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ABSTRACT
We study the fourth-order moment of the cosmic shear field using the dark matter halo approach
to describe the non-linear gravitational evolution of structure in the Universe. Since the third-
order moment of the shear field vanishes because of symmetry, non-Gaussian signatures in its
one-point statistics emerge at the fourth-order level. We argue that the shear kurtosis parameter
Sγ,4 ≡ 〈γ 4

i 〉c/〈γ 2
i 〉3 may be more directly applicable to realistic data than the well-studied

higher-order statistics of the convergence field, since obtaining the convergence requires a
non-local reconstruction from the measured shear field.

We compare our halo model predictions for the variance, skewness and kurtosis of lensing
fields with ray-tracing simulations of cold dark matter models and find good agreement. The
shear kurtosis calculation is made tractable by developing approximations for fast and accu-
rate evaluations of the eight-dimensional integrals necessary to obtain the shear kurtosis. We
show that on small angular scales, θ � 5 arcmin, more than half of the shear kurtosis arises
from correlations within massive dark matter haloes with M � 1014 M�. The shear kurtosis is
sensitive to the matter density parameter of the Universe, �m0, and has relatively weak depen-
dences on other parameters. Therefore, a detection of the shear kurtosis can be used to break
degeneracies in determining �m0 and the power spectrum amplitude σ 8 so far provided from
measurements of the two-point shear statistics. The approximations we develop for the third-
and fourth-order moments allow for accurate halo model predictions for the three-dimensional
mass distribution as well. We demonstrate their accuracy in the small-scale regime, below
2 Mpc, where analytical approaches used in the literature so far cease to be accurate.
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1 I N T RO D U C T I O N

Weak gravitational lensing caused by the large-scale structure of
the Universe has been established as a useful probe of cosmo-
logical parameters and offers the possibility of directly measuring
the dark matter power spectrum (see Mellier 1999 and Bartelmann
& Schneider 2001 for reviews). Several independent groups have
reported significant detections of lensing by large-scale structure
on distant galaxy images (cosmic shear) from the ground (Bacon,
Refregier & Ellis 2000; Kaiser, Wilson & Luppino 2000; Van
Waerbeke et al. 2000; Wittman et al. 2000; Maoli et al. 2001; Van
Waerbeke et al. 2001a; Hoekstra et al. 2002; Bacon et al. 2002)
and from space (Rhodes, Refregier & Groth 2001; Haemmerle et al.
2002; Refregier, Rhodes & Groth 2002). These groups measured the
two-point correlation function of the cosmic shear field or the vari-
ance of the filtered shear field and set constrains on cosmological
parameters, in particular some combination of the overall amplitude
of matter power spectrum (σ 8) and the matter density parameter of
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the Universe (�m0), as shown in earlier theoretical work (Blandford
et al. 1991; Miralda-Escude 1991; Kaiser 1992; Villumsen 1996;
Bernardeau, Van Waerbeke & Mellier 1997; Jain & Seljak 1997;
Kaiser 1998).

It has been shown that the non-Gaussian signature in the weak
lensing field induced by non-linear gravitational clustering can be
used to break degeneracies in the determination of σ 8 and �m0

(Bernardeau et al. 1997; Jain & Seljak 1997). This possibility is at-
tractive, since it can determine �m0 via weak lensing measurements
without invoking any other methods such as the cosmic microwave
background (CMB) and galaxy redshift surveys. This also indicates
that the dark energy component of the Universe can be constrained
by combining lensing measurements with the evidence for a flat
Universe revealed by the measured CMB angular power spectrum
(e.g. Netterfield et al. 2002). Most theoretical work so far has
focused on the non-Gaussian signatures described by the higher-
order moments of the filtered convergence field (Bernardeau et al.
1997; Jain & Seljak 1997; Hui 1999; Van Waerbeke, Bernardeau &
Mellier 1999; (Jain, Seljak & White 2000; Van Waerbeke et al.
2001b; Munshi & Jain 2001) or the skewness parameter in
the aperture mass map (Schneider et al. 1998; Bartelmann &
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Schneider 2001). It was recently also proposed that the genus curve
or Minkowski functionals of the convergence field could be an effi-
cient measure of the non-Gaussian signal (Matsubara & Jain 2001;
Sato et al. 2001; Taruya et al. 2002). Unfortunately, these methods
turn out to have limitations in application to realistic data. Because
realistic data have a non-trivial survey geometry with many masked
areas owing to light scattering, bright stars and so on, and it is
very challenging to reconstruct the convergence from the measured
shear field. On the other hand, although the aperture mass method
has the advantage of being directly obtained from the shear map,
it is likely to suffer from low signal-to-noise ratio for the skew-
ness measurement, because this method uses a compensated filter
(Schneider 1996; Schneider et al. 1998) and thus leads to the loss of
the non-Gaussian signal, especially on angular scales smaller than a
few arcmin where the signal is large (see Van Waerbeke et al. 2001a
for detailed comparisons between various two-point statistical mea-
sures of the shear field for actual data).

Very recently, Bernardeau, Van Waerbeke & Mellier (2002a, here-
after BvWM) proposed that some specific patterns in the three-point
function of the shear field can be used to extract the non-Gaussian
signal. Bernardeau, Mellier & Van Waerbeke (2002b) then reported
a detection of this signal from actual data on 2–4 arcmin scales,
although the signal-to-noise ratio so far is not enough to put ro-
bust constraints on �m0. The method proposed by BvWM appears
to be a promising new measure of non-Gaussianity. It is possible
that their method loses some non-Gaussian information because the
vector-like property of their statistic leads to partial cancellations
between the signal on averaging. Their method also seems to have
the limitation that it cannot extract the signal on small scales
(θs � 2 arcmin), since their three-point function decreases for
smaller scales and approaches zero at zero separation.

The purpose of this paper is to develop an alternative statistical
method directly applicable to the cosmic shear data. The method
we propose is the connected part of the fourth-order moment of the
filtered shear field, in particular the shear kurtosis parameter defined
by Sγ,4 = 〈γ 4

i 〉c/〈γ 2
i 〉3, since the non-Gaussian signal appears first

at the fourth-order level for the one-point statistics. The kurtosis
parameter collapses the information in the trispectrum into a single
less noisy quantity, although it does not retain the full information
in the four-point statistics.

Since the shear field on relevant angular scales is affected by
the non-linear regime of structure formation (e.g. see Jain & Seljak
1997), we need a model to describe correctly the redshift evolution
and statistical properties of gravitational clustering up to the four-
point level. The perturbation theory studied in the literature may
not be adequate for this task. On the one hand, it is known that
the so-called ‘hyper-extended perturbation theory’ (Scoccimarro &
Friemann 1999) can describe the strongly non-linear clustering
regime (see for Hui 1999, Van Waerbeke et al. 2001b and Munshi
& Jain 2001 for application to weak lensing). However, the model
does not describe the intermediate-scale transition between the
linear and strongly non-linear regimes (Cooray & Hu 2001a;
Scoccimarro et al. 2001), which does affect weak lensing statis-
tics on a range of scales because of projection effects. We therefore
choose to employ the dark matter halo approach, where gravitational
clustering is described in terms of correlations between and within
dark matter haloes (see McClelland & Silk 1977; Peebles 1980;
Scherrer & Bertschinger 1991 for initial applications; for recent
developments see, e.g., Sheth & Jain 1997; Komatsu & Kitayama
1999; Cooray, Hu & Miralda-Escude 2000; Ma & Fry 2000; Seljak
2000; Scoccimarro et al. 2001; Cooray & Hu 2001a,b; Cooray &
Sheth 2002 for a recent review). There are several reasons we use the

halo model. First, the halo model is formally complete and simple
enough that higher-order statistics of the weak lensing fields can be
calculated analytically. Secondly, the results can be interpreted in
terms of halo properties, which is convenient for comparison with
other observations such as X-ray and optical surveys of clusters of
galaxies. Finally, the model appears remarkably successful in that,
even though it relies on rather simplified assumptions, it has repro-
duced results from numerical simulations (Ma & Fry 2000; Seljak
2000; Scoccimarro et al. 2001) and has also allowed for interpre-
tations of observational results on galaxy clustering (Seljak 2000;
Scoccimarro et al. 2001; Guzik & Seljak 2002; Seljak 2002).

Once the three ingredients of the halo model (halo profile, mass
function and halo bias) are specified, it is straightforward to de-
velop the formalism to calculate the shear kurtosis. Cooray &
Hu (2001a) have investigated the bispectrum of the convergence
field using the halo model and find the convergence skewness is
mainly caused by rare and massive haloes on relevant scales of θs �
10 arcmin, which is referred to as the one-halo term in this paper. We
will also find that the shear kurtosis arises mainly from the one-halo
term on the relevant scales. However, since the direct application of
the halo model requires an eight-dimensional integration to obtain
the one-halo term, we develop an approximation that significantly
reduces the computational time and gives the shear kurtosis with
10 per cent accuracy at most on angular scales of interest. Our
model predictions will be compared in detail with ray-tracing sim-
ulation results for all the statistical measures we investigate: the
convergence or shear variance, the convergence skewness, and the
kurtosis parameters of the convergence and shear fields. This com-
parison addresses the broader issue of whether the halo model can
accurately describe statistical properties of weak lensing fields for
higher-order moments beyond the two-point statistics well studied
in the literature. We will pay special attention to the dependences
of the shear kurtosis on the cosmological parameters, �m0 and σ 8,
for flat cold dark matter (CDM) models.

The outline of this paper is as follows. In Section 2 we present
the dark matter halo model used in this paper and then write down
the expressions for the power spectrum, bispectrum and trispectrum
for the underlying density field. In Section 3 we investigate the va-
lidity of the halo model for weak lensing statistics by comparing
the predictions with the ray-tracing simulation results for the vari-
ance and skewness of the filtered convergence field. In Section 4
we develop an approximation for calculating the convergence kur-
tosis and extend it to the shear kurtosis calculation in Section 5. The
dependence of the shear kurtosis on cosmological parameters is pre-
sented in Section 6. Finally, Section 7 is devoted to a summary and
discussion. In the following, without explicit mention we will often
consider two CDM models: one is the SCDM model with �m0 =
1, h = 0.5 and σ 8 = 0.6 and the other is the 	CDM model with
�m0 = 0.3, �λ0 = 0.7, h = 0.5 and σ 8 = 0.9, respectively. Here,
�m0 and �λ0 are the present-day density parameters of matter and
cosmological constant, h is the Hubble parameter and σ 8 is the rms
mass fluctuations of a sphere of 8 h−1 Mpc radius. The choice of
σ 8 for each model is motivated by the cluster abundance analysis
(Eke, Cole & Frenk 1996).

2 DA R K M AT T E R H A L O A P P ROAC H

2.1 Ingredients

In the dark matter halo approach the underlying density field can
be described in terms of correlations between and within dark mat-
ter haloes, which are taken to be locally biased tracers of density
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perturbations in the linear regime. The method is therefore based
on three essential ingredients well studied in the literature: the mass
function of dark matter haloes, the halo biasing function and the
halo density profile.

For the halo mass function, we adopt an analytical fitting model
proposed by Sheth & Tormen (1999), which is more accurate on
cluster mass scales than the original Press–Schechter model (Press
& Schechter 1974). The number density of haloes with mass in the
range between M and M+dM is given by

dn

dM
dM = ρ̄0

M
f (ν) dν

= ρ̄0

M
A[1 + (aν)−p]

√
aν exp

(
−aν

2

)
dν

ν
, (1)

where ν is the peak height defined by

ν =
[

δc(z)

D(z) σ (M)

]2

, (2)

ρ̄0 is the mean cosmic mass density today (we use comoving co-
ordinates throughout) and the numerical coefficients a and p are
empirically fitted from N-body simulations as a = 0.707 and p
= 0.3. The coefficient A is set by the normalization condition∫ ∞

0 dν f (ν) = 1, leading to A ≈ 0.129. Here σ (M) is the present-
day rms fluctuations in the matter density top-hat smoothed over
a scale RM ≡ (3M/4πρ̄0)1/3, D(z) is the growing factor (e.g. see
Peebles 1980) and δc (z) is the threshold overdensity for the spher-
ical collapse model (see Nakamura & Suto 1997 and Henry 2000
for useful fitting functions). It should be noted that the peak height
ν is given as a function of M at any redshift.

Mo & White (1996) developed a useful formula to describe the
bias relation between the dark matter halo distribution and the un-
derlying density field. This idea has been improved by several au-
thors using N-body numerical simulations (Mo, Jing & White 1997;
Sheth & Lemson 1999; Sheth & Tormen 1999); we will use the fit-
ting formula of Sheth & Tormen (1999) for consistency with the
mass function (1):

b(ν) = 1 + aν − 1

δc
+ 2p

δc[1 + (aν)p]
, (3)

where we have assumed a scale-independent bias and neglected the
higher-order bias functions (b2, b3, . . .) that have a negligible effect
on our final results.

The density profile of dark matter haloes is defined to be an av-
erage over all haloes with a given mass M and does not necessarily
assume all haloes have the same profile and spherical symmetry as
stressed by Seljak (2000). It is not evident that this argument should
be valid for the higher-order moments of the density field or the weak
lensing field. However, the agreement between our model predic-
tions and numerical simulations indicates that there is no strong
violation of the assumption. Throughout this paper we assume the
NFW model for the averaged halo profile (Navarro, Frenk & White
1996, 1997, hereafter NFW):

ρ(r ) = f c3 M

4πr 3
vir

1

cr/rvir(1 + cr/rvir)2
, (4)

where f = 1/[ln (1 + c) − c/(1 + c)] and r vir is the virial ra-
dius of the halo. The virial radius can be expressed in terms of the
halo mass M and redshift z based on the spherical collapse model:
M = (4πr 3

vir/3)ρ̄0�(z), where �(z) is the overdensity of collapse
given as a function of redshift (e.g. see Nakamura & Suto 1997 and
Henry 2000 for a useful fitting formula). We have � ≈ 340 for the
	CDM model. It is worth noting that some studies based on N-body

simulations with higher resolution than in NFW have suggested a
steeper slope for the inner profile with ρ ∝ r−3/2 at r � rvir/c
(Fukushige & Makino 1997; Moore et al. 1998; Jing & Suto 2000;
Fukushige & Makino 2001), whereas the predictions for the outer
parts of haloes are in agreement with NFW: ρ ∝ r−3 at r � rvir/c.
Lensing statistics on angular scales of interest are affected more
strongly by the outer part of the density profile. Furthermore, the
outer profile is scaled by the concentration parameter c for a given
virial radius, so we simply assume the NFW profile and pay close
attention to the appropriate choice of c as discussed below.

To give the halo profile in terms of M and z, we further need to
express the concentration parameter c in terms of M and z; however,
this still remains somewhat uncertain. The concentration c is theo-
retically expected to be a weak function of halo mass as given by c =
c0 (M/M∗)β , where the normalization is c0 ∼ O(10) at the present-
day non-linear mass scale M∗ defined by δc(z = 0)/σ (M∗) =
1 and the slope is β ∼ −O(10−1). We employ the form motivated
by Seljak (2000):

c(M, z) = 10(1 + z)−1

[
M

M∗(z = 0)

]−0.2

, (5)

where we have assumed the redshift dependence (1 + z)−1 as sup-
ported by numerical simulations (Bullock et al. 2001). There are
several reasons we adopt the form (5) for the unknown concentra-
tion parameter. As for the slope β, we assume β = −0.2, which is
steeper than β = −0.13 originally proposed by NFW and Bullock
et al. (2001). This is motivated by the fact that for the NFW profile
(4) the halo model with β = −0.2 can better reproduce the well-
studied non-linear matter power spectrum than the model with β =
−0.13 as shown in Seljak (2000; also see Cooray et al. 2000). As
will be shown below, our model can also reproduce the simulation
results for the higher-order statistics of weak lensing fields on rele-
vant angular scales. In this sense, for the purpose of using the halo
model to describe the non-linear gravitational evolution, it seems
to be appropriate to choose the halo model parameters so that the
model can reproduce the matter power spectrum as the first step.
The choice of the normalization of c0 = 10 at M∗ is supported by
N-body simulations (Bullock et al. 2001) and is also validated by the
fact that the form (5) is consistent with recent observational results
of c ∼ O(10) on galactic scales of M ∼ 1012 M� obtained from
analyses of galaxy rotation curves (Jimenez, Verde & Oh 2002) and
galaxy–galaxy lensing (Guzik & Seljak 2002; Seljak 2002). We will
discuss in more detail how possible variations in the concentration
parameter affect the final results of the shear kurtosis.

The normalized Fourier transform of the NFW profile (4) is given
by

y(k, M ; z) = 1

M

∫ rvir

0

4πr 2 drρ(r )
sin kr

kr
, (6)

where y(k) has the asymptotic behaviour y(k) ≈ 1 and y(k) ∝ k−2

for kr vir/c � 1 and kr vir/c � 1, respectively.

2.2 The power spectrum, bispectrum and trispectrum

The power spectrum P(k), bispectrum B(k1, k2, k3) and trispectrum
T (k1, k2, k3, k4) of the dark matter density fluctuation are defined
by

〈δ(k1)δ(k2)〉 = (2π)3 P(k1)δD(k12),

〈δ(k1)δ(k2)δ(k3)〉 = (2π)3 B(k1, k2, k3)δD(k123)

〈δ(k1) · · · δ(k4)〉c = (2π)3T (k1, k2, k3, k4)δD(k1234), (7)
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where ki ... j = ki + · · · + k j , δD(k) is the delta function, and 〈· · ·〉
denotes the ensemble average. The subscript c denotes the connected
part; the trispectrum is identically zero for a Gaussian field.

In the picture of the halo approach, the power spectrum can be
expressed as the sum of correlations within a single halo (denoted
the 1h term) and between different haloes (the 2h term);

P(k) = P1h(k) + P2h(k), (8)

with

P1h(k) = I 0
2 (k, k),

P2h(k) = [
I 1

1 (k)
]2

PL(k). (9)

In the above equations have used the notation of Cooray & Hu
(2001a):

I β
µ (k1, . . . , kµ) ≡

∫
dM

dn

dM

(
M

ρ̄0

)µ

bβ (M)

× y(k1, M) · · · y(kµ, M). (10)

Note that we set b0 = 1, b1 = b given by equation (3) and bi =
0 for i � 2. The quantity PL(k) denotes the linear power spec-
trum, and its redshift evolution is given by PL(k, z) = D2(z)PL(k,
z = 0), although we will often omit z in the argument for simplic-
ity. With the requirement that on large scales (k → 0 and y ∼ 1)
the two-halo contribution to the power spectrum reduces to the lin-
ear power spectrum imposes the condition

∫
dν f (ν)b(ν) = 1, which

is automatically satisfied by equations (1) and (3) within a few
per cent.

Similarly, the bispectrum can be expressed as sum of the one-,
two- and three-halo contributions:

B = B1h + B2h + B3h , (11)

with

B1h = I 0
3 (k1, k2, k3),

B2h = PL(k1)I 1
2 (k2, k3)I 1

1 (k1) + two perm.,

B3h = Bpt(k1, k2, k3)I 1
1 (k1)I 1

1 (k2)I 1
1 (k3), (12)

where Bpt denotes the bispectrum calculated by perturbation theory
and the explicit expression is given in Appendix A.

Finally, the trispectrum arises from four contributions involving
one to four haloes (Cooray & Hu 2001b):

T = T 1h + (
T 2h

31 + T 2h
22

) + T 3h + T 4h, (13)

with

T 1h = I 0
4 (k1, k2, k3, k4), (14)

T 2h
31 = PL(k1)I 1

3 (k2, k3, k4)I 1
1 (k1) + three perm., (15)

T 2h
22 = PL(k12)I 1

2 (k1, k2)I 1
2 (k3, k4) + two perm., (16)

T 3h = Bpt(k1, k2, k3)I 1
2 (k3, k4)I 1

1 (k1)I 1
1 (k2) + five perm., (17)

T 4h = T pt(k1, . . . , k4)I 1
1 (k1) · · · I 1

1 (k4), (18)

where T pt denotes the trispectrum given by perturbation theory (see
Appendix A). Note that the two-halo term is further divided into
two contributions, T 2h

31 and T 2h
22, which represent taking three or two

points in the first halo and then one or two in the second halo.

3 VA L I D I T Y O F T H E H A L O M O D E L
F O R W E A K L E N S I N G S TAT I S T I C S

In this section, we investigate the validity of the halo model to
compute weak lensing statistics by comparing our model predictions
with ray-tracing simulations for the variance and skewness of the
filtered convergence field.

3.1 Weak lensing convergence and shear fields

The weak lensing convergence is expressed as a weighted projec-
tion of the density fluctuation field between source galaxy and the
observer (e.g. see Mellier 1999; Bartelmann & Schneider 2001):

κ(θ) =
∫

dχW (χ, χs)δ[χ, dA(χ )θ] (19)

where χ is the comoving distance and the function W is the lensing
weight function defined by

W (χ, χs) = 3

2
�m0 H 2

0 a−1 dA(χ )dA(χs − χ )

dA(χs)
. (20)

Here H 0 is the Hubble constant (H 0 = 100 h km s−1 Mpc−1) and
the function dA(χ ) is the comoving angular diameter distance. Note
that throughout we assume all source galaxies are at a single redshift
zs for simplicity. The key simplification used in equation (19) is the
Born approximation (Blandford et al. 1991; Miralda-Escude 1991;
Kaiser 1992), where the convergence field is computed along the
unperturbed path. Jain et al. (2000, hereafter JSW) found that it is an
excellent approximation for the two-point statistics. Based on this
result, we will assume that the Born approximation also holds for
the higher-order statistics we are interested in.

A direct observable of weak lensing is the distortion effect on
source galaxy images characterized by the two components of the
shear field, γ 1 and γ 2, which correspond to elongations or compres-
sions along or at 45◦ to the x-axis, respectively. In Fourier space, the
shear fields γ 1 and γ 2 are simply related to the convergence field
via the relation

γ̃1(l) = κ̃(l) cos(2ϕl ), γ̃2(l) = κ̃(l) sin(2ϕl ), (21)

where l = l(cos ϕl , sin ϕl ), quantities with a tilde symbol denote
their Fourier components and we have employed the flat-sky ap-
proximation (Blandford et al. 1991; Miralda-Escude 1991; Kaiser
1992). Equation (21) shows that γ i has a vector-like property. More
specifically, for example, each shear component could be either pos-
itive or negative even around a dark matter halo on the sky, whereas
the convergence field is always positive. The statistical symmetry of
the shear components around 0 is the reason that all odd moments
of the shear field vanish. Hence the first non-vanishing non-Gaussian
signal appears at the fourth-order level for the one-point statistics.

In practice spatially filtered lensing fields are used in order to
reduce the noise contribution caused by the intrinsic ellipticities of
source galaxies. The filtered shear field can be expressed as

γ̃ F
i (θ; θs) =

∫
d2l

(2π)2
γ̃i (l)F(l; θs)e

il·θ. (22)

Throughout this paper, we employ the top-hat filter function with
its Fourier transform given by

F(l; θs) = 2
J1(lθs)

lθs
, (23)

where J 1(x) is the first-order Bessel function. In the following, we
will omit the superscript F for the filtered fields of κ and γ for
simplicity.
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3.2 Variance and higher-order moments of the filtered
convergence field

The variance of the filtered convergence field can be expressed as a
weighted integral of the dark matter power spectrum:

σ 2
κ (θs) ≡ 〈

κ2(θs)
〉 =

∫
dχW 2(χ, χs)d

−2
A (χ )

×
∫

l dl

2π
P

(
k = l

dA
; χ

)
F2(l). (24)

This equation is derived using the Limber approximation (Limber
1954; also see Kaiser 1992) under the flat-sky approximation. It
should be noted that the angular mode l is related to the three-
dimensional wavenumber as k = l/dA. Using the expression in
equation (8) for P(k), we can compute the convergence variance
based on the halo model.

Fig. 1 plots the convergence variance as a function of the top-hat
smoothing scale for the SCDM (�m0 = 1, h = 0.5, σ 8 = 0.6) and
	CDM (�m0 = 0.3, �λ0 = 0.7, h = 0.7, σ 8 = 0.9) models. We fix
zs = 1 for the source galaxy redshift. For the linear matter power
spectrum used in the calculation, we employ a scale-invariant spec-
trum of the primordial fluctuations with the BBKS transfer function
(Bardeen et al. 1986). The solid and dashed lines show the results
of our halo model for the 	CDM and SCDM models, respectively,
while the dot-dashed lines are the predictions of using the Peacock
& Doods (1996, hereafter PD) fitting formula for the non-linear
power spectra. The one- and two-halo contributions are shown by
the thin solid lines for 	CDM, and one can see that the variance
arises mainly from the one-halo term on angular scales of θs �
5 arcmin, where non-linear structures play an important role in the
weak lensing statistics (see, e.g., Jain & Seljak 1997). The sym-
bols with error bars are the ray-tracing simulation results, where the
error in each bin denotes the sample variance for a weak lensing

Figure 1. The variance of the convergence field as a function of the top-
hat smoothing scale θ s. The solid and dashed lines show the halo model
predictions for the SCDM and 	CDM models, respectively, with the source
redshift zs = 1. The square and triangle symbols are results from ray-tracing
simulation, with error bars giving the sample variance for a survey area of
25 deg2, calculated from the simulation data of Hamana & Mellier (2001).
The thin solid lines are the one- and two-halo contributions for the 	CDM
model. The dot-dashed lines are the predictions from the Peacock–Dodds
fitting formula.

survey with an area of 25 deg2. The ray-tracing simulation builds on
an N-body simulation based on the particle–mesh (PM) code and
has been kindly made available to us by T. Hamana (for details see
Hamana & Mellier 2001, hereafter HM).

It is clear from Fig. 1 that the halo model predictions are in good
agreement with the PD results and with the simulation results for
both the 	CDM and SCDM models. We have indeed confirmed
that for all cosmological models we consider in this paper, the halo
model can reproduce the PD results for σ 2

κ (θ s) within ∼5 per cent
accuracy on angular scales of interest. This success at the two-point
level is partly because of our choice (5) of the concentration pa-
rameter for the NFW profile. However, there are slight differences
between the predictions and the numerical results on small angular
scales θs � 3 arcmin. This is possibly caused by a lack of numeri-
cal resolution in the ray-tracing data, because the higher resolution
simulation used by JSW yields more power on such small scales,
which gives a better match to the theoretical predictions, as explic-
itly shown in Fig. 2 [see also discussions in Taruya et al. 2002 for
the resolution of the HM data]. We prefer to use the HM data for
comparison with the predictions of our model because we can use 40
realizations of simulation data with 25 deg2 for each CDM model in
order to correctly estimate the sample variance. Having an adequate
number of realizations is crucial to study the higher-order moments,
especially on large angular scales, θs � 5 arcmin, since the higher
moments are more sensitive to sample variance.

In analogy with the second moment, the third-order moment of
the filtered convergence field can be expressed in terms of the bis-
pectrum as〈
κ3(θs)

〉 =
∫

dχ W 3(χ, χs)d
−4
A (χ )

∫
d2l1

(2π)2

d2l2

(2π)2

× B (k1, k2, −k12) F(l1)F(l2)F(l12), (25)

where ki = l i/dA(χ ) and B for the halo model is given by equa-
tion (11). We explicitly write down the one-halo contribution to 〈κ3〉:

Figure 2. Shown is the comparison of the high-resolution simulation results
(diamond symbol) of σ 2

κ (Jain et al. 2000) with the results (square) of lower-
resolution data (Hamana & Mellier 2001) for SCDM. The latter data are
mainly used for the comparisons with model predictions in this paper as
explained in the text. The solid and dot-dashed lines are the predictions of
the halo model and PD, respectively, as in Fig. 1. Note that the error bars for
the JSW data correspond to the sample variance for a survey area of 2.8 ×
2.8 deg2.
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〈
κ3(θs)

〉1h =
∫

dχ W 3(χ, χs)d
−4
A (χ )

∫
dM

dn

dM

(
M

ρ̄0

)3

×
∫

d2l1

(2π)2

d2l2

(2π)2
y(l1, M)y(l2, M)

× y(l12, M)F(l1)F(l2)F(l12). (26)

Although the Fourier transform of the NFW profile, y(k, M), is
given as a function of the three-dimensional wavenumber k, we will
often use l for the argument of y(k, M) according to the relation of
k = l/dA (χ ) for simplicity. To obtain 〈κ3(θ s)〉1h, we need to perform
a five-dimensional numerical integration, since we can eliminate
one angular integration using statistical symmetry. The convergence
skewness parameter is defined by

Sκ,3(θs) ≡
〈
κ3(θs)

〉
σ 4

κ (θs)
. (27)

This form is motivated by the fact that in perturbation theory both
the numerator and denominator in equation (27) scale as ∼δ4

1, where
δ1 is the linear solution for the density fluctuation field. Hence the
skewness becomes almost independent of the power spectrum nor-
malization σ 8, giving roughly a dependence as Sκ,3 ∝ �−1

m0 through
the dependences of the angular distances and the growth rate of the
fluctuations (Bernardeau et al. 1997). In the results shown below,
we use the halo model self-consistently to compute σ κ (θ s) in the
denominator of Sκ,3. Since our halo model can reproduce the PD
results for σ 2

κ within 5 per cent accuracy, this does not significantly
affect our results for the skewness or kurtosis parameters.

Fig. 3 plots the convergence skewness parameter as a function of
the smoothing scale as in Fig. 1. It is clear from the upper panel that
the halo model prediction agrees well with the simulation result for
SCDM over all scales. For the 	CDM model our model slightly
overestimates the simulation result on small scales. Among the pos-
sible reasons for this discrepancy, one is that the HM simulation
result may underestimate the true value of Sκ,3 caused by a lack of
numerical resolution as explained in Fig. 2. As shown in the lower
right-hand panel of fig. 18 in JSW, the high-resolution N-body simu-
lations yields Sκ,3 ≈ 140 for 	CDM on small angular scales, which
gives a better match to our halo model prediction. However, the
precise value of Sκ,3 for the 	CDM model in numerical simulations
is still perhaps an open issue. An independent ray-tracing simula-
tion performed by White & Hu 2000, hereafter WH) indicates that
Sκ,3 ≈ 110 around θ s = 4 arcmin. We found that an important
difference in the WH simulations is the values of cosmological pa-
rameters, since they use σ 8 = 1.2 and � = 0.2 for the 	CDM model,
whereas JSW and HM used σ 8 = 0.9 and � = 0.21. For the cos-
mological models used in WH, our halo model predicts a ∼15 per
cent decrease of Sκ,3 at θ s � 5 arcmin compared with Fig. 3 and the
resulting Sκ,3 is then marginally consistent with the result shown
in fig. 9 of WH on the angular scales we have considered. This is
probably caused by increasing σ 8 from 0.9 to 1.2, which affects
the skewness in a complex way since non-linear contributions are
significant in both its numerator and denominator. Thus on these
small scales the expectation from perturbation theory that Sκ,3 is
independent of σ 8 is not exactly valid. The halo model predicts that
the skewness and kurtosis of lensing fields slightly decrease with
increasing σ 8 as shown in Fig. 17 (see Section 6) for the shear kurto-
sis. Another difference between the N-body simulation codes used
in HM, WH and JSW is that the JSW data are based on the adaptive
particle–particle/particle–mesh (PM) (AP3M) N -body simulations
(see Jenkins et al. 1998 for more details), while the HM and WH
data are based on the particle–mesh simulations. The AP3M method

Figure 3. The skewness parameter as a function of θ s as in Fig. 1. The upper
panel shows a comparison of the halo model predictions with the simulation
results, while the lower panel shows contributions from the one-, two- and
three-halo terms for the 	CDM model. For comparison, the dotted line in
the lower panel shows the result predicted by the second-order perturbation
theory.

is expected to achieve higher resolution than PM method for similar
mesh resolution. We were able to use a new high-resolution simu-
lation performed with an AP3M code using 5123 particles (Hamana
2002) to compute the skewness. The new data gives Sκ,3 ≈ 137 for
θ s = 1 arcmin, which agrees with the halo model result in Fig. 3,
but we also find Sκ,3 ≈ 125 for θ s = 4 arcmin, a value higher than
the simulation result shown in Fig. 3, but still lower than the halo
model prediction at the 1σ level. Finally, we note that Sκ,3 has a
stronger dependence on �m0 with decreasing �m0; for example, a
slight decrease of ��m0 = −0.05 leads to a significant change of
�Sκ,3 ≈ 21 at θ s = 1 arcmin for flat CDM models with the 	CDM
model taken to be the fiducial model, while the skewness for the
SCDM model is almost unchanged with �Sκ,3 ≈ 1. These scalings
are roughly consistent with the expected scaling Sκ,3 ∝ �−1

m0. Hence,
the discrepancy between our model and the simulation result for the
	CDM model corresponds to a relatively small change in �m0.

In the lower panel of Fig. 3, the one-, two- and three-halo con-
tributions to Sκ,3 are plotted separately for 	CDM. Note that,
for example, ‘one-halo’ here means the convergence third-order
moment in Sκ,3 includes only the one-halo contribution, but the
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Figure 4. The left-hand panel shows the dependences of the integrand on redshift for the variance (solid line) and the third- (dashed) and fourth-order (dotted)
moments of the convergence field. The source redshift and the filtering scale are zs = 1 and θ s = 1 arcmin. The bold and thin lines are results for the SCDM and
	CDM models, respectively, and each curve is normalized by the SCDM value at the peak redshift. The figure shows that compared with the SCDM model, the
amplitude of each integrand decreases for 	CDM and the peak redshift shifts to higher z. In the right-hand panel, we show the comoving transverse distance
at the peak redshift of these integrands against the angular smoothing scale.

convergence variance used includes the total contributions from the
one- and two-halo terms. It is apparent that the one-halo term dom-
inates over all scales shown and, in particular, contributes ∼80 per
cent of the total at the smallest scale θ = 1 arcmin. This also holds
for the SCDM model. The result thus implies that the higher-order
moments are more sensitive to massive and rare dark matter haloes
than the variance (Scoccimarro et al. 2001; Cooray & Hu 2001a,b).
The dotted line shows the skewness calculated by perturbation the-
ory for the same 	CDM model, and it significantly underestimates
Sκ,3, since the weak lensing field on relevant scales is affected by
strongly non-linear gravitational clustering. These features can be
explained more explicitly in Fig. 4. In the left-hand panel, we plot
how the integrand functions for the variance (solid line) and the
third- (dashed) and fourth-order (dotted) moments of the conver-
gence field depend on redshift for zs = 1 and θ s = 1 arcmin. Note
that the fourth-order moment is computed using the approximation
developed below. The bold and thin lines are the results for the
SCDM and 	CDM models, respectively, where each curve is nor-
malized by the SCDM value at the peak redshift. One can readily see
that the higher-order moments are more sensitive to lower-redshift
structures and, compared with the result for SCDM, the amplitude
of each integrand decreases for 	CDM and the peak redshift shifts
to higher z. The right-hand panel plots the comoving transverse dis-
tance at the peak redshift of the integrand function as a function
of the smoothing scale θ s, which is defined by λ = dA(zpeak)θ s.
Again, the figure clarifies that the higher-order moments are more
sensitive to structures on smaller scales; for example, by comparing
the solid and dotted lines one finds that the transverse scales for
the fourth-order moment are smaller than those for the variance by
factors of 0.8 and 0.4 at θ s = 1 and 10 arcmin, respectively.

It is worth noting differences between the convergence skew-
ness, the shear three-point correlation function recently proposed in
BvWM (see also Bernardeau eta l. 2002b), and the shear kurtosis.
As shown in Fig. 3, Sκ,3 has a weak dependence on the angular
scales as pointed out based on the perturbation theory (Bernardeau
et al. 1997), while the shear three-point correlation function has a
logarithmically decreasing behaviour with decreasing the angular
scale as shown in fig. 6 in BvWM. It is likely that their shear three-
point function loses useful non-Gaussian information resulting from

cancellations between signals caused by the vector-like property of
the shear field. An advantage of the shear kurtosis parameter is that
it collapses information from the four-point statistics into a single
quantity without being affected by such cancellations. However, the
kurtosis parameter is a higher-order moment, and so it remains to
be seen how its signal-to-noise ratio properties compare with the
three-point function of BvWM.

4 T H E K U RTO S I S O F T H E
C O N V E R G E N C E F I E L D

In this section, we develop a useful approximation for fast and ac-
curate evaluations of the convergence kurtosis parameter. In partic-
ular, we concentrate on developing approximations for calculating
the one-halo term, 〈κ4(θ s)〉1h

c , which provides the dominant con-
tribution to the convergence kurtosis on small angular scales. The
approximations for the two- and three-halo terms are presented in
Appendix C. Those approximations will be used to develop a method
to compute the shear kurtosis in the next section.

4.1 Definition

The connected part of the fourth-order moment of the convergence
field is given by

〈
κ4(θs)

〉
c

=
∫

dχ W 4(χ, χs)d
−6
A

×
∫

d2l1

(2π)2

d2l2

(2π)2

d2l3

(2π)2
T (k1, k2, k3, −k123)

× F(l1)F(l2)F(l3)F(l123), (28)

where ki = l i/dA(χ ) and the trispectrum is given by equation (13)
within the framework of the halo model. From the results of the
convergence skewness, it is expected that the most important con-
tribution to the fourth-order moment is the one-halo term on angular
scales of interest. The one-halo term is given by
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〈
κ4(θs)

〉1h

c
=

∫
dχ W 4(χ )d−6

A

∫
dM

dn

dM

(
M

ρ̄0

)4

×
∫

d2l1

(2π)2

d2l2

(2π)2

d2l3

(2π)2
y(l1, M)y(l2, M)

× y(l3, M)y(l123, M)F(l1)F(l2)F(l3)F(l123). (29)

Hence, to obtain 〈κ4(θ s)〉1h
c , we have to perform at least a seven-

dimensional numerical integration, even after we eliminate one an-
gular integration of l i using statistical symmetry. Direct integration
is not suitable for our final purpose of evaluating the dependence
on cosmological parameters, which requires lots of computations in
parameter space. We therefore explore an approximation for calcu-
lating 〈κ4〉c with adequate accuracy and reasonable computational
expense.

Motivated by perturbation theory, as for the skewness parameter,
we consider the convergence kurtosis parameter defined by

Sκ,4(θs) ≡
〈
κ4(θs)

〉
c

σ 6
κ (θs)

. (30)

We use the halo model self-consistently to calculate σ κ (θ s) in the de-
nominator of Sκ,4. It is expected that Sκ,4 has a dependence roughly
given by perturbation theory as Sκ,4 ∝ �−2

m0.
The approximation for calculating S1h

κ,4 developed below al-
lows us to simplify the three-dimensional angular integrations of
d2l1 d2l2 d2l3 in equation (29), whereby we can obtain 〈κ4(θ s)〉1h

c

by a five-dimensional numerical integration instead of the original
eight-dimensional one.

4.2 Quadrilateral configuration dependence

Equation (29) shows that, although the integrand function of
〈κ4(θ s)〉1h

c does depend on quadrilateral configuration with four sides
l1, l2, l3 and l4(= −l123) in Fourier space, the angular dependences
of l i appear only via l123 in y(l123, M) and F(l123) as a result of
the spherical symmetry of the NFW profile.1 Because of statistical
symmetry, without loss of generality we can express any configura-
tions in terms of five parameters; three side lengths of l1, l2 and l3

and two angles �2 and �3, where �2 is the angle between l1 and
l2, and �3 is the angle between l12 and l3. The side length l123 can
then be expressed as

l123 =
√

l2
12 + l2

3 − 2l12l3 cos �3, (31)

with l12 = (l2
1 + l2

2 − 2l1l2 cos �2)1/2. Note that the volume element
(29) of integration can be rewritten, after performing one of the
angular integrals, as d 2l1 d2l2 d2l3 = (2π)l1 dl1l2 dl2l3 dl3 d�2 d�3.

4.3 Approximation for the integration of the top-hat
filter function

First, we consider an approximation for the integration of the top-
hat filter function (23) motivated by Appendix A in Bernardeau
(1994), where the geometrical properties of the integration of prod-
ucts of the three-dimensional top-hat window function are derived.

1 On the other hand, when 〈κ4(θ s)〉c is calculated in perturbation theory, the
angular dependences appear via products of the l i vectors in the perturbation
trispectrum in addition to via l123 in y(l123) and F(l123), as explicitly shown
in equation (A2).

In Appendix B we prove the following identity for the integration
of products of top-hat kernels:∫

d2l1

(2π)2

d2l2

(2π)2

d2l3

(2π)2
F(l1)F(l2)F(l3)F(l123)

=
∫ 3∏

i=1

li dli

2π
F2(li ). (32)

The result above cannot be applied exactly to simplify equation (29)
because of the y(l123) term. We therefore use the following replace-
ment for the filter function F(l123) in equation (29) as an approxi-
mation to be tested:

F(l123) ≈ F(l1)F(l2)F(l3). (33)

The corresponding approximation for the three-dimensional win-
dow function is used in Scoccimarro et al. (2001) for the study of
the skewness and kurtosis parameters of the three-dimensional den-
sity field. It is worth noting that this approximation does indeed
become exact if y(l, M) = constant in equation (29). Hence, to the
extent that the regime y(l, M) ≈ 1 at l � dA(χ )c/rvir provides the
main contribution to 〈κ4(θ s)〉1h

c for a given M and z, it is reason-
able to expect that the replacement (33) is a good approximation for
realistic density profiles.

4.4 Approximation for the convergence skewness

Given the approximation (33), the next problem we consider is to
explore an approximation to describe the configuration dependence
of y(l123, M) in a way that allows us to evaluate the angular integra-
tions with respect to �2 and �3 in equation (29).

For this purpose, let us begin by considering an approximation
for calculating the one-halo term in the convergence third-order mo-
ment, 〈κ3〉1h. This is because the accuracy of our approximation for
〈κ3〉1h can be tested by comparing the prediction with the true value
obtained by direct integration, and then it can be extended to the cal-
culation of the fourth-order moment. The dependence on the trian-
gle configuration appears via l12 in y(l12, M) with l12 = (l2

1 + l2
2−

2l1l2 cos �2)1/2. We propose a method to expand y(l12) around a
fiducial triangle configuration with a fixed �2 in analogy with the
Taylor expansion of y(l12) with respect to �2, whereby we can per-
form the angular integrations of l i analytically in equation (26).
The critical question that arises is: which fiducial configuration is
appropriate for the expansion? This can be answered by using the
halo model analysis of Cooray & Hu (2001a) for the convergence
bispectrum, which is part of the integrand of 〈κ3〉. Fig. 7 in their
paper explicitly illustrates the configuration dependence of the bis-
pectrum and implies that the main contribution to 〈κ3(θ s)〉 arises
from equilateral triangle configurations with l1 = l2 = l12. Hence, it
will be reasonable to take a prescription that the fiducial configura-
tion contains equilateral triangle configurations when l1 = l2. This
holds for �2 = π/3. We thus propose the following approximation
for calculating 〈κ3(θ s)〉1h combined with the approximation (33):

〈
κ3(θs)

〉1h ≈
∫

dχ W 3(χ, χs)d
−4
A

∫
dM

dn

dM

(
M

ρ̄0

)3

×
∫

l1 dl1

2π

l2 dl2

2π
y(l1)y(l2)y(l̃12)F2(l1)F2(l2), (34)

with l̃12 = (l2
1 + l2

2 − l1l2)1/2. Note that l̃12 = l1 = l2 when l1 = l2,
so that the dimension of integration is reduced from five to four in
equation (26). As for the Taylor expansion, one can include higher-
order corrections arising from the expansion of y(l12, M) at the order
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Figure 5. Comparison of our approximation for the one-halo term of con-
vergence skewness parameter with direct integration values for the SCDM
and 	CDM models. The solid lines are the direct integration values, while
the dashed lines show the results of approximation (34). For comparison, we
also show the results calculated using other approximations for 	CDM: the
dot-dashed and dotted lines are computed using the replacements of y(l12,
M) ≈ y(l1, M) and y(l12) ≈ y(l1, M)y(l2, M), respectively, for the integra-
tion. In the lower panel, the relative errors of our approximation are shown
for the two models.

of O(�2 −π/3).2 We find that the zeroth-order approximation (24)
works remarkably well as shown below.

Fig. 5 demonstrates the accuracy of our approximation (34) for
the one-halo term of the convergence skewness by comparing the
predictions with the direct integration results of equation (26) for the
SCDM and 	CDM models. The approximation is very accurate, as
its relative accuracy is better than 5 per cent over all angular scales
for both models. For comparison, the dotted and dot-dashed lines
show the results of using other possible approximations for 	CDM,
where we used the replacements of y(l12, M) = y(l1, M)y(l2, M) or
y(l12, M) = y(l1, M) in equation (26), respectively, in addition to the
approximation (33) for the filter function. The former approximation
is motivated on the analogy of equation (33), while the latter is
indeed used by Scoccimarro et al. (2001) for calculations of the
skewness and kurtosis parameters of the three-dimensional density
field. It is clear that the approximation of y(l12)= y(l1) overestimates
the value of S1h

κ,3 (see also Cooray & Hu 2001a) and the discrepancy
is larger on smaller scales. In more detail, it overestimates S1h

κ,3 by
∼40 per cent at θ s = 1 arcmin. The approximation y(l12, M) =
y(l1, M)y(l2, M) underestimates the skewness, since y(l, M) �
1, and yields S1h

κ,3 smaller by ∼60 per cent than the correct value.

2 In this case, the expansion parameter (�2 − π/3) could be larger than
unity in the range of �2 = [0, 2π], so the convergence of the expansion is
no longer guaranteed.

Figure 6. The skewness parameter of the three-dimensional density field,
Sδ,3 = 〈δ3〉/〈δ2〉2, as a function of the top-hat smoothing scale, R (Mpc),
for the 	CDM model at z = 0. We demonstrate the performance of our
approximation for the one-halo contribution as shown in Fig. 5. The dotted
and dot-dashed lines show other approximations for the one-halo term used
in the figure, as in Fig. 5. The thin lines are the two-halo, three-three and
total contributions.

Hence, we cannot use these approximations to predict the higher-
order moments of weak lensing fields with sufficient accuracy for
our purpose.

It is straightforward to apply our approximation to evaluations
of the skewness parameter of the three-dimensional density field,
Sδ,3 ≡〈δ3〉/〈δ2〉2, which is relevant for surveys of galaxies clustering
(e.g. see Scoccimarro et al. 2001). Fig. 6 plots the result against the
three-dimensional smoothing scale R (Mpc) for the 	CDM model
and z = 0 as shown in Fig. 5. Note that we have used the three-
dimensional top-hat filter function, and equation (33) can be used
as an approximation for the kernel. It is clear that our approxima-
tion again works well, implying that it will be useful for efficiently
exploring parameter space for constraining cosmological parame-
ters from Sδ,3 measurements down to very small scales. The issue
of the small-scale behaviour of higher-order moments is somewhat
an open question since results from numerical simulations are not
yet reliable for scales below 1 Mpc. The results shown in this paper
for the third- and fourth-order moment are encouraging. To the ex-
tent that the current halo model describes clustering accurately, we
have tractable analytical means of predicting higher-order clustering
statistics extending to very small scales.

4.5 Approximation for the convergence kurtosis

Based on the above success of our approximation for the skewness
parameter, we extend it to develop an approximation for the one-halo
term of the convergence fourth-order moment, 〈κ4〉1h

c . The problem
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Figure 7. The sketch of the fiducial four-point configuration used in the
approximation (35) for calculation of the convergence fourth-order moment.
The two angles �2 and �3 are set to be π/2 and π/4, respectively, but the
side length parameters l1, l2 and l3 are treated as variables.

is to consider an efficient expansion of y(l123, M) in equation (29)
with respect to the two angles �2 and �3, such that we can perform
the two-dimensional angular integrations of �2 and �3 analytically.
In the same spirit as the approximation (34), we choose the fiducial
configuration with l1 = l2 = l3 = l123, because we believe, in analogy
with the skewness, that the trispectrum with such configurations
produces the main contribution to the fourth-order moment. For the
kurtosis, we need to make additional choices for the angles �2 and
�3; we simply set �2 = π/2 and �3 = π/4, which implies a
square-shaped configuration when l1 = l2 = l3. The sketch in Fig. 7
illustrates the fiducial four-point configuration. Applying the above
approximation to equation (34) gives

〈
κ4(θs)

〉1h

c
≈

∫
dχ W 4(χ, χs)d

−6
A

∫
dM

dn

dM

(
M

ρ̄0

)4

I(M, z; θs) ,

(35)

with

I(M, z; θs) ≡
∫ 3∏

i=1

li dli

2π
y(l1, M)y(l2, M)y(l3, M)y(l̃123, M)

×F2(l1)F2(l2)F2(l3), (36)

where l̃123 = (l̃2
12 + l2

3 − √
2l̃12l3)1/2 with l̃12 = (l2

1 + l2
2 )1/2. Conse-

quently, to obtain 〈κ4〉1h
c , we need to perform a five-dimensional

numerical integration, which requires much less computation
time compared with the original seven-dimensional integration of
equation (29).

Fig. 8 demonstrates the accuracy of our approximation (35). The
approximate result for I(M, z) is compared with the direct integra-
tion value, plotted against halo mass M for the 	CDM model. The
lens redshift is z = 0.4 and smoothing scale θ s = 1 arcmin. Note that
for fixed z and M we can compute I(M, z) directly by evaluating
the five-dimensional integral. It is also worth noting that z = 0.4 is
chosen because it is close to the peak of the lensing weight func-
tion W (χ , χ s) for source redshift zs = 1. The figure clearly shows
that for both SCDM and 	CDM models our approximation can re-
produce I(M, z) to within 10 per cent accuracy on mass scales of
1014 M� � M � 1016 M�, which provide the dominant contribu-
tions to the kurtosis parameter on relevant angular scales as shown
in Fig. 13 (see Section 6). The approximation works better for more
massive haloes.

To estimate the final accuracy of our approximation to 〈κ4〉1h
c , we

further need to take into account the lens weighting, W 4(χ , χ s)d
−6
A ,

and the weighting of mass function, f (ν, z)M3, in equation (35).
Since the lens weighting gives a smooth redshift dependence, here
we consider the weighting of the mass function. The lower panel in
Fig. 8 plots f (ν, z)M3 at z = 0.4 against M, where each curve is

Figure 8. Shown is the accuracy of our approximation (36) for the inte-
grand function I (M, z) for the one-halo term of the convergence fourth-order
moment. For the 	CDM and SCDM models, the relative errors defined by
(Iapp − I true)/I true are plotted as the solid and dashed lines, respectively,
as a function of halo mass M. We here fix z = 0.4 and θ s = 1 arcmin for
the lens redshift and the smoothing scale. For comparison, the dotted and
dot-dashed lines show the results of using other approximations as in Fig. 5
(see the text for more details). In the lower panel, we plot the mass function
weighing, f (ν)M3, in the one-halo term for the models, where each curve
is normalized to give unity at the peak scale.

normalized to give unity at the peak mass scale. Accounting for the
weighting of f (ν)M3, we find that the accuracy of our approxima-
tion is approximately 9 and 8 per cent for SCDM and 	CDM models
at θ s = 1 arcmin and z = 0.4. Our approximation works better for
the larger smoothing scales, where more massive haloes contribute
to 〈κ4〉1h

c (see Fig. 13 in Section 6). From these results, we are confi-
dent that our approximation can predict the one-halo term to within
∼10 per cent accuracy at most on relevant scales, although we should
bear in mind that the approximation has a tendency to underestimate
the true value. The figure also shows the results from other possible
approximations for 	CDM, as in Fig. 5, where we have used the
replacements of y(l123) = y(l1)y(l2)y(l3) (dotted line) and y(l123) =
y(l3) (dot-dashed line) (Scoccimarro et al. 2001). These approxi-
mations overestimate or underestimate I(M, z) by 62 per cent or
70 per cent, respectively, and become worse at more massive mass
scales, and thus are not accurate enough for our purpose.

Similarly, we can construct approximations for the two- and three-
halo terms to predict the total power of the convergence kurtosis.
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The explicit forms of the approximations used are presented in
Appendix C. We have confirmed that these approximations are ade-
quately accurate (see Scoccimarro et al. 2001 for similar discussions
on the skewness and kurtosis of the three-dimensional density field).
As explained below, in this paper we ignore the four-halo contribu-
tion that is likely to have a negligible contribution on the angular
scales we have considered (see Cooray & Hu 2001b for the trispec-
trum).

We can now compare our model predictions of the convergence
kurtosis parameter with the simulation results. Fig. 9 plots the result
as in Fig. 3. It is apparent that our halo model predictions are in good
agreement with the simulation results as for the skewness case. One
caveat we should bear in mind is again that the simulation result for
	CDM is likely to underestimate Sκ,4 because of the reasons given
for Fig. 3. We have confirmed this by using new high-resolution
simulation data provided by Hamana (2002). We obtained Sκ,4 ≈ 4 ×
104 at θ s = 1 arcmin for 	CDM, which gives a better match to our
model prediction. The main cosmological implication of this figure
is that there are still significant differences between the SCDM and

Figure 9. Convergence kurtosis Sκ,4 as a function of the smoothing scale as
in Fig. 3. The square and triangle symbols with error bars are the simulation
results for the 	CDM and SCDM models, respectively, while the solid and
dashed lines denote our model predictions. For illustration, we slightly shift
the simulation result for SCDM along the x-axis. The thin solid lines in the
lower panel are the one-, two- and three-halo contributions for the 	CDM
model. For comparison, the dotted and dot-dashed lines are the results of
other approximations for the one-halo term as in Fig. 8.

	CDM models on small scales of θs � 2 arcmin, although the
sampling errors corresponding to a survey area of 25 deg2 become
larger compared with the skewness case.

The lower panel of Fig. 9 plots the one-, two- and three-halo
contributions for 	CDM. It is clear that the one-halo term gives
the dominant contribution over the scales considered; the two-halo
term is marginally important on larger scales of θs � 5 arcmin and
the three-halo term makes only a small contribution. More explic-
itly, these terms provide 82, 16 and 2 per cent of the contributions
to the total kurtosis at θ s = 1 arcmin; 53, 37 and 10 per cent at
θ s = 10 arcmin, respectively. These results validate our expectation
that the four-halo term is negligible on small angular scales θs �
5 arcmin, and even for larger scales it is likely to have contributions
smaller than 10 per cent. The four-halo term is difficult to evaluate
by numerical integration because of the oscillatory shape of the per-
turbation theory trispectrum, resulting from its dependence on the
interior angles of the four-point configuration.

5 A P P ROX I M AT I O N F O R
T H E S H E A R K U RTO S I S

Based on the results shown in the preceding section, we develop an
approximate method for calculating the shear kurtosis, which is the
main purpose of this paper.

The connected fourth-order moment of the filtered shear field can
be expressed in terms of the convergence trispectrum as

〈γ 4
1 (θs)〉c =

∫ 4∏
i=1

d2l i

(2π)2
cos 2φli F(li )Tκ (l1, l2, l3, l4)

× (2π)2δD(l1234), (37)

with

Tκ ≡
∫

dχ W 4(χ, χs)d
−6
A T (k1, k2, k3, k4), (38)

where k = l/dA(χ ), φli is defined by l i = li (cos φli , sin φli ) and
T κ is the convergence trispectrum (see Cooray & Hu 2001b). This
equation clarifies that the integrand function of 〈γ 4

1〉c has configura-
tion dependences via the geometrical factors of cos 2φli in addition
to the convergence trispectrum, and we therefore have to consider
the eight-dimensional integration. Note that for 〈γ 4

2〉c the geometri-
cal factor in equation (37) is

∏4
i=1 sin 2φli , but 〈γ 4

1〉c = 〈γ 4
2〉c from

statistical symmetry. In comparing equation (37) with equation (29)
for 〈κ4〉c, the difference is only the geometrical factor

∏4
i=1 cos 2φli .

We therefore expect that the following simple relation〈
γ 4

1 (θs)
〉

c
≈ fg

〈
κ4(θs)

〉
c
, (39)

applies, with a constant factor f g. We can derive an upper limit for
f g in the following rough manner. From the integrand function of
〈γ 4

1〉c, we consider the angular averaged geometrical function as a
function of l1, l2 and l3 defined by

G(l1, l2, l3) =
∫ 3∏

i=1

dφli

2π
cos 2φli cos 2φl123 , (40)

where cos φl123 = −(l1 cos φl1 +l2 cos φl2 +l3 cos φl3 )/ l123. The func-
tionG peaks at l1 = l2 = l3 and approaches zero for l1 � l2, l3 or l1 �
l2, l3 and so on, so that the shear fourth-order moment is suppressed
compared with that of the convergence. Hence, the upper limit on f g

should be set by the case l1 = l2 = l3: fg � G(l, l, l) ≈ 5.17×10−2.
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Figure 10. Shown is the ratio of the shear kurtosis parameter to the con-
vergence kurtosis as a function of the smoothing scale. The symbols with
error bars are the simulation results for the 	CDM and SCDM models as
in Fig. 1, where the shear kurtosis is obtained by averaging the two kurtosis
parameters for γ 1 and γ 2 and the error bar in each bin is properly averaged.
The solid line shows the ratio value of 0.263, which is the average value
between the results at θ s = 1 arcmin for the two models.

Given the relation (39), the shear kurtosis can be expressed in
terms of the convergence kurtosis as

Sγ,4(θs) ≡
〈
γ 4

i

〉
c

σ 6
γ (θs)

≈ 8 fg

〈
κ4(θs)

〉
c

σ 6
κ (θs)

= 8 fg Sκ,4(θs), (41)

where σγ (θ s) is the rms of the filtered shear field defined by
σγ (θ s) ≡ 〈γ 2

i (θ s)〉1/2 and the factor of 8 comes from the relation
〈γ 2

i 〉 = 〈κ2〉/2. Note that the upper limit on f g discussed above
corresponds to Sγ,4 � 0.41 Sκ,4.

Unfortunately, it is difficult to derive the constant factor connect-
ing Sγ,4 and Sκ,4 analytically, and we therefore rely on ray-tracing
simulations. Fig. 10 plots the simulation results for the ratio of Sγ,4

to Sκ,4 as a function of the smoothing scale. Note that we have
taken the average of the kurtosis values for the two independent
shear fields to obtain Sγ,4; Sγ,4 ≡ [〈γ 4

1〉c /〈γ 2
1〉3 + 〈γ 4

2〉c/〈γ 2
2〉3]/2.

The figure reveals that, despite the fact that the trispectrum has a
strong dependence on cosmological models (leading to a difference
greater than 300 per cent between the kurtosis values for the SCDM
and 	CDM models – see Fig. 9), the ratios are similar for the two
models. Furthermore, it appears that Sγ,4 is related to Sκ,4 by a con-
stant factor over the angular scales we have considered. The solid
line shows the average value of 0.263 between the results at θ s =
1 arcmin for the two models, and one can see that the curve ex-
plains the simulation results reasonably well. In the following, to
predict the shear kurtosis parameter, we simply multiply the factor
0.263 by the convergence kurtosis parameter calculated using the
approximations developed in Section 4.5. Thus we use

Sγ,4 ≈ 0.263 Sκ,4. (42)

6 R E S U LT S

In Fig. 11 we compare our model predictions of the shear kurtosis
with the simulation results for the SCDM and 	CDM models as

Figure 11. Comparison of our model predictions for the shear kurtosis,
Sγ,4, with the simulation results as a function of the smoothing scale. Here,
for the simulation result in each bin we take the average between the kurtosis
parameters of two shear fields γ 1 and γ 2. For illustration, we slightly shift
the simulation result for SCDM along the x-axis.

in Fig. 9. Note that the halo model prediction is calculated from
the sum of the one-, two- and three-halo contributions to the shear
fourth-order moment. The result shown in each bin is computed
from the average value of the kurtosis parameters for two shear
fields, γ 1 and γ 2, as in Fig. 10. The figure reveals that our model
can reproduce the simulation results well and that there are distinct
differences between the shear kurtosis values for the SCDM and
	CDM models on small scales of θs � 3 arcmin. The range of an-
gular scales with 0.5 arcmin � θs � 3 arcmin is feasible for making
adequate signal-to-noise ratio measurements of top-hat smoothed
statistics from lensing survey data (e.g. see Van Waerbeke et al.
2001a). As mentioned in the discussion of Fig. 3, the simulation
results for 	CDM are likely to underestimate Sγ,4 at θs � 3 ar-
cmin. We have confirmed that high-resolution simulation (Hamana
2002) does give a better match to our model prediction, but the ac-
curate measurement of fourth-order statistics from numerical data
needs further investigation. This uncertainty does not seriously un-
dermine our conclusions concerning parameter estimation from the
shear kurtosis, because it has a strong dependence on �m0 for flat
	CDM models. For example, a small change ��m0 = −0.05 leads
to a large change of �Sγ,4 ≈ 3.1 × 103 at θ s = 1 arcmin if one
chooses the fiducial model with �m0 = 0.3, �λ0 = 0.7. On the other
hand for variations concerning the �m0 = 1 model, the result is al-
most unchanged with �Sγ,4 ≈ 60. These scalings are approximately
consistent with the perturbation theory expectation given by Sγ,4 ∝
�−2

m0 (see also Figs 17 and 18 later in this section).
In Fig. 12, we show the comparison of our model prediction with

the JSW simulation results for the τCDM model, which has �m0 =
1.0, h = 0.5, σ 8 = 0.6 and the shape parameter of � = 0.21 (see
JSW for more details). Note that the cosmological parameters of
the τCDM model are the same as for SCDM except for the shape
parameter (� = 0.5 for SCDM). The error in each bin is the sample
variance corresponding to a survey area of ≈7.84 deg2. The purpose
of this figure is to illustrate the validity of our model for different
cosmological models and the sensitivity of the shear kurtosis to the
shape of the matter power spectrum. One can clearly see that our halo
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Figure 12. Shown is the comparison of our model predictions for the shear
kurtosis (upper panel) and the convergence skewness (lower panel) with the
results of the JSW simulation data for the τCDM model, which has �m0 =
1.0, h = 0.5, σ 8 = 0.6 and � = 0.21.

model reproduces the simulation results for both the shear kurtosis
(upper panel) and the convergence skewness (lower panel). This
success may be a surprise, because it has been pointed out in several
works (e.g. see fig. 1 in Van Waerbeke et al. 2001b) that the JSW data
does not exactly match the amplitude of the convergence variance
predicted by the PD formula. The discrepancy may be attributed to
the inaccuracy of the PD fitting formula for the non-linear power
spectrum. However, it appears that our model can reproduce the
simulation results for the statistical measures of weak lensing fields
that are chosen to be insensitive to the power spectrum normaliza-
tion but can pick up the non-Gaussian signals originating from the
density field. Fig. 12 also shows that the skewness and kurtosis are
larger for the τCDM model compared with the SCDM model. Thus
some constraint on the shape of the power spectrum is necessary to
use the non-Gaussian statistics for parameter estimation.

So far our halo model calculations have assumed the mass range
for the integration to 103 � M � 1018 M�. Fig. 13 plots the de-
pendence of the shear kurtosis on the maximum mass cut-off used
in the calculation for the SCDM model. Note that we varied the
maximum mass cut-off for evaluations of both the shear variance
and the fourth-order shear moment used in the calculation of Sγ,4;
the figure shows the resulting dependence of Sγ,4 on the maximum

Figure 13. The dependence of the shear kurtosis on the maximum mass
cut-off used in the calculation for the SCDM model. Note the we varied the
maximum mass cut-off for evaluations of the shear fourth-order moment
and the shear variance, which enter the numerator and denominator of Sγ,4,
respectively. From top to bottom, the maximum mass is 1016, 1015, 1014 and
1013 M�.

Figure 14. The dependence of the shear kurtosis on the range of lens
redshift is plotted. From top to bottom, the lower limit of lens redshift used
in the calculation is 0.1, 0.2, 0.3, 0.4 and 0.5, while the upper limit is z = 1.

mass cut-off. It is apparent that Sγ,4 is mainly caused by massive
haloes with M � 1014 M�, while less massive haloes contribute
more on smaller angular scales. More specifically, haloes with M �
1014 M� provide ≈50 per cent and ≈99 per cent contributions to
the shear kurtosis at θ s = 1 and 10 arcmin, respectively.

The dependence of the shear kurtosis on the lens redshift is shown
in Fig. 14. This figure indicates that the shear kurtosis is sensitive
to low-redshift structures with z � 0.4. Next, we examine the ori-
gin of the redshift dependence by plotting the dependences of the
numerator and denominator of the skewness and kurtosis separately.

The upper left-hand panel in Fig. 15 illustrates the dependences of
σ 6

γ and 〈γ 4
i 〉c on the source galaxy redshift zs for the SCDM model
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Figure 15. In the upper left-hand panel, the dependences of σ 6
γ (θ s) and the shear fourth-order moment on the source galaxy redshift zs are plotted for the

SCDM model and θ s = 1 arcmin, while the resulting dependence of the shear kurtosis is shown in the lower left-hand panel. Note that σ 6
γ appears in the

denominator of Sγ,4. The solid and dashed lines in the upper panel are the results for σ 6
γ and 〈γ 4

i 〉, respectively, where each curve is normalized by its values

for zs = 1. The right-hand panel is a similar plot for the convergence skewness Sκ,3 given by equation (27); σ 4
κ and 〈κ3〉 are the denominator and numerator of

Sκ,3, respectively.

and θ s = 1 arcmin (σ 6
γ and 〈γ 4

i 〉c are the denominator and numerator
of Sγ,4, respectively). For comparison, the right-hand panel shows a
similar plot for the convergence skewness Sκ,3 (the denominator and
numerator of Sκ,3 are σ 4

κ and 〈κ3〉, respectively). One can see that
non-linear structures at lower redshifts affect the higher-order mo-
ments more strongly than the terms with powers of the variance. The
lower-left panel plots the resulting dependence of Sγ,4 on the source
redshift and reveals that possible variation in the source redshift al-
ters the shear kurtosis. A comparison of the left- and right-hand
panels shows that the shear kurtosis has a stronger dependence on
the source redshift than the convergence skewness. The shear kur-
tosis increases by a factor of 20 if the source redshift is varied from
0.5 to 2, while the convergence skewness varies by approximately
a factor of 7. These results raise the question: what is the best sur-
vey strategy to measure the shear kurtosis? Fig. 15 suggests that a
deeper redshift survey that probes higher-redshift structures loses
some non-Gaussian signal owing to projection effects. A survey to
measure Sγ,4 may be more efficient if it is shallower and covers
greater area, provided systematic errors are well understood and the
redshift distribution of source galaxies is known. The feasibility of
the measurement of non-Gaussian statistics from lensing surveys
will be presented in detail elsewhere (Takada, Jain & Hamana, in
preparation).

In Fig. 16 we show the effect of varying the concentration param-
eter of the NFW profile on the shear kurtosis for the SCDM model
and θ s = 1 arcmin. The dependence is illustrated by parametriz-
ing the concentration parameter in terms of its normalization at
the non-linear mass scale today and the slope of the mass depen-
dence as c(M , z) = c0(1 + z)−1[M/M∗(z = 0)]−β . Here we have

again assumed that the redshift dependence is the same as in equa-
tion (5) as suggested by the N-body simulations (Bullock et al.
2001). With fixed β, a 50 per cent increase or decrease of c0 leads to
∼30 per cent increase or decrease of Sγ,4. Thus our results would
not be strongly affected by varying c to the extent indicated by N-
body simulations, which give a dispersion of 0.2 in ln c (Jing 2000;
Bullock et al. 2001; see also Cooray & Hu 2001b for a lensing
study). On the other hand, the curves with fixed c0 and varying β

reveal that the shallower slope β = 0.13 leads to a larger value of
Sγ,4. These results can be explained as follows. The increase of c0

for a given β or decreasing β for a given c0 leads to more concen-
trated density profiles for haloes more massive than the non-linear
mass scale M∗. Since these massive haloes dominate the contribu-
tion to the shear kurtosis, this has the effect of increasing the kurtosis
on the angular scales considered here. An important caveat is that
the variations in the concentration parameter simultaneously alter
the predictions for the shear variance, σ 2

γ . The lower panel
shows the relative errors of the halo model prediction to the PD
results for σγ . It is clear that our choice (5) for c(M , z) (bold solid
line) gives the closest value to the PD result. Furthermore, as we
have shown, our model can reproduce the simulation results for
the higher-order moments of weak lensing fields. In this regard,
therefore, as a prescription for using the halo approach to study the
higher-order statistics of weak lensing, it is reasonable to choose
the concentration parameter so that it reproduces the PD result for
the variance. Conversely, if we employ a different halo profile from
NFW, it will probably be necessary to modify our choice (5) for the
concentration parameter in order to accurately describe the higher-
order statistics.
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Figure 16. In the upper panel (a), the dependence of the shear kurto-
sis on variations in the concentration parameter is plotted as a function of
the smoothing scale. We consider the concentration parameter expressed in
terms of the normalization c0 at the present-day non-linear mass scale, M�

(z = 0), and the slope of the mass dependence as c(M , z) = c0(1 +
z)[M/M�(z = 0)]−β . The three solid lines demonstrate the dependences
for (c0, β) = (5, 0.2), (10, 0.2), (15, 0.2) from bottom to top, respectively,
while the dashed lines are (c0, β) = (5, 0.13), (10, 0.13), (15, 0.13). The bold
solid line denotes the result for (c0, β) = (10, 0.2), which we have used in
this paper. In the lower panel (b), we show the relative differences between
the halo model predictions and the PD results for the shear rms. As in the
upper panel, the solid lines from bottom to top are the results for (c0, β) =
(5, 0.2), (10, 0.2), (15, 0.2).

Finally, in Fig. 17 we show the contour plot for Sγ,4 with θ s = 1
arcmin in the plane of �m0 and σ 8 parameters for flat CDM models
with h = 0.7. The number assigned to each contour denotes the value
of log10 Sγ,4, in the �m0–σ 8 plane. Clearly, the shear kurtosis is very
sensitive to �m0 and has a weak dependence on σ 8. For example,
the model with �m0 = 0.1 and σ 8 = 0.6 yields Sγ,4 = 1.72 ×
105, while the model with �m0 = 1.0 and the same σ 8 leads to
Sγ,4 = 1.46 × 103. Fig. 18 shows slices of the contour plot with
σ 8 = 0.6 and 0.9, and reveals that the dependence of Sγ,4 on �m0

is very close to Sγ,4 ∝ �−2
m0. On the other hand, the two solid lines

in Fig. 17 show the dependence σ 8�
0.6
m0, which represents typical

constraints obtained from measurements of the two-point statistics
of the shear field (each curve is arbitrarily normalized). One can see
that these two curves have a very different shape from the contours
of Sγ,4; thus measurements of Sγ,4 can break the degeneracy in the

Figure 17. Log contour map of the shear kurtosis parameter Sγ,4 in the
�m0–σ 8 plane for flat CDM models with h = 0.7 and θ s = 1 arcmin. Note
that the number assigned to each contour is the index value of a, which
parametrizes the kurtosis as Sγ = 10a ; each contour is stepped by � a =
0.2. The two solid curves show the dependence σ 8�

0.6
m0 that represents typical

constraints on the �m0 − σ 8 plane so far obtained from the two-point shear
statistics measurements (the two curves correspond to two different normal-
izations). It is clear that the curves for the two- and four-point statistics have
different shapes, and would therefore allow for independent determinations
of the two parameters.

Figure 18. This figure shows slices of the contour plot in Fig. 17 with σ 8 =
0.6 and 0.9, which explicitly illustrates the dependence of the shear kurtosis
on �m0. The dashed line shows the dependence Sγ,4 ∝ �−2

m0.

determination of �m0 and σ 8. Furthermore, they can constrain the
dark energy component of the Universe if they are combined with
the evidence for a flat Universe from recent CMB measurements
(Netterfield et al. 2002).
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7 D I S C U S S I O N A N D C O N C L U S I O N

In this paper we have investigated the kurtosis parameter of the cos-
mic shear field, Sγ,4( ≡ 〈γ 4

i 〉c/〈γ 2
i 〉3), based on the dark matter halo

approach. The two main results revealed in this paper are summa-
rized as follows. First, we have developed a useful approximation
for calculating the shear kurtosis, which significantly reduces the
computational time and yet provides the shear kurtosis expected
within ∼10 per cent accuracy over the angular scales 1 � θ s �
10 arcmin. Our model predictions can well match the ray-tracing
simulation results for the shear kurtosis and for the convergence
skewness and kurtosis parameters for the SCDM, 	CDM and
τCDM models (see Figs 3 , 9, 11 and 12). For the 	CDM model, the
simulation data lie slightly below our predictions. It appears that the
numerical results on small scales, especially for the higher-order
moments, have not converged at the few per cent level of accu-
racy – this is a subject that merits further investigation. While we
have focused on lensing statistics in this paper, our results for the
higher-order moments apply to the three-dimensional density field
as well. We show in Fig. 6 that our approximations allow for the
three-dimensional skewness to be accurately computed down to sub-
Mpc scales, which is an improvement on existing approaches in the
literature.

Secondly, we have shown that Sγ,4 has a strong dependence on
the matter density parameter of the Universe, �m0, while it is only
weakly dependent on the power spectrum normalization, σ 8, as il-
lustrated in Figs 17 and 18. Thanks to this property, a measure-
ment of Sγ,4, in combination with the shear two-point statistics al-
ready measured, would be valuable in constraining both �m0 and
the matter power spectrum. For example, a marginal detection of the
shear kurtosis with 50 per cent uncertainties would yield the con-
straint 0.24 � �m0 � 0.43 if the current concordance model with
�m0 = 0.3, �λ0 = 0.7, h = 0.7 and σ 8 = 0.9 is taken as the fiducial
model. Even a null detection of Sγ,4 allows us to set a lower limit on
�m0 from the strong dependence of Sγ,4 on low-�m0 values. Thus
measurements of Sγ,4 can break the degeneracies in the �m0 and
σ 8 determination so far provided from the shear two-point statistics
measurements without invoking any other methods. It can deter-
mine the dark energy component of the Universe if combined with
the strong evidence of a flat Universe from the CMB data. It could
also help resolve the puzzling inconsistency in the determination of
σ 8 in the ‘old’ (e.g. Eke et al. 1996) and ‘new’ (e.g. Seljak 2001)
cluster abundance estimations [see also Van Waerbeke et al. (2002)
and Lahav et al. (2002) for comments on this issue from analyses
of the weak lensing and the galaxy redshift survey, respectively].

We believe that the shear kurtosis is more directly applicable to
data from weak lensing surveys than the well-studied higher-order
statistics of the convergence field. To examine this issue in detail,
we must examine the signal-to-noise ratio properties of different
measures of non-Gaussianity from realistic survey data. This would
facilitate a comparison of different approaches, such as the shear
kurtosis discussed here and the shear three-point function proposed
by Bernardeau et al. (2002a).

For this purpose, it is crucial to correctly model possible errors in
measurements of the shear, since higher-order statistics can be very
sensitive to the noise. The main sources of error are the shot noise
owing to the intrinsic ellipticities of source galaxies and the sampling
error for a finite survey area. If the intrinsic ellipticity distribution
is regarded as Gaussian owing to random intrinsic orientations, we
can estimate the dispersion for a measurement of the connected
fourth-order moment of the shear field, 〈γ 4

i 〉c, following the method
developed in Section 5 in Schneider et al. (1998):

Figure 19. Estimates of the signal-to-noise ratio in the measurement
of the connected fourth-order moment of the shear field, 〈γ 4

i 〉c, for the
	CDM model against the smoothing scale. We assume σ ε = 0.4 and ngal =
30 arcmin−2 for the rms intrinsic ellipticity and the number density of source
galaxies, and take the survey area to be �survey = 25 deg2. For comparison,
the dotted and dot-dashed lines are the results for the shear variance and
〈γ 4

i 〉c with �survey = 100 deg2, respectively.

σ
(〈

γ 4
i

〉
c
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)4

(
σ 2

ε

2

)4

,

(43)

where σ ε is the dispersion of the intrinsic ellipticity distribution,
�survey the survey area and ngal the number density of source galaxies.
The first term on the right-hand side of the equation above denotes
the sample variance and the second term the noise owing to the
finite number of randomly located source galaxy images. Here we
have assumed ngalθ

2
s � 1 and that the connected part of the higher-

order moments of the shear field is equal to its unconnected part for
simplicity.3 Fig. 19 shows an estimate of the signal-to-noise ratio in
the measurement of 〈γ 4

i 〉c for the 	CDM model at zs = 1, where
we have assumed ngal = 30 arcmin−2 and σ ε = 0.4 and considered
two cases of �survey = 25 and 100 deg2. Note that a signal-to-noise
ratio for the measurement of Sγ,4 is similar for the result in this
figure, since the error arises mainly from the measurement of 〈γ 4

i 〉c

compared with that of 〈γ 2
i 〉, as shown by comparing the solid and

dotted lines. The noise is mainly caused by the sample variance at
θs � 2 arcmin for the 	CDM model, while the intrinsic ellipticity
noise is important at θs � 2 arcmin. One can see that for a survey area
of 25 deg2 the measurement of 〈γ 4

i 〉c would indeed be marginally
feasible on small angular scales θs � 3 arcmin, provided systematic
errors can be kept under control. The results also imply an interesting
possibility as discussed in Fig. 15: a shallower survey, for a given
amount of observing time, could improve the signal-to-noise ratio
because the amplitude of 〈γ 4

i 〉c does not decrease as much as that

3 For the fourth-order moment, the ratio of the connected part to the un-
connected part, 〈γ 4

i 〉c /[3〈γ 2
i 〉2], is less than 0.5 on the angular scales we

have considered. If this also holds for the sixth- and eighth-order moments,
equation (43) would give a conservative estimate of the noise.
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of the variance for low-redshift structures. Furthermore, the redshift
distribution is easier to measure accurately for a shallower survey.
In any case, with a survey area exceeding 100 deg2, expected from
forthcoming lensing surveys, the kurtosis measurement should be
made with high statistical significance, as shown by the dot-dashed
line, and thus prove useful for parameter estimation.

There are some uncertainties we have ignored in the rough signal-
to-noise ratio estimate of equation (43). First, non-Gaussian errors
are more important on smaller angular scales (Cooray & Hu 2001b),
so the sample variance must be estimated using an adequate number
of realizations of ray-tracing simulations or possibly by an analyti-
cal treatment using the halo approach for calculating the connected
sixth- and eighth-order moments. Secondly, in actual data the noise
distribution of the intrinsic ellipticities is likely to be non-Gaussian.
In addition, we should bear in mind that the shear kurtosis is strongly
affected by rare events in the tail of the measured shear distribution.
Hence, we will need to consider some strategy to efficiently extract
the shear kurtosis from realistic data that are less sensitive to un-
physical rare events. One possible way to reduce the sample variance
from such rare events is to use the probability distribution function
(PDF) of the shear field, which is analogous to the method pro-
posed by JSW for the study of the convergence skewness parameter.
If the primordial fluctuations are Gaussian, the non-linear gravita-
tional evolution of structure formation induces the non-Gaussianity
in the weak lensing fields, as investigated in this paper, and the
weakly non-Gaussian PDF of the shear field can be modelled by the
Edgeworth expansion (see Juszkiewicz et al. 1995). At the lowest
order, we have

P(γi ) = 1√
2πσγ (θs)

exp

[
− γ 2

i

2σ 2
γ (θs)

]

×
{

1 + 1

4!
Sγ,4(θs)σ

2
γ (θs)H4

[
γi

σγ (θs)

]}
, (44)

where H 4(x) = x4 − 6x2 + 3 is the fourth-order Hermite polyno-
mial. The resulting PDFs for the SCDM and 	CDM models are
shown in Fig. 20. Moreover, in practice we must account for the
fact that the measured shear field is a sum of the cosmic shear and

Figure 20. The probability distribution function of the shear field. The
solid and dashed lines are PDFs for the LCDM and SCDM models and θ s =
1 arcmin, which are calculated using the Edgeworth expansion (44), while
the dotted line is the Gaussian PDF.

noise fields. To obtain the PDF for the measured shear field γ obs
i ,

therefore, we have to convolve P(γ i ) with the PDF of the noise,
where the noise field is defined by smoothing the intrinsic elliptici-
ties of source galaxies contained within top-hat apertures. Note that
there are two noise fields (ε1 and ε2) corresponding to the two shear
fields (γ 1 and γ 2), respectively. If the noise PDF is given by PN

(εi ), the PDF for the measured shear field, γ obs
i , can be expressed

by the convolution integral as

P
(
γ obs

i

) =
∫

dε

∫
dγi PN(εi )P(γi )δD

(
γ obs

i − γi − ε
)
, (45)

where PN(εi ) is normalized as
∫

dεi PN(εi ) = 1. It is worth not-
ing that the noise PDF PN(εi ) can also be modelled in terms of
the variance and higher-order moments of the noise field using the
Edgeworth expansion. Furthermore, this method can utilize a great
advantage – the noise PDF PN(εi ) can be directly reconstructed from
the observed shear field, e.g. by smoothing after the randomization
of the position angle of each galaxy image. This procedure would
wash out the coherent cosmic shear pattern within the smoothing
aperture, but pick up the contribution from the intrinsic ellipticities
of source galaxies. In this sense, the variance and higher-order mo-
ments of the noise field for a given smoothing scale can be directly
extracted from the measured data, giving an estimator for the noise
PDF. To obtain the noise for the convergence field is harder, since
a non-local reconstruction from the smoothed intrinsic ellipticity
field is required (Van Waerbeke 1999). For the shear, the theoreti-
cal model (45) for P(γ obs

i ) is given by a single parameter, Sγ,4(θ s).
One can then fit the theoretical prediction to the measured PDF
over an appropriate intermediate range of γ obs

i , where the Edge-
worth expansion is valid, to extract the shear kurtosis Sγ,4 with
reduced sensitivity to rare events. The quantitative improvement in
the signal-to-noise ratio will be the subject of a later study.

Other uncertainties we have ignored in this paper are the effects
of the redshift distribution of source galaxies and the clustering of
source galaxies. Fig. 15 shows that the higher-order moments are
more sensitive to non-linear structures at lower redshifts than the
variance and, as a result, the shear kurtosis can be sensitive to the
source redshift distribution. Consider the conventionally used model
for the redshift distribution of source galaxies

n(z) = β

z0�
(

1+α

β

)(
z

z0

)α

exp

[
−

(
z

z0

)β
]

, (46)

with α = 2 and β = 1.2 (e.g. see Van Waerbeke et al. 2002) and
the source redshift parameter z0 = 0.48, so that it gives the mean
source redshift 〈 zs 〉 ≈ 1.0. This distribution increases the value of
Sγ,4 at θ s = 1 arcmin by ∼20 per cent for the SCDM and 	CDM
models, compared with the case with source redshifts fixed at zs = 1.
This increase is to some extent counterbalanced by the source clus-
tering effect, because previous work based on perturbation theory
(Bernardeau 1998) showed that source clustering reduces the val-
ues of the convergence skewness and kurtosis by ∼10–20 per cent
[recently confirmed by ray-tracing simulation (Hamana et al. 2002)
and by an analytical study (Schneider et al. 2002)]. It is reasonable
to expect that this argument is also valid for the shear kurtosis, be-
cause we showed Sγ,4 is related to the convergence kurtosis Sκ,4

through a geometrical constant factor (see the discussions around
equation 42).

Although the halo approach used here and in the literature
assumes a spherically symmetric profile, in reality haloes have
non-spherical profiles and substructure as predicted in the CDM
paradigm (e.g. Jing & Suto 2002). Our results showed that the halo
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model can reproduce the ray-tracing simulation results fairly well for
the one-point moments of the smoothed lensing fields. This success
is encouraging, since the simulations include contributions from
various realistic halo profiles. The agreement is partly because we
focus only on statistical quantities and, therefore, to some extent the
profile we need for the halo model calculation should be an average
over possible halo profiles of a given mass. In addition, one-point
moments of the smoothed fields are likely to be insensitive to halo
profile fluctuations. We expect that the full three- or four-point corre-
lation functions of the lensing fields would be more sensitive to pro-
file fluctuations, because those functions should contain complete
information on gravitational clustering up to the three- or four-point
level through the configuration dependences. These issues will be
presented elsewhere (Takada & Jain 2002a, b).

Finally, we comment on an alternative application of measure-
ments of the shear kurtosis. If cosmological parameters including
�m0 are precisely determined by other measurements, our results
suggest that the higher-order moments of weak lensing fields could
be used to constrain dark matter halo profiles. This problem is partic-
ularly interesting, since it can be a clue to understanding the nature
of dark matter. Although the concentration and inner profile of dark
matter halo are degenerate in giving two-point lensing statistics as
argued in this paper (see also Seljak 2000), a detailed study may
yield ways of combining the two- and four-point shear statistics to
break the degeneracy by exploiting the dependences of the shear
kurtosis on the inner profile and the concentration parameter shown
in Fig. 16. If this is the case, Fig. 13 indicates that measurements of
the shear kurtosis at θs � 1 arcmin can constrain the properties of
the halo profile at mass scales M � 1014 M�.
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Van Waerbeke L., Mellier Y., Pelló R., Pen U.-L., McCracken H.J., Jain B.,

2002, A&A, 393, 369
Villumsen J.V., 1996, MNRAS, 281, 369
White M., Hu W., 2000, ApJ, 537, 1 (WH)
Wittman D.M., Tyson J.A., Kirkman D., Dell’Antonio I., Bernstein G., 2000,

Nat, 405, 143

A P P E N D I X A : P E RT U R BAT I O N T H E O RY
B I S P E C T RU M A N D T R I S P E C T RU M

The explicit forms of the bispectrum and trispectrum of the density
field based on perturbation theory (e.g. Fry 1984) are

Bpt(k1, k2, k3, z) = 2F2(k1, k2)PL(k1, z)PL(k2, z) + two perm.,

(A1)

T pt(k1, k2, k3, k4; z) = 4[F2(k13, −k1)F2(k13, k2)PL(k13, z)

× PL(k1, z)PL(k2, z) + 11 perm.]

+ 6
[

F3(k1, k2, k3) + PL(k1, z)

× PL(k2, z)PL(k3, z) + three term
]
, (A2)

where the redshift evolution of the linear power spectrum is given
by PL(k, z) = D2(z)PL(k, z = 0) where D(z) is the growth factor.
The kernels Fn are calculated using perturbation theory (e.g. see
Jain & Bertschinger 1994) and are expressed as

F2(k1, k2) = 5

7
+ 1

2

(
1

k2
1

+ 1

k2
2

)
(k1 · k2) + 2

7

(k1 · k2)2

k2
1k2

2

,

F3(k1, k2, k3) = 7

18

k12 · k1

k2
1

[F2(k2, k3) + G2(k1, k2)]

+ 1

18

k2
12(k1 · k2)

k2
1k2

2

[G2(k2, k3) + G2(k1, k2)],
(A3)

with

G2(k1, k2) = 3

7
+ 1

2

(
1

k2
2

+ 1

k2
1

)
k1 · k2

k1k2
+ 4

7

(
k1 · k2

k1k2

)2

, (A4)

where we have ignored the extremely weak dependences of the
functions Fn and G2 on cosmological parameters �m0 and �λ0.

A P P E N D I X B : G E O M E T R I C A L P RO P E RT I E S
O F TO P - H AT F I LT E R F U N C T I O N

The purpose of this Appendix is to derive properties of the inte-
grals of products of the two-dimensional top-hat kernel given by
equation (23). This is analogous to the approach in Appendix B of
Bernardeau (1994).

We begin our discussion with deriving the following identity for
the third-order products, since it is relevant for the calculation of the
third-order moment of weak lensing fields (see Section 4):

∫
d2x1

(2π)2

∫
d2x2

(2π)2
F(x1)F(x2)F(x12) =

∫ ∞

0

x1 dx1

2π

×
∫ ∞

0

x2 dx2

2π
F2(x1)F2(x2), (B1)

where the top-hat kernel is F(x) = 2J 1(x)/x and x12 ≡ |x1 + x2|.
The proof of equation (B1) is as follows. From the expansion

formula of Bessel function (e.g. 8.532.1 in Gradshteyn & Ryzhik
2000) we can expand the kernel F(|x1 + x2|) as

F(|x1 + x2|) = 2
J1(|x1 + x2|)

|x1 + x2|
= 4

∑
n=0

(n + 1)
Jn+1(x1)

x1

Jn+1(x2)

x2
(−1)n

× sin[(n + 1)�2]

sin �2
, (B2)

where �2 is the angle between x1 and x2, giving x12 = (x2
1 + x2

2

− 2x1x2 cos �2)1/2. Inserting this equation into the left-hand part of
equation (B1) and then integrating it over the angle �2, we obtain∫

x1dx1

2π

x2 dx2

2π
F(x1)F(x2)

[
F(x1)F(x2) − 12

J3(x1)

x1

J2(x2)

x2

+ 20
J5(x1)

x1

J5(x2)

x2
+ · · ·

]
. (B3)

Using the recursion relation for Bessel functions and an integration
formula (6.574.2 in Gradshteyn & Ryzhik 2000), the second term
in the bracket on the right-hand side of equation above vanishes
because∫ ∞

0

x1dx1

2π

J1(x1)

x1

J3(x1)

x1
=

∫ ∞

0

x1dx1

2π

J1(x1)

x1

[
4

J2(x1)

x2
1

− J1(x1)

x1

]

= 4 × 2−1 �(2)�(1)

�(3/2)�(5/2)�(1/2)

− �(1)�(1/2)

�(1/2)�(3/2)�(1/2)

= 1

2
− 1

2
= 0. (B4)

One can similarly find that the third term and higher-order terms in
the bracket on the right-hand side of equation (B3) vanish, and then
equation (B1) follows.

Likewise, one can straightforwardly obtain the following identity
on which the approximation for calculating the convergence forth-
order moment is based:∫ 3∏

i=1

d2xi

(2π)2
F(x1)F(x2)F(x3)F(x123)

=
∫ 3∏

i=1

xi dxi

2π
F2(x1)F2(x2)F2(x3), (B5)

where x123 ≡ |x1 + x2 + x3|.

A P P E N D I X C : T WO - A N D T H R E E - H A L O
C O N T R I BU T I O N S TO T H E C O N V E R G E N C E
F O U RT H - O R D E R M O M E N T

In this Appendix, we write down the expressions for approximations
used for calculations of the two- and three-halo contributions to the
convergence fourth-order moment, which are discussed in Section 4.
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The two-halo term of the convergence fourth-order moment re-
ceives two contributions, which represent taking three or two parti-
cles in the first halo:

〈κ4〉2h
c =

∫
dχ W 4(χ, χs)d

−4
A (χ )

∫ 3∏
i=1

d2l i

(2π)2

× (
T 2h

31 + T 2h
22

)
(l1, l2, l3, −l123)F(li )F(l123), (C1)

where T 2h
31 and T 2h

22 are given by equations (15) and (16), and
ki = l i/dA(χ ). It is clear that the contribution from T 2h

31 dominates
that from T 2h

22, because the former arises mainly from three-point cor-
relations within one halo with a highly non-linear density contrast,
while the latter arises from two-point correlations. We confirmed
that the T 2h

22 contribution is smaller even than the three-halo term.
For this reason, we ignore the T 2h

22 contribution and use the following
approximation for calculating the two-halo term in the convergence
fourth-order moment (we also include the approximation for F(l123)
from equation 33):

〈κ4〉2h
c ≈ 4

∫
dχW 4(χ, χs)d

−6
A (χ )

∫
dM1

dn

dM1

(
M1

ρ̄0

)3

× b(M1, z)

∫
l1dl1

2π

l2 dl2

2π
y(l1, M1)y(l2, M1)y(l̃12, M1)

× F2(l1)F2(l2)

∫
dM2

dn

dM2
b(M2, z)

(
M2

ρ̄0

)

×
∫

l3 dl3

2π
y(l3, M3)F2(l3)PL(l3), (C2)

where l̃12 = (l2
1 +l2

2 −l1l2)1/2 and the factor of 4 comes from the per-
mutation symmetry in the two-halo trispectrum (see equation 15) for

the fourth-order moment calculation. We have written the order of
integration specifically to point out that the latter two integrals, over
M2 and l3, can be performed separately from the preceding three.
Thus one needs to perform at most a four-dimensional numerical
integration to obtain 〈κ4〉2h

c .
Similarly, we use the following equation to calculate the three-

halo term in the convergence fourth-order moment:

〈κ4〉3h
c ≈ 6

∫
dχ W 4(χ, χs)d

−6
A (χ )

×
∫

l1 dl1

2π

d2l2

(2π)2
Bpt(l1, l2, −l12)F2(l1)F2(l2)

×
∫

dM1
dn

dM1

M1

ρ̄0
b(M1, z)y(l1, M1)

×
∫

dM2
dn

dM2

M2

ρ̄0
b(M2, z)y(l2, M2)

×
∫

dM3
dn

dM3

(
M3

ρ̄0

)2

b(M3, z)

×
∫

l3 dl3

2π
y2(l3, M3)F2(l3), (C3)

where d 2l2 = l2 dl2 d�2, l12 = (l1 + l2 − 2l1l2cos�2)1/2 and the
factor of 6 comes from equation (17). We have used the approx-
imation y(l123) = y(l3), which is valid to high accuracy for the
three-halo term. Again, a careful consideration of the dependences
of the integrated functions reveals that we have to perform only a
four-dimensional numerical integration to obtain 〈κ4〉3h

c .
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