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Can a galaxy redshift survey measure dark energy clustering?
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A wide-field galaxy redshift survey allows one to probe galaxy clustering at largest spatial scales,
which carries invaluable information on horizon-scale physics complementarily to the cosmic mi-
crowave background (CMB). Assuming the planned survey consisting of z ~ 1 and z ~ 3 surveys
with areas of 2000 and 300 deg?, respectively, we study the prospects for probing dark energy clus-
tering from the measured galaxy power spectrum, assuming the dynamical properties of dark energy
are specified in terms of the equation of state and the effective sound speed ce in the context of an
adiabatic cold dark matter dominated model. The dark energy clustering adds a power to the galaxy
power spectrum amplitude at spatial scales greater than the sound horizon, and the enhancement
is sensitive to redshift evolution of the net dark energy density, i.e. the equation of state. We find
that the galaxy survey, when combined with CMB expected from the Planck satellite mission, can
distinguish dark energy clustering from a smooth dark energy model such as the quintessence model
(ce = 1), when ce < 0.04 (0.02) in the case of the constant equation of state wo = —0.9 (—0.95). An
ultimate full-sky survey of z ~ 1 galaxies allows the detection when ce < 0.08 (0.04) for wo = 0.9
(—0.95). These forecasts show a compatible power with an all-sky CMB and galaxy cross-correlation
that probes the integrated Sachs-Wolfe effect. We also investigate a degeneracy between the dark en-
ergy clustering and the non-relativistic neutrinos implied from the neutrino oscillation experiments,
because the two effects both induce a scale-dependent modification in the galaxy power spectrum
shape at largest spatial scales accessible from the galaxy survey. It is shown that a wider redshift
coverage can efficiently separate the two effects by utilizing the different redshift dependences, where
dark energy clustering is apparent only at low redshifts z < 1.

PACS numbers: 98.65.Dx,98.70.V¢c,98.80.Es

I. INTRODUCTION

Various cosmological probes such as supernovae in dis-
tant galaxies [1l, 2], the cosmic microwave background
(CMB) sky [4], and the galaxy redshift surveys |4, 13, I, [1]
have given strong evidence that a dark energy compo-
nent, such as the cosmological constant, constitutes ap-
proximately 70% of the total energy density of the uni-
verse, which derives the accelerating cosmic expansion
at low redshifts. Because there is no plausible theoreti-
cal explanation for its existence and magnitude (e.g. see
[%, d]), observational exploration of the nature of dark
energy is one of the most important issues in modern
cosmology as well as particle physics.

An observational dark energy task we should first ex-
plore to tackle this fundamental problem would be to
determine whether the accelerating expansion is as a con-
sequence of the cosmological constant. Relaxing this as-
sumption leads to a generalized dark energy with dynam-
ically evolving energy density, which can be characterized
by a time-dependent equation of state w(a) = pde/pde
(the cosmological constant corresponds to w = —1). The
current level of accuracy in constraining the constant w-
parameter is o(w) ~ 0.1 at 1o level with the best-fit value
containing a model with w = —1 (e.g. see [3, [, [L0]).
Future prospects aimed at pinning down the constraint
on w by a factor of 10 have been extensively investi-
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gated to address the usefulness of various cosmological
experiments based on massive galaxy surveys such as to-
mographic weak lensing experiment (e.g. [11, [12]), the
baryon oscillation experiment (e.g. [13, [14, [15]) and the
cluster abundance experiment (e.g. [16]).

Another important consequence of a generalized dark
energy is the spatial perturbation, providing an indepen-
dent clue to resolving the nature of dark energy from
the equation of state. There are many previous efforts
made to study how an inclusion of the dark energy per-
turbations modify the cold dark matter (CDM) struc-
ture formation scenarios: theoretical predictions on the
modifications in the CMB power spectra and the galaxy
power spectra [L1, [17, [18, [19, 20, 21), 22, 123, 24, 23] and
the observational exploration of the dark energy clus-
tering signal from the WMAP data at low multipoles
[3, 26, 21, 28]. The dark energy clustering is relevant
only for structure formation at low redshifts z < 1, where
the net energy density is dominant to the cosmic expan-
sion. In addition, a reasonable model including the dark
energy perturbation predicts that the dark energy can
cluster together with matter components at large spa-
tial scales (inevitably at super-horizon scales), whilst the
dark energy is smooth at small scales so that the addi-
tional component does not largely change the small-scale
structure formations such as galaxy formation. For these
reasons, the dark energy clustering effect on the CMB
observables is likely to appear only via the integrated
Sachs-Wolfe effect (ISW) at low multipoles, where the
Sachs-Wolfe effect generated at the recombination epoch
is significant contamination to separate the ISW effect
from the measured power spectrum.
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The transition scale to divide the dark energy clus-
tering and smooth regimes can be usefully modeled by
the effective sound speed of dark energy [22, 29]. In
this model, smoothness of dark energy can be tested by
searching for the signature of the sound speed from cos-
mological observables. Hu and Scranton [3(] carefully in-
vestigated a prospect of how the ISW effect measured via
the angular cross-correlation between CMB and galaxy
distribution can be used to probe the dark energy cluster-
ing, assuming an all-sky, deep multi-color imaging galaxy
survey out to z ~ 2.

A galaxy redshift survey offers an alternative means
for probing the dark energy clustering, through the mea-
sured statistical properties of three-dimensional gravita-
tional clustering at largest scales. Compared to the an-
gular correlations, from a cosmological point of view, the
redshift survey carries more information on the underly-
ing mass distribution due to a gain of the modes along the
line-of-sight or redshift direction. Therefore, the purpose
of this paper is to, for the first time, investigate the ability
of a galaxy redshift survey for testing the smoothness of
dark energy from the measured galaxy power spectrum.
In fact, there are several future plans for high-redshift
galaxy surveys that are already being constructed or se-
riously under consideration: the Fiber Multiple Object
Spectrograph (FMOS) on Subaru telescope [31]], its sig-
nificantly expanded version, WEMOS [32], the Hobby—
Ebery Telescope Dark Energy eXperiment (HETDEX)
[33], and the Cosmic Inflation Probe (CIP) mission [34].
These surveys probe galaxies at higher redshifts z 2 0.5
than the existing surveys such as SDSS and 2dF surveys.
Such a high-redshift survey has several advantages over
the lower redshift ones. First, given a fixed solid angle,
the comoving volume in which we can observe galaxies
is larger at higher redshifts than in the local universe,
thereby reducing the sample variance. This would make
it more straightforward to obtain a well-behaved survey
geometry that can help measure largest-scale perturba-
tions. Second, density perturbations at smaller spatial
scales are still in the linear regime or only in the weakly
non-linear regime at higher redshift, which gives us more
leverages on measuring the shape of the linear power
spectrum to break the parameter degeneracies. In this
paper, we will consider the survey design close to the
proposed WEFMOS survey, which consists two types of
surveys different in redshift coverage and survey area:
0.5 < z < 1.3 with 2000 degree? and 2.5 < z < 3.5
with 300 degree?, respectively. The redshift coverage of
WFMOS is suitable to probe the dynamical dark energy
whose effects are apparent only at low redshifts z < 1, as
we will show below.

The structure of this paper is as follows. In Sec. [l we
start with writing down background cosmological equa-
tions, the Hubble expansion and the angular diameter
distance, in terms of cosmological parameters. In Sec.[TI]
we define the effective sound speed parameter to model
dynamical properties of dark energy clustering, and re-
view how the dark energy clustering leads to a scale-

dependent modification in the linear power spectrum
shape assuming the adiabatic initial condition. Sec. [V]
defines the galaxy power spectrum in terms of the primor-
dial power spectrum, the transfer functions and the scale-
dependent growth rate of mass clustering. In Sec. [M, we
first define survey parameters intended to resemble a fu-
ture survey being planned, and describe a methodology
to model the galaxy power spectrum observed from a red-
shift survey that includes the two-dimensional nature in
the line-of-sight and transverse directions due to the cos-
mological and redshift distortion effects. We then present
the Fisher information matrix formalism that is used to
estimate the projected uncertainties in the cosmological
parameter determination provided the measured galaxy
power spectrum. In Sec. [Vl we show the prospects of the
future survey for probing the dark energy clustering. In
addition, we carefully study how a degeneracy between
the dark energy clustering and massive neutrinos can be
lifted by utilizing the redshift information of galaxy clus-
tering. Finally, we present conclusion and some discus-

sion in Sec. V11

II. PRELIMINARIES: COSMOLOGY

Throughout this paper, we work in the context of spa-
tially flat CDM models for structure formation (e.g. see
B3] and [36]). According to the Einstein general rel-
ativity, the expansion history of the universe is given
by the scale factor a(t), which is related to redshift
via 1 + 2z = 1/a (we use a(tp) = 1 today for our
convention). The cosmic expansion during the matter
dominated epoch is determined by density contributions
from non-relativistic matter )y, and dark energy Q4. at
present, in units of the critical density 3H3/87G, where
Hy = 100 h km s~ 'Mpc~! is the Hubble constant. The
Hubble expansion rate is given by

Hz(a) = H02 Qma_3 + Qdea_s(lﬁ_wo)} ) (1)

where we have assumed the constant equation of state of
dark energy,

Pde(a) 1dIn pge
o Pde(a) 3 dlna cons @)
Note that wy = —1 corresponds to the cosmological con-

stant. In this paper we restrict ourselves to a dark energy
model with wy > —1 for simplicity.

The comoving angular diameter distance is expressed
in terms of the Hubble parameter as

Da(a) = /1a Hz(ci;)aa’ (3)

giving the distance-redshift relation via 14+ z = 1/a.



III. DARK ENERGY CLUSTERING FOR
ADIABATIC INITIAL CONDITION

To model dark energy clustering, we employ a phe-
nomenological model developed in [22]. In this model,
the stress perturbation of dark energy, which governs
properties of the dark energy clustering, is usefully speci-
fied by the dark energy equation of state and the effective
sound speed c., where the latter is needed to model the
non-adiabatic stress perturbation (also see [18]). The ef-
fective sound speed of a generalized dark energy is defined
as

; (4)

in a “rest frame” coordinate system where the momen-
tum density of the dark energy vanishes. For a more
general coordinate system such as Newtonian gauge, the
pressure perturbation of dark energy, which enters into
the r.h.s. of the momentum conservation equation, can
be expressed as

5pdc - w05pdc + /_)dc(cg - wO) <5dc + 3% u]:C>

a Ude _
Cz(spdc + 35(63 - wo)%pdm (5)

where the first and second terms in the first line on
the r.h.s. denote the adiabatic and non-adiabatic pres-
sure perturbations, respectively, ugo denotes the pecu-
liar velocity of dark energy, and we have assumed wg =
constant in time. Note that setting uqe = 0 in Eq. ()
(corresponding to the rest frame of dark energy pertur-
bations) reduces the pressure perturbation to the form
given by Eq. @). From Eq. (), one can find that pres-
ence of the effective sound speed leads the pressure per-
turbation to act as a restoring force against the gravita-
tional instability just like the Jeans instability of baryon
perturbation (e.g., see Sec. 16 in [49]); in the overden-
sity (dae > 0) and underdensity (dge < 0) regions, the
pressure perturbation prevents further collapse and ex-
pansion, respectively, if the wavelength of perturbation is
smaller than the sound horizon (see below). Conversely,
for a model that has only the adiabatic pressure pertur-
bation (dpge = wodpde), the pressure perturbation and
the gravitational force in the momentum conservation
equation become kwgdge + (1 4 wo)k¥ (¥ is the gravita-
tional potential), namely, the two terms have same sign
because wy < 0 and ¥ o —dg4e via the Poisson equation:
therefore, the pressure perturbation accelerates the grav-
itational instability on all scales. Note that, throughout
this paper, we assume the constant sound speed with
ce > 0 and ignore the trace-free stress perturbation of
dark energy for simplicity.

We expect that this modeling to treat the sound speed
as a free parameter can cover a broader range of dark
energy models rather than working with a specific model
of the Lagrangian of dark energy sector. For a scalar

field dark energy model, the sound speed can be exactly
computed in linear theory in terms of the kinetic energy
as a function of the field [19, 2&]. For the case of a
canonical kinetic energy term such as the quintessence
[9, 172, 18, 31], the sound speed ¢, = 1. For a more gen-
eral modification of the kinetic term such as a phantom
energy [38] and a k-essence field [39, 40], a general value
of ¢, including ¢, < 1 is allowed.

The dark energy sound speed sets a characteristic
length scale in gravitational clustering:

Ade.ss(a) = /O "da #(a) (6)

We shall often call this scale the comoving sound hori-
zon of dark energy at epoch a. One might define the
corresponding wavenumber as Kde fs = 27/ Ade 5. For the
scalar-field dark energy model with canonical kinetic en-
ergy (¢, = 1), the sound horizon is comparable with the
particle horizon scale. In this paper, we simply refer to
a model with ¢, = 1 as a smooth dark energy model,
because a galaxy survey we consider can probe only the
galaxy clustering at scales inside the present-day hori-
zon scale and there is no unique definition of smoothness
of dark energy on super-horizon scales where the energy
density varies depending on the freedom of time-slicing
in general relativity.

On large scales A > Age 15, the dark energy perturba-
tion can grow together with non-relativistic matter com-
ponents. In this case, the gravitational potential ® in
Newtonian gauge! evolves in a flat universe (e.g., see [41])
as

D(k,a) = ¢c(a)Ri(k) (7)

o= (1= fars) )

and R;(k) denotes the primordial curvature perturba-
tion of wavenumber k. In the matter dominated regime,
H(a) x a=3/?, leading to ¢. — 3/5. Here we have
employed the adiabatic initial condition for dark energy
perturbations; the initial conditions of all the compo-
nents are set by the primordial curvature perturbation.
It is worth noting that, for a cosmological constant model
(wp = —1), Eq. @) can be rewritten as

H(a) (¢ dd _ _H(a){ a
a Jo H(a) a H(a')|,
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where

a

1 More precisely, ® is the curvature perturbation, but related to
the potential perturbation via ® = —¥ when the trace-free stress
perturbation is negligible, which is valid at redshifts of our in-
terest.



where we have used the partial integral in the first line on
the r.h.s., and dH?(a)/da = —3H2Qmoa* in the second
line. The final expression is equivalent to the well-known
formula for the growth rate of mass clustering, for exam-
ple, given by Eq. (10.12) in [42] (also see [43]).

On the other hand, on small spatial scales A < Age s,
the pressure perturbation of dark energy prevents clus-
tering of the dark energy; the dark energy is thus consid-
ered as a smooth component in this limit. The redshift
dependence of the gravitational perturbation is given by
® x g(a) via 142z = 1/a, and the growth rate g(a) can be
computed (e.g. see [12]) by solving the following differen-
tial equation with the initial conditions g(amq) = 1 and
dg/da(ama) = 0 in the deeply matter dominated regime
amd (€8, Gma = 1073):

d*g(a) dg(a)
2dlna2 + 5= 3w(a)Qac(a)] dlna
+3[1 — w(a)] Nae(a)g(a) =0, (10)

where the equation of state is generalized so that it is
allowed to have a time dependence w(a), and Qq4c(a) is
the dark energy density parameter at epoch a, defined
as Qqe(a) = 87Gpae(a)/3H?(a). For a cosmological con-
stant model, the solution of Eq. () can be given by the
integral form of Eq. ). Note that in the presence of
the non-relativistic neutrinos the growth rate is further
modified at scales below the neutrino free streaming scale
(see [44)), as we shall discuss below.

Hence, introducing the effective sound speed of the
dark energy enforces that the stress perturbation leads
the dark energy perturbation to be gravitationally sta-
ble on small scales so that small-scale structure forma-
tions are not largely modified by the additional compo-
nent compared to the concordance ACDM predictions.

IV. SHAPE OF LINEAR GALAXY POWER
SPECTRUM

To model the linear power spectrum including the dark
energy perturbation, we use the recipe in [22] to compute
the transfer function of the potential perturbation ®(k, z)
assuming the adiabatic initial condition. Given the pri-
mordial power spectrum, the power spectrum of the po-
tential perturbation in the matter dominated regime is
given by

9
Aé(kv Z) = Td2e(k7 2)2_55%

Doy, (k 2 k —14ns+3as In(k/ko)
% <M) T2(k) <_) ,(11)
a ko

where the primordial power spectrum, Pg (k) = (R?), is
specified in terms of the primordial curvature perturba-
tion d, the spectral tilt ns and the running index as, and
Tae(k, z) is the fitting formula given in [24] to describe the
dark energy clustering contribution as explained below.

Note that the primordial power spectrum shape is defined
at ko = 0.05 Mpc~!. In Eq. (), we have imposed that
the super-horizon potential perturbation is related to the
primordial curvature perturbation as ®(zma) = (3/5)R;
in the matter dominated regime. The growth rate for the
total matter (CDM, baryon plus non-relativistic neutri-
nos) perturbations are computed using the recipe devel-
oped in 4A] and normalized as D (k,2) — ag(z) at
k — 0. It is also noted that, throughout this paper,
we employ the transfer function of matter perturbations,
T(k), with baryon oscillations smoothed out for simplicity
(see Sec. IV.B in [44] for the related discussion).

According to the physical processes described in
Sec. [Tl the fitting function Tye(k, z) in Eq. [[J) is given
in terms of the growth rates at scales smaller and larger
than the dark energy sound horizon as

1+q?
Tae(k, z) = : 12
b2 = S B + (12)
where the variable ¢ is defined as
k
q= %\/)\de,fs(z))\de,fs(zde)a (13)

with the redshift zq. being given by

1
Pde (Zde) 1 Qde T 3wo
— 1 = . 14
poctiic) _ L L= (g (14)

Note that Tye — 5¢c(2)/[3g(2)] or 1 as k — 0 or oo,
respectively, which reproduce the two asymptotic regimes
discussed in Sec.[Ml For the cosmological constant model
(wo = —1), Tae(k,2) = 1 because 3g(z)/[5¢c] = 1 as
explained around Eqs. @) and (Id).

Galaxies are biased tracers of the underlying gravita-
tional field. Hence, the linear power spectrum of galaxy
distribution is related to the potential power spectrum
via the Poisson equation as

3 2 2
B it (g ) 362 ()
27?2 3HZOm
where b; is a scale-independent, linear bias parameter we
assume.

As carefully investigated in [22] (see Appendix A of
that paper), the fitting formula ([[2) holds with batter
than ~ 10% accuracy compared to the results obtained
by directly solving the multi-fluid Boltzmann equations,
for a range of the dark energy parameters we are in-
terested in. In the presence of non-relativistic neutri-
nos, however, it remains unclear how our treatment of
Eq. () holds accurate. Hence, an interesting issue is to
develop an accurate transfer function for the total matter
perturbations including the dark energy as well as neu-
trino perturbations. This will be our future study and
presented elsewhere. For our purpose, which is to esti-
mate the ability of future surveys to probe dark energy
clustering, our treatment of the galaxy power spectrum
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FIG. 1: Upper panel: Shown is how the dark energy clustering
amplifies the power of linear power spectrum P(k) at z = 0.6
on spatial scales greater than the dark energy sound horizon,
relative to the smooth dark energy model (Psm). Note that
non-relativistic neutrinos are ignored in this plot. The dark
energy equation of state is taken to wg = —0.8, and the sound
speed is varied to show how the scale-dependent modification
in P(k) changes with ce: with decreasing c., the transition in
P(k) amplitude appears at smaller length scales, i.e. larger k.
Shaded boxes around the curve of c. = 0.1 show the expected
1-0 measurement errors for spherically averaged P(k) at each
k bin for a survey covering 2000 deg? and 0.5 < z < 1.3 (see
text for the details), but note that we have multiplied the error
bars by a factor 1/2 for illustrative purpose. Comparing the
solid curves with the error bars leads to a naive expectation
that the dark energy clustering can be detected from this
type of galaxy survey only when the sound speed is smaller
than ce ~ 0.1. Middle panel: Redshift dependence of the
power spectrum shape modification due to the dark energy
clustering, where ce = 0.1 and wo = —0.8 are fixed. Lower
panel: As the fiducial value of wg is away from wo = —1, the
amplification in P(k) at small k is more enhanced, for a fixed
ce = 0.1. In all the panels, the bold solid curve shows the
same result for c. = 0.1, wo = —0.8 and z = 0.6.

is accurate enough. This is partly justified by the fact
that the following results are not largely changed with
and without non-relativistic neutrinos, as will be explic-
itly shown below.

The top panel of Fig. [ illustrates how the dark en-
ergy clustering induces a scale-dependent modification
in the shape of linear power spectrum, P(k), at z = 0.6,
compared to the smooth dark energy model. The dark
energy equation of state is fixed to wy = —0.8, and

the fiducial value of the sound speed c, is varied from
cc = 1 to cec = 1072, Note that ¢, = 1 roughly cor-
responds to the smooth dark energy model such as the
quintessence model, since the sound horizon is compara-
ble with the Hubble horizon. It is clearly seen that, on
spatial scales larger than the dark energy sound horizon
given by Eq. (@), the dark energy can cluster together
with dark matter and thus enhances the power spectrum
amplitude compared to the small-scale amplitude that
matches the smooth model prediction (P/Pyy, = 1). The
transition in P(k) amplitude appears from larger k with
decreasing the sound speed c., because the dark energy
sound horizon gets shorter. It is worth noting that, since
we have normalized the primordial power spectrum (see
Sec. V), all the power spectra match at k < kqegs OF
k > kde s, showing that the effect of dark energy per-
turbation becomes independent of k. Hence, one can
measure ¢, only if the characteristic transition pattern in
the power spectrum shape is accurately measured from
observations. In other words, the power spectrum ampli-
tude is not useful to constrain c.

The shaded boxes around the curve of ¢, = 0.1 repre-
sent the 1-o measurement errors on P(k), reduced by a
factor 2 for illustrative purpose, for the fiducial galaxy
survey with redshift range of 0.5 < z < 1.3 and survey
area of 2000 deg? corresponding to the comoving volume
of 3.6h3Gpc3. Note that the errors are for the power
spectrum spherically averaged over angle. It is appar-
ent that the future survey of our interest allows a precise
measurement of the linear power spectrum shape, achiev-
ing a few % accuracies in each k-bin at k£ 2 0.05h Mpc™1!,
while the errors are dominated by the sample variance at
smaller k. A quick look at this plot leads to a naive
expectation that, only if the sound speed is sufficiently
small such as ¢, < 0.1, one could measure the transition
pattern in P(k) from the galaxy survey. In the following,
we shall carefully study how well a future galaxy survey
can probe the dark energy clustering fully taking into
account degeneracies between cosmological parameters.

In the middle panel we show that the dark energy per-
turbation more amplifies the power spectrum amplitude
at the large spatial scales as one goes to a lower redshift,
because the net dark energy density is more prominent at
lower redshifts. Observationally this means that a galaxy
survey of lower redshift z < 1 is more suitable for exploit-
ing the dark energy perturbations than high-z ones.

Finally, the lower panel of Fig. [l shows how the effect
of dark energy perturbation varies with the fiducial value
of the equation of state wg. With increasing wg from
wo = —1, the dark energy perturbation more enhances
the amplitude of P(k) at the large scales, because the
dark energy density keeps prominent at higher redshift.



kmax  Qsurvey Vs g Bias

Survey Zeenter (RMpc™!) (deg?) (R™3Gpc?) (1072 h*Mpc™3)
Gzl (0.b <2< 1.3) 0.6 0.15 2000 0.57 0.5 1.25
0.8 0.17 2000 0.81 0.5 1.40
1.0 0.19 2000 1.0 0.5 1.55
1.2 0.21 2000 1.2 0.5 1.7
Gz3 (2.5 < 2<3.5) 3.0 0.53 300 1.2 1.0 3.3

TABLE I: Galaxy survey specifications that we assume in this paper. We consider two types of galaxy surveys, named as
“Gz1” and “Gz3”, intended to resemble the WFMOS fiducial survey [32]. The former sees galaxies at z ~ 1 with a fixed sky
coverage of 2000 deg?, while the latter probes z ~ 3 galaxies with 300 deg®. Vi and fi are the comoving survey volume and
the comoving number density of sampled galaxies for each redshift slice, respectively. Note that V5 is computed for our fiducial
cosmological model with Qn, = 0.27, Q4e = 0.73 and wo = —0.8. Zcenter denotes the centering redshift of each redshift slice,
and kmax is the maximum wavenumber below which information in the linear power spectrum can be extracted. (We do not
use any information above kmax in the Fisher information matrix analysis.) “Bias” denotes the assumed linear bias parameters

of sampled galaxies.

V. METHODOLOGY
A. Survey Parameters

To derive a realistic parameter forecast, we employ the
galaxy survey parameters that are chosen to resemble the
future surveys that are under serious consideration. As
shown below (see Eq. [[J]), the statistical error of the
galaxy power spectrum measurement is limited by the
survey volume, V5, as well as the mean number density
of galaxies, ny. There are two advantages for a higher
redshift survey over the current surveys probing the uni-
verse at z < 0.3. First, given a fixed solid angle, the co-
moving volume in which we can observe galaxies is larger
at higher redshifts than in the local universe, thereby re-
ducing the sample variance. In addition, it would be rel-
atively straightforward to obtain a well-behaved survey
geometry, e.g., a cubic geometry that would be helpful to
probe a largest-scale galaxy clustering as well as handle
the systematics under control. Second, density fluctua-
tions at smaller spatial scales are still in the linear regime
or only in the weakly non-linear regime at higher redshift,
which gives us more leverages on measuring the shape of
the linear power spectrum.

We employ the survey parameters that match the fidu-
cial survey design of WFMOS [32], consisting of two types
of redshift surveys different in redshift coverage and sur-
vey area:

e Gz1: 0.5 < z < 1.3 and Qg = 2000 deg?
o Gz3: 2.5 < 2z < 3.5 and Qg = 300 deg?

where the names Gzl and Gz3 stand for the “Ground”-
based galaxy surveys probing the universe at z ~ 1 and
z ~ 3, respectively.

Because we have limited knowledge of how galaxies
have formed within the CDM hierarchical clustering sce-
nario, it is of critical importance to figure out an optimal
survey strategy of which type of galaxies (emission lines)

are targeted to achieve the desired scientific goals, given
the spectrograph specifications (sensitivity, the number
of fibers, wavelength coverage, etc.) and the number of
nights allocated. It was shown in [13] (also see [4€]) that a
survey having ng P, X 3 over the range of wavenumbers
considered is close to an optimal design from a cosmo-
logical, not practical, point of view, and the hypothetical
WFMOS survey parameters were defined in this regard.
In this paper, we simply adopt the survey parameters
used in [13], which are summarized in Table[ll

B. A Galaxy Power Spectrum in Redshift Space

We employ the method developed in [13] (also see [44])
to model a galaxy power spectrum observable from a red-
shift survey. The power spectrum measures how clus-
tering strength of galaxy distribution varies as a func-
tion of 3-dimensional wavenumber, k (or the inverse of
3-dimensional length scale). However, we cannot know a
true position of a galaxy in real space from the observ-
ables, angular position and redshift. Rather, we have
to assume a fiducial cosmology to convert the observed
angular position and redshift of galaxies into positions
in 3-dimensional space. Since this fiducial cosmology
generally differs from the true cosmology, we could in-
troduce distortion in the inferred distribution of galax-
ies. This cosmological distortion effect is the so-called
Alcock-Paczynski (AP) effect [47]. Taking into account
the effects of the cosmological distortion, linear redshift
distortion 48] and galaxy bias, the galaxy power spec-
trum in the linear regime can be expressed in terms of the
real-space galaxy power spectrum Py(k,z) (see Eq. [[H])
as

Da(2)2,H () ki
DA(Z)2H(Z)ﬁd 1+ Bki + kﬁ

X Py(k, 2), (16)

Py(kfaL, ksa)) =




with

Da(2)sa H(z)
ki = Dal2) kea, k= Haa(2) ksay, (17)
where k = (k? + kﬁ)1/2, k| and k; denote the com-
ponents of the wavenumber parallel and perpendicular
to the line-of-sight direction, respectively, and § denotes
the linear redshift space distortion taking into account
the non-relativistic neutrino effect (see [44]), defined as
B8 =—(1/b1)dIn Deyy(k, z)/dIn(1 4 2). Da(z) and H(z)
are the comoving angular diameter distance and Hub-
ble parameter, respectively, and the quantities with sub-
script ‘fid” denote the quantities in the fiducial cosmo-
logical model. Note that Py(k,z) depends on the scale-
independent, linear bias parameter by as P, o< b? (see
Eq. [[H).

The redshift and cosmological distortion effects are ex-
tremely powerful for constraining cosmological parame-
ters. Because the structure formation scenario predicts
that the power spectrum P(k) has characteristic features
such as the broad peak from the matter-radiation equal-
ity, scale-dependent suppression of power due to baryons
and non-relativistic neutrinos, the tilt and running of the
primordial power spectrum, and the baryonic acoustic os-
cillations, the distortion effects can be precisely measured
with future galaxy surveys from the distorted features
and help break degeneracies between parameter determi-
nation quite efficiently. There are notably two examples
for the prospects. First, the baryon oscillation peaks in
P(k) can be used as a standard ruler, allowing precise
measurements of H(z) and D4 (z) to constrain the equa-
tion of state of dark energy [13, [14, 15, 46]. Second,
measuring the redshift distortion helps break strong de-
generacy between the power spectrum amplitude and the
galaxy bias, allowing a precise determination of the neu-
trino mass [44].

C. Fisher Matrix Analysis

In order to investigate how well one can constrain the
cosmological parameters for a given redshift survey, one
needs to specify measurement uncertainties of the galaxy
power spectrum. When non-linearity is weak, it is rea-
sonable to assume that observed density perturbations
obey Gaussian statistics. In this case, there are two
sources of statistical errors on a power spectrum measure-
ment: the sampling variance (due to the limited number
of independent wavenumbers sampled from a finite sur-
vey volume) and the shot noise (due to the imperfect
sampling of fluctuations by the finite number of galaxies).
To be more specific, the statistical error on measurement
of P(k) at a given wavenumber bin k; is given in [49] by

{AP]:EIS:;)]Q - migzﬂzlu [1 + ﬁgpi(ki)r’

where 74 is the mean number density of galaxies, V; is
the comoving survey volume, and u is the cosine of the

(18)

angle between k and the line-of-sight direction. Note
that we have assumed that the galaxy selection function
is uniform over the redshift slice we consider and ignored
any boundary effects of survey geometry for simplicity.

The first term in the bracket on the r.h.s of Eq. (I§)
represents sampling variance. Errors become indepen-
dent of the number density of galaxies when sampling
v