obs’” when referring to P°"*(I) in the following for nota-
tional simplicity.

III. COVARIANCES OF LENSING POWER
SPECTRUM AND CLUSTER OBSERVABLES

To estimate a realistic forecast for cosmological pa-
rameter constraints for a given survey we have to quan-
tify sources of statistical error on observables of interest,
the cluster number counts and the lensing power spec-
trum, and then propagate the errors into the parameter

1 At the smaller angular scales | 2, 3000, more complex uncertain-
ties in non-linear clustering such as the baryonic effects arise,
which need to be addressed more carefully.

forecasts. In this section, we will present the covariance
matrices of the observables.

A. Covariances of the cluster number counts

The cluster observables can be naturally incorporated
in the halo model approach, allowing us to compute the
statistical properties in a straightforward way. In this
paper we focus on the average angular number density of
clusters drawn from a survey, also subdivided into red-
shift bins as described in §[[IBl The covariance between
the average number densities in redshift bins b and ¥/,
given by Eq. (]), is defined as

[Cliy = NieyNw)) = NoyNe)- (12)

Based on the halo model the covariances of the angular
number density can be derived in Appendix [B1] (also see
[63] for the original derivation) as

¢ N
Chw = ol
K [ 42V \ 2 ) 2
saff [V ) x| fam ntm) s msgpion)
L/ R N
L pi(k=Lix) e,y (13)

where b(m) is the halo bias parameter ([76]; we use
the model derived in [61]), PF(k) is the linear mass

power spectrum, and W (z) is the Fourier transform of
the survey window function; for this we simply employ
W(1©s) = 2J1(104)/(10s) (J1(z) is the 1-st order Bessel
function) assuming a circular geometry of the survey re-
gion, Qg = 702, In the following, the tilde symbol is
used to denote the Fourier components of quantities. To
derive the covariance (I3]), we have ignored correlations
between the number densities between different redshift
bins, which would be a good approximation for a redshift
bin thicker than the correlation length of the cluster dis-
tribution.

The first and second terms in Eq. (I3]) arise from the 1-
and 2-halo terms in the halo model calculation; the for-
mer gives the shot noise due to the imperfect sampling
of fluctuations by a finite number of clusters, while the
latter represents the sampling variance arising from fluc-
tuations of the cluster distribution due to a finite survey
volume. It should be noted that our formulation allows
us to derive the shot noise term without ad hoc introduc-
ing as often done in the literature (e.g., see [21]). The
two terms in Eq. (I3]) depend on sky coverage in slightly
different ways?, and the relative importance depends on
the survey area; for a larger survey, the sampling variance
could be more important than the shot noise [63].

2 If a new integration variable x = [O; is introduced for the second
term of Eq. ([I3)), one can find the sky coverage dependence is



B. Covariances of lensing power spectra

In reality the lensing power spectrum has to be esti-
mated from the Fourier or spherical harmonic coefficients
of the observed lensing fields constructed for a finite sur-
vey. In this paper we assume the flat-sky approximation
and thus use Fourier wavenumbers ¢, which are equiva-
lent to spherical harmonic multipoles £ in the limit £ > 1
[72]. Because the survey is finite, an infinite number of
Fourier modes are not available, and rather the discrete
Fourier decomposition has to be constructed in terms
of the fundamental mode that is limited by the survey
size; Iy = 27w /y/Qs, where () is the survey area. We as-
sume a homogeneous survey geometry for simplicity and
do not consider any complex boundary and/or masking
effects. The lensing power spectrum of a multipole [ is
observationally estimated by averaging over wavenumber
direction in an annulus of width Al

) %
Pt (1) — / D ko, (14)
(15) \l/\elA(l) (DU (5)—

where the integration range is confined to the Fourier
modes of I satisfying the bin condition I—Al/2 < ' < [+
Al/2 and A(l) denotes the integration area in the Fourier
space approximately given by A(l) = fll’lel A2V ~ 27lAl.
This is discussed in more detail in Appendix

Once an estimator of the lensing power spectrum is
defined, it is straightforward to compute the covariance
[46, [77] (also see |48] for the detailed derivation). From
Eq. (BI2)), the covariance to describe the correlation be-
tween the lensing power spectra of different multipoles
and redshift bins is given by
[Clmn = (PG (DPG) (1) =

(i5)k (#5")k

Pijy (D) Prirjrye (1)
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+ Ti‘i”’ﬁ(qa_qaqa_q )7
4.7Tfsky ‘q‘GlA(l) |q’|€l’A(l/) (#33'5")
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where fqy, is the sky coverage (fey = §1/4m) and the
lensing trispectrum T} is defined in terms of the 3D mass
trispectrum 7T}y as

XH
Tiijirjryn(ly,la, U3, ly) = /0 Wiy gWiingWiingWiing

XX OTs (K1, ko, k3, ka; x), (16)

with k; = I;/x. Note that the power spectra P;). ap-
pearing on the r.h.s. of Eq. (1)) are the observed spec-
tra given in Eq. (), and therefore include the intrin-
sic ellipticity noise. The indices m,n denote elements

expressed as o« (1/fexy) [ dz zP(k = x/Osx)|W ()|, which
looks similar to the fq, dependence of the first term given as
o 1/ feky. However, the fq, dependence could be different via
the dependence in P(k = 2/Ogx) for the 2nd term.

in the lensing power spectrum covariance and run over
the multipole bins and redshift bins. For tomography
with n, redshift bins, there are n,(n, + 1)/2 different
spectra available at each multipole. Hence, if assum-
ing n; multipole bins, the indices m,n run as m,n =
1,2,...,mn.(n, + 1)/2. In most parts of this paper we
adopt 100 multipole bins logarithmically spaced, which
are sufficient to capture all the relevant features in the
lensing power spectrum. For example, for tomography
with 3 redshift bins, the covariance matrix C9 has di-
mension of 600 x 600 for n; = 100.

The first term of the covariance matrix (second line of
Eq. [I5]) represents the Gaussian error contribution en-
suring that the two power spectra of different multipoles
are uncorrelated via 5{f, , while the second term gives the
non-Gaussian errors to describe correlation between the
different power spectra. The two terms both scale with
sky coverage as o< 1/ foy. Note that the non-Gaussian
term does not depend on the multipole bin width Al be-
cause of [d*q/A(l) ~ 1, and taking a wider bin only re-
duces the Gaussian contribution or equivalently enhances
the relative importance of the non-Gaussian contribu-
tion. Naturally, however, the signal-to-noise ratio and
parameter forecasts we will show below do not depend
on the multipole bin width if the bin width is not very
coarse (see [48] for the details).

We employ a further simplification to make quick com-
putations of the lensing covariance matrices. We use the
halo model approach to compute the lensing covariance
matrices. We know that most of the signal in the power
spectrum comes from small angular scales at [ ~ 10® to
which the 1-halo term provides dominant contribution as
shown in Fig.Bl In addition, the non-Gaussian errors are
important only at small angular scales. For these