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We present an approach to describe the nonlinear matter power spectrum for a mixed dark
matter (cold dark matter plus neutrinos having total mass of ∼ 0.1eV) model based on cosmological
perturbation theory. The suppression of the power spectrum amplitude caused by massive neutrinos
is enhanced in the weakly nonlinear regime where standard linear theory ceases to be accurate. Due
to this enhanced effect and the gain in the applicable range of the model prediction, the nonlinear
model may enable a precision of σ(mν,tot) ∼ 0.09eV in constraining the total neutrino mass for
the planned galaxy redshift survey, a factor 2.5 improvement compared to the linear regime. The
refined model prescription thus offers a vital opportunity to determine the neutrino masses.

Introduction: The relic neutrinos having finite
masses cause a characteristic suppression of the growth
of structure formation on scales below the neutrino free-
streaming scale [1]. Exploring this suppression signature
from a galaxy redshift survey, most conventionally via
the galaxy power spectrum, can be a powerful way of con-
straining or potentially determining the neutrino masses
[2]. In fact, the existing galaxy surveys such as the Sloan
Digital Sky Survey (SDSS) and the 2dF Galaxy Red-
shift Survey, combined with the Wilkinson Microwave
Anisotropy Probe (WMAP), have already provided a
more stringent upper bound on the total neutrino mass,
mν,tot

<∼ 0.6eV [3, 4] than the terrestrial experiments,
mν,tot

<∼ 2eV [5]. Planned high-redshift galaxy surveys
such as the Wide-Field Multi-Object Spectrograph (WF-
MOS) survey [6] conducted with the 8.2m Subaru Tele-
scope further allow a more precise measurement of the
galaxy power spectrum and therefore will continue to im-
prove the cosmological sensitivity to the neutrino masses
(e.g., [7]).

However, most of the previous work on the subject has
been based on linear perturbation theory for a mixed
dark matter (MDM) model (see [8] for a review). Even
at scales as large as ∼ 100h−1Mpc relevant for the neu-
trino free-streaming scale, recent studies based on numer-
ical techniques or perturbation theory have shown that
the impact of nonlinear clustering cannot be ignored for
high-precision future surveys, where these studies focused
on the nonlinear effect on the baryon acoustic oscilla-
tions (BAOs) in the power spectrum [9, 10]. Yet, the
effects of massive neutrinos are ignored in these stud-
ies, even though the neutrinos with total mass >∼ 0.06eV
(implied from the oscillation experiments) make a >∼ 5%
suppression in the power spectrum amplitude that sur-
passes the expected measurement accuracy (∼ 1%) at
each wavenumber band for future surveys. The neutrino
suppression may also degrade the ability of BAO exper-
iments for constraining the nature of dark energy as the
neutrino effect appears at very similar scales to BAOs.

In this Letter, we develop a new approach to study the
nonlinear power spectrum for the MDM model, based on
perturbation theory (PT). We will then study the impact
of massive neutrinos on nonlinear clustering, and discuss
how the use of the PT model may allow an improved con-
straint on the neutrino masses for future surveys, partic-
ularly focused on the WFMOS survey.

Methodology: We will throughout focus on the evo-
lution of total matter density perturbations: δm ≡ (δρc+
δρb + δρν)/ρ̄m = fcbδcb + fνδν , where the subscripts
‘m’, ‘c’, ‘b’, ‘ν’ and ‘cb’ stand for total matter, cold
dark matter (CDM), baryons, massive neutrinos, and
CDM plus baryons, respectively, and δcb and δν denote
their density perturbations. The coefficients, fcb and
fν , are the fractional contributions to the matter den-
sity, Ωm0: fν ≡ Ων0/Ωm0 = mν,tot/(94.1Ωm0h

2 eV) and
fcb = 1 − fν . Then the total matter power spectrum,
Pm(k), is defined as

Pm(k) = f2
cbPcb(k) + 2fcbfνPL

cb,ν(k) + f2
ν PL

ν (k), (1)

where the power spectra with the superscript ‘L’ denote
the linear-order spectra and PL

cb,ν is the cross spectrum
between δcb and δν . Mixture of the neutrinos in total
matter affects the nonlinear power spectrum as follows.
The neutrinos would tend to remain in the linear regime
rather than going into the nonlinear stage together with
CDM and baryon, due to the large free-streaming. In
addition, the prefactor fν is likely to be small for a real-
istic model (e.g. fν

<∼ 0.07 in [4]), allowing the nonlinear
corrections of the neutrino perturbations to be approxi-
mately ignored. In the following we will thus include only
the linear-order neutrino perturbations, which can be ac-
curately computed by solving the linearized Boltzmann
equation [11]. The validity of our assumption will be
demonstrated in [12], in which the correction arising from
nonlinear neutrino clustering is shown to be very small,
<∼ 0.02% in the power spectrum amplitude on scales of
interest.

Following the standard PT approach [13], the CDM
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FIG. 1: Fractional difference between the mass power spec-
tra at redshift z = 3 with and without the massive neutrino
contributions, where the two cases fν = 0.01 and 0.02 are con-
sidered. The solid and dotted curves show the PT and linear
theory results, respectively. The two vertical lines indicate a
maximum wavenumber limit kmax up to which the two models
are expected to be valid (see text). The shaded boxes show
the expected 1σ errors on the power spectrum measurement
for the z ∼ 3 WFMOS survey and the case of fν = 0.01.

plus baryon component can be treated as a pressure-less
and irrotational fluid for the scales of interest. Then the
fluid equations for mass and momentum conservation and
the Poisson equation fully describe the dynamics of the
density perturbation field, δcb, and the velocity diver-
gence field, θcb ≡ ∇·vcb/(aH). The solutions to this sys-
tem can be obtained by making a perturbative expansion,
δcb = δ

(1)
cb +δ

(2)
cb +δ

(3)
cb + · · · and θ = θ(1)+θ(2)+θ(3)+ · · · ,

where the superscript ‘(i)’ denotes the i-th order pertur-
bation. In our setting, the nonlinear correction to the
total matter power spectrum Pm(k) arises only through
Pcb(k) in Eq. (1). The nonlinear Pcb including the next-
to-leading order corrections is expressed as

Pcb(k; z) = PL
cb + P

(13)
cb + P

(22)
cb , (2)

where the last two terms describe the nonlinear correc-
tions, the so-called one-loop corrections, that include con-
tributions up to the third-order perturbations.

The neutrinos affect the spectrum Pcb through the
effect on the linear growth rate [14]. At wavenumbers
smaller than the neutrino free-streaming scale, kfs(z) '
0.023(mν/0.1eV)[2/(1 + z)]1/2(Ωm0/0.23)1/2 hMpc−1,
the neutrinos can cluster together with CDM and
baryon. Conversely, at k > kfs, the growth rate of CDM
perturbations is suppressed due to the weaker gravita-
tional force caused by the lack of neutrino perturbations.
Thus the growth rate, Dcb(z, k), has a characteristic
scale-dependence for the MDM model. This fact causes
one complication in computing the second- and third-
order solutions for δcb and θcb. The k-dependence of
Dcb causes an additional mode-coupling between the

perturbations of different wavenumbers. Interestingly,
we have found that, using the analytic fitting formula
for Dcb in [14], this additional mode-coupling can be
safely ignored for the expected small value of fν [12].
As a result, the nonlinear spectra, P

(22)
cb and P

(13)
cb , are

simply expressed as

P
(22)
cb (k; z) =

k3

98(2π)2

∫ ∞

0

drPL
cb(kr; z)

×
∫ 1

−1

dµPL
cb(k

√
1 + r2 − 2rµ; z)

(3r + 7µ − 10rµ2)2

(1 + r2 − 2rµ)2
,

P
(13)
cb (k; z) =

k3PL
cb(kr; z)

252(2π)2

∫ ∞

0

drPL
cb(kr; z)

[
12
r2

− 158

+100r2 − 42r4 +
3
r2

(r2 − 1)3(7r2 + 2) ln
∣∣∣∣1 + r

1 − r

∣∣∣∣] .(3)

Note that P
(22)
cb and P

(13)
cb are roughly proportional to

the square of PL
cb, which enhances the neutrino effect in

the nonlinear regime, compared to the linear case, PL
cb.

Results: Eqs. (1) and (3) show that the PT prediction
for Pm(k) at a given redshift can be computed once the
linear spectra, PL

cb, PL
cb,ν and PL

ν , are specified. We use
the CAMB code [15] to compute the input linear spectra
for a given MDM model.

Fig. 1 shows the fractional difference between the
power spectra at redshift z = 3 with and without massive
neutrino contributions, where the two cases fν = 0.01
and 0.02 are considered and other parameters are fixed
to their fiducial values (see below). Several interesting re-
sults can be found from this plot. First, the massive neu-
trinos induce a characteristic k-dependent suppression in
the spectrum amplitude. For the case of linear theory,
the suppression becomes nearly independent of k at small
scales, k À kfs, as roughly given by ∆P/P ∼ −8fν [2].
In contrast the PT result demonstrates that the neutrino
suppression is enhanced in the nonlinear regime, yielding
a new k-dependence in the spectrum shape.

Second, comparing the linear theory and PT results
explicitly tells the limitation of the linear theory: the
linear theory no longer gives an accurate prediction at
k >∼ 0.2hMpc−1. More precisely, the linear theory result
starts to deviate from the PT result at k >∼ kL,max =
0.18hMpc−1 by >∼ 1% in the amplitude, as denoted by
the vertical dotted line1. However PT also breaks down
at scales greater than a certain maximum wavenumber
limit, kNL,max, due to a stronger mode-coupling arising
from the higher-order perturbations ignored here. Us-
ing N -body simulations for a CDM model, [9] showed
that the one-loop PT well matches the simulation results

1 In Fig. 1, the deviation of dashed curve (linear) and solid curve
(PT) around kL,max looks seemingly small due to the fact that
the plot shows the fractional difference Pfν /Pfν=0 and the de-
nominator Pfν=0 is also computed from the PT.



3

up to kNL,max given by the condition ∆2(kNL,max, z) ≡
k3Pm(k, z)/2π2

∣∣
k=kNL,max

' 0.4. We simply adopt this
criterion for a MDM model and the resulting kNL,max is
indicated by the vertical dot-dashed line. Thus, in the
case of z ∼ 3, the PT model may allow a factor 4 gain
in kmax; observationally, this is roughly equivalent to a
factor 64(= 43) gain in independent Fourier modes of the
density perturbations probed for a fixed survey volume,
which in turn improves the precision of the power spec-
trum measurement if the measurement errors are limited
by the sampling variance rather than the shot noise.

Can a future survey be precise enough to measure
the neutrino effect? This question is partly answered
in Fig. 1. The light-gray shaded boxes around the solid
curve show the 1-σ measurement errors on P (k) at each
k bin, expected for the z ∼ 3 WFMOS survey (see be-
low). The neutrino suppression appears to be greater
than the errors at k >∼ 0.03hMpc−1. Another intriguing
consequence of the nonlinear clustering is that the am-
plified power of Pm(k) reduces the relative importance of
the shot noise contamination to the measurement errors,
leading the errors to be more in the sampling variance
limited regime. This can be seen by the dark-gray shaded
boxes showing the 1-σ errors for the linear spectrum.

Finally it will be worth noting that the wiggles in the
curves reflect shifts in the BAO peak locations caused by
the scale-dependent suppression effect due to the neutri-
nos. The amount of the modulations is smaller than the
measurement errors. Hence the uncertainty in neutrino
mass is unlikely to largely degrade the power of BAO
experiments, at least for an expected small fν [12].

Parameter forecasts: To realize the genuine power
of future surveys for constraining the neutrino masses,
we have to carefully take into account parameter degen-
eracies [7]. Here, we estimate accuracies of the neutrino
mass determination using the Fisher matrix formalism.

The observable we consider is the two-dimensional
galaxy power spectrum given as a function of k‖ and
k⊥, the wavenumbers parallel and perpendicular to the
line-of-sight direction [16]:

Ps(kfid‖, kfid⊥) =
DA(z)2fidH(z)
DA(z)2H(z)fid

[
1 + βµ2

]2
b2
1Pm(k, z)

(4)
where k = (k2

⊥ + k2
‖)

1/2 and µ = k‖/k. Here, k⊥ =
[DA(z)fid/DA(z)]kfid⊥ and k‖ = [H(z)fid/H(z)]kfid‖,
where DA(z) and H(z) are the comoving angular diam-
eter distance and Hubble parameter, respectively. The
quantities with the subscript ‘fid’ denote the quantities
estimated assuming a fiducial cosmological model, which
generally differs from the underlying true model. In the
equation above, we simply assumed the linear galaxy bias
b1 and the linear redshift distortion β. However we will
instead treat b1 and β as free parameters for the param-
eter forecasts shown below, in order not to derive too
optimistic forecasts. This treatment would be adequate

FIG. 2: The marginalized 1σ error on the total neutrino mass
as a function of the maximum wavenumber kmax used in each
redshift slice (see text), for the WFMOS survey combined
with the minimal CMB constraints. The fiducial value of
fν = 0.01 is assumed. The solid and dashed curves show the
results for the PT and linear theory models, respectively. The
light and dark shaded regions represent the range of k where
the linear theory and the one-loop PT break down due to the
stronger nonlinearities.

for our current purpose, which is to estimate how PT al-
lows an improvement in the parameter constraints mainly
caused by the gain in kmax. A more careful analysis will
be presented in detail in [12].

Following [16], the Fisher matrix for the galaxy
power spectrum measurement is computed as
Fαβ =

∫ 1

−1
dµ

∫ kmax

kmin
2πk2dk(∂Ps/∂pα)Cov−1(∂Ps/∂pβ),

where pα represents a set of parameters and Cov−1 is
the inverse of the covariance matrix that depends on
the power spectrum itself and on survey parameters,
the comoving survey volume and the number density
of galaxies. To compute Fαβ we need to specify the
integration range kmin and kmax; we will throughout
employ kmin = 10−4hMpc−1 and below discuss for
the choice of kmax. Note that, for several redshift
slices, we simply add the Fisher matrix for each slice
to obtain the total Fisher matrix. Then, the 1σ error
on a certain parameter pα marginalized over other
parameters is given by σ2(pα) = (F−1)αα, where F−1

is the inverse of Fisher matrix. We assume the WF-
MOS survey parameters given in [16] consisting of two
types of redshift surveys: the z ∼ 1 survey covering
0.5 ≤ z ≤ 1.3 with 2000 deg2 and the z ∼ 3 survey cover-
ing 2.5 ≤ z ≤ 3.5 with 300 deg2. We consider 5 redshift
slices. The choice of free parameters is also important
for the Fisher matrix formalism: we include a fairly
broad range of the model parameters given by pα =
{Ωm0, Ωm0h

2, Ωb0h
2, fν , ns, αs, ∆2

R, w, β(zi), b1(zi)},
where ns, αs and ∆2

R are the primordial power spec-
trum parameters (tilt, running and the normalization
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parameter) and w is the dark energy equation of state.
Note that we assume three neutrino species that are
totally mass degenerate. As for the fiducial model we
assume fν = 0.01 and adopt the WMAP results for a
flat ΛCDM model to fix other parameters. The fiducial
β(zi) and b1(zi) for the i-th redshift slice are computed
following [16]. In total we include 18 free parameters.

Fig. 2 demonstrates the marginalized 1-σ errors on the
total neutrino mass as a function of kmax, where the
galaxy power spectrum over a range of kmin ≤ k ≤ kmax

is included. The value of kmax for each redshift slice
is specified by inverting ∆2(kmax; zi) for the given value
in the horizontal axis. The errors shown here are for
the WFMOS survey combined with the CMB informa-
tion on cosmological parameters except for the neutrino
masses, fν , and the dark energy parameter, w. The solid
and dashed curves show the results for the PT and linear
theory, respectively. If the linear theory is employed, a
reliable accuracy to be obtained is σ(mν,tot) ' 0.2eV in
order not to have the biased constraint due to the inac-
curate model prediction [12]. On the other hand, if the
PT prediction is valid up to ∆2(kmax) ' 0.4 as discussed
in Fig. 1, the accuracy of σ(mν,tot) ' 0.086eV may be at-
tainable, a factor 2.5 improvement. Encouragingly, this
improved constraint is between the two lower limits of
the normal and inverted mass hierarchies, as denoted by
the horizontal dotted lines.

It should be also noted that a wide redshift cov-
erage for the planned WFMOS survey is very effi-
cient in breaking parameter degeneracies, especially be-
tween the neutrino mass and the dark energy parame-
ters [17, 18], because the dark energy is likely to affect
gravitational clustering only at low redshifts, z <∼ 1. To
be more precise, the correlation coefficient r(fν , w) ≡
(F−1)fνw/

√
(F−1)fνfν (F−1)ww ' −0.003 for the PT re-

sult. This small correlation is partly due to the precise
determination of the BAO peak locations in the mea-
sured power spectrum, allowing tight constraints on the
dark energy parameters without using information on the
amplitude. The neutrino mass is most degenerate with
the bias parameter b1, as given by r(fν , b1) ∼ 0.8.

Discussion: It is of great importance to carefully
study nonlinear structure formation for a most realistic
model, i.e. a MDM model including ∼ 0.1eV neutrinos,
in preparation for future galaxy surveys. While the PT
model developed in this Letter gives the first step in this
direction, another complement to the analytic approach
is to implement a hybrid N -body simulation consisting
of cold and hot particles, which seems feasible with the
advent of current numerical resources, by extending the
pioneering work [19] for a model with ∼ 10eV neutrinos.
PT will also play a useful role in calibrating/checking
the simulations results as done in the early stage of the
simulation based studies for a CDM model.

We have demonstrated that the use of PT may enable
an improvement in the neutrino mass constraint by a fac-

tor 2.5 compared to the case that linear theory is used,
for the planned WFMOS survey. However our study
involves several idealizations: most importantly we as-
sumed the linear galaxy bias and the linear redshift dis-
tortion. At least for the large scales ∼ 100Mpc consid-
ered here, it seems feasible to develop a self-consistent,
accurate model to describe galaxy clustering observables
including the non-linear effects on the galaxy bias and
redshift distortions for a MDM model, by using the per-
turbation theory approach [20] and/or the halo model ap-
proach and by combining with simulations. Given such a
model is obtained, including the large-scale redshift dis-
tortions whose strength varies with the galaxy bias may
help break the degeneracies between the galaxy bias and
the power spectrum amplitude [7, 21]. For a similar rea-
son, combining the galaxy power spectrum and bispec-
trum may be another useful way to determine the galaxy
bias [22]. Such a refined model to describe galaxy clus-
tering observables in the weakly nonlinear regime would
be worth exploring in order to exploit the full potential of
the forthcoming galaxy surveys for constraining or even
determining the neutrino masses.
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