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ABSTRACT
The weak lensing power spectrum carries cosmological information via its dependence on
the growth of structure and on geometric factors. Since much of the cosmological informa-
tion comes from scales affected by nonlinear clustering, measurements of the lensing power
spectrum can be degraded by non-Gaussian covariances. Recently there have been conflicting
studies about the level of this degradation. We use the halo model to estimate it and include
new contributions related to the finite size of lensing surveys, following Rimes and Hamilton’s
study of 3D simulations. We find that non-Gaussian correlations between different multipoles
can degrade the cumulative signal-to-noise for the power spectrum amplitude by up to a fac-
tor of 2 (or 5 for a worst-case model that exceeds current N-body simulation predictions).
However, using an eight-parameter Fisher analysis we find that the marginalized errors on
individual parameters are degraded by less than 10% (or 20% for the worst-case model). The
smaller degradation in parameter accuracy is primarily because: individual parameters in a
high-dimensional parameter space are degraded much less than the volume of the full Fisher
ellipsoid; lensing involves projections along the line of sight, which reduce the non-Gaussian
effect; some of the cosmological information comes from geometric factors which are not de-
graded at all. We contrast our findings with those of Lee & Pen (2008) who suggested a much
larger degradation in information content. Finally, our results give a useful guide for exploring
survey design by giving the cosmological information returns for varying survey area, depth
and the level of some systematic errors.
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1 INTRODUCTION

Over the last decade a concordance model has emerged in cosmology in which about two-thirds of the energy density of the universe today
may be in the form of dark energy. This explains the observation that we reside in an accelerating universe (Riess et al. 1998; Perlmutter et al.
1999). Despite its importance to the formation and evolution of the universe there are no compelling theories that explain the energy density
or the properties of dark energy.

To address questions about the nature of dark energy a number of ambitious wide-field optical and infrared imaging surveys have been
proposed. These range from space-based missions in the optical and infrared, such as the Supernova Acceleration Probe (SNAP1, proposed
as the space-based Joint Dark Energy Mission (JDEM)), and the Dark Energy UNiverse Explore (DUNE2), to ground-based surveys such as
the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS3), the Dark Energy Survey (DES4), the Subaru Weak Lensing
Survey (Miyazaki et al. 2006), the Large Synoptic Sky Survey (LSST5) and others. Each of these missions approaches the study of dark
energy using multiple, complementary observational probes: gravitational weak lensing (WL) to study the growth of structure and geometry,
baryon oscillations to measure the angular diameter distance vs. redshift relation, and Type Ia supernovae to measure the luminosity distance
vs. redshift relation.

In this paper we focus on one of these probes, weak lensing or the so-called cosmic shear, the bending of light by intervening mass
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distribution that causes images of distant galaxies to be distorted (e.g. Bartelmann & Schneider 2001 for a thorough review). These sheared
source galaxies are mostly too weakly distorted for us to measure the effect on single galaxies, but require large surveys containing millions
of galaxies to detect the signal in a statistical way. The conventional method used for measuring cosmic shear is the two-point correlation
function whose Fourier-transform is the shear power spectrum. Cosmic shear correlations have been observed by various groups and used to
constrain cosmological parameters (most recently by Fu et al. 2008 using the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)).

Lensing tomography refers to the use of depth information in the source galaxies to get three-dimensional information about the lensing
mass (Hu 1999; Huterer 2002; Heavens 2003; Takada & Jain 2004; Song & Knox 2004; Takada & White 2004; also see Hoekstra & Jain 2008
for a recent review). By binning source galaxies in photometric redshift bins, the evolution of the lensing power spectrum can be measured as
a function of redshift and angular scale. This greatly improves the sensitivity of lensing to the geometry of the universe as well as the growth
of mass clustering, both of which are sensitive to the nature of dark energy. This method has emerged as one of the most promising to obtain
precise constraints on the nature of dark energy if the systematic errors are well under control (e.g., Albrecht et al. 2006).

Given the resources required for such surveys, it is important to understand the statistical precision of cosmic shear observables and error
propagation in determination of cosmological parameters. Since cosmic shear probes the projected mass distribution, the statistical properties
of the cosmic shear field reflect those of the mass distribution. For the case of the cosmic shear power spectrum, its statistical precision is
determined by the covariance that contains three kinds of contributions: the shot noise contamination due to intrinsic ellipticities, and the
Gaussian and non-Gaussian sample variances caused by the imperfect sampling of the fluctuations (Scoccimarro et al. 1999; Cooray & Hu
2001). The non-Gaussian sample variance arises from the projection of the mass trispectrum weighted with the lensing efficiency kernel. In
fact most of the useful cosmological information contained in the lensing power spectrum lies on small angular scales that are affected by
nonlinear clustering. Therefore non-Gaussian errors can be significant in weak lensing measurements as indicated by a few previous studies
based on ray tracing simulations (White & Hu 2000; Semboloni et al. 2007) and the halo model approach (Cooray & Hu 2001). However,
the importance of non-Gaussian errors is not yet fully understood, especially in terms of the prospects of future surveys for constraining dark
energy. This will be also important in exploring optimal survey design for planned surveys.

Therefore, the aim of this paper is to study the covariances of the lensing power spectrum based on the halo model approach (Cooray
& Sheth 2002 for a thorough review), and to estimate the impact of the non-Gaussian errors on the power spectrum measurement as well
as on the determination of cosmological parameters. We also study how the effect of the non-Gaussian errors varies with survey parameters
(depth and area) and in the presence of systematic errors – photometric redshift errors and shear calibration errors. Our analysis includes new
sources of non-Gaussian errors that inevitably arise for a finite survey area, called the beat-coupling effect. This was pointed out by Rimes
& Hamilton 2005 for the case of the 3D mass power spectrum (also see Hamilton et al. 2006; Sefussati et al. 2006; Neyrinck et al. 2006).
More explicitly, if the scale of interest is embedded in a large-scale (of order the survey size) overdensity or underdensity, then the small
scale fluctuations we want to measure may grown more rapidly or slowly than the ensemble average. This is predicted by perturbation theory
for gravitational clustering. This physical correlations with the unseen large-scale fluctuations may add uncertainties in measuring the power
spectrum at scales of interest.

Very recently, Lee & Pen (2008) claimed that, by studying the angular power spectrum of the SDSS galaxy distribution (i.e. not directly
from lensing data), the effect of the non-Gaussian errors is very significant on angular scales of ∼ 10 arcminutes: they found that the cumu-
lative signal-to-noise ratio integrated over a range of multipoles is two orders of magnitude lower than the case of the Gaussian fluctuations.
Since galaxies are related to the lensing mass fluctuations, does this imply that the non-Gaussian errors significantly degrade the ability of
lensing surveys to constrain cosmology? This is the issue we would like to carefully address in this paper.

The structure of this paper is as follows. We define the lensing power spectrum in the context of lensing tomography in Section 2 and
the lensing covariances including the beat-coupling effect in Section 3. In Section 4 we show the results for the impact of non-Gaussian
covariances on the power spectrum measurement and parameter estimations. In Section 5 we study the covariances for the cosmic shear
correlation functions. Section 6 is devoted to a discussion of our conclusions.

2 PRELIMINARIES

2.1 A CDM Model

We will throughout this paper work in the context of a spatially flat cold dark matter model for structure formation. The expansion history
of the universe is given by the scale factor a(t) in a homogeneous and isotropic universe (e.g., see Dodelson 2003). The expansion rate,
H(t) ≡ ȧ(t)/a(t), is specified once the matter density Ωm0 (the cold dark matter plus the baryons) and dark energy density Ωde0 at present
in units of the critical density 3H2

0/(8πG) are given, where H0 = 100 h km s−1 Mpc−1 is the Hubble parameter at present:

H2(a) = H2
0

[
Ωm0a

−3 + Ωde0e
−3

∫ a

1
da′(1+w(a′))/a′

]
, (1)

where we have employed the normalization a(t0) = 1 today and w(a) specifies the equation of state for dark energy as w(a) ≡
pde(a)/ρde(a). Note that Ωm0 + Ωde0 = 1 and w = −1 corresponds to a cosmological constant. The comoving distance χ(a) from
an observer at a = 1 to a source at a is expressed in terms of the Hubble expansion rate as

χ(a) =

∫ 1

a

da′

H(a′)a′2 . (2)

This gives the distance-redshift relation χ(z) via the relation 1 + z = 1/a.
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Figure 1. The lensing power spectrum expected from our fiducial 2000 deg2 ground-based survey. The bold solid curve shows the prediction for the ΛCDM
model (including non-linear evolution) while the thin solid curve denotes the linear theory prediction. The shaded boxes around the bold solid curve show
the expected measurement errors at each multipole bin assuming Gaussian errors. The vertical and horizontal error bars around the bold solid curve show
non-Gaussian effects. The horizontal error bars display correlations between neighboring multipole bins caused by the non-Gaussian errors, while the vertical
error bars show the increase in errors compared to the Gaussian errors (shaded boxes).

Next we need the redshift growth of density perturbations. In linear theory after matter-radiation equality, all Fourier modes of the mass
density perturbation, δ(x)(≡ δρm(x)/ρ̄m), grow at the same rate, the growth rate (e.g. see Eqn. 10 in Takada 2006 for details). Note that
throughout this paper we ignore effects of finite mass neutrinos and clustered dark energy on the growth rate, causing a scale-dependent
growth rate (e.g., Saito et al. 2008; Takada 2006).

2.2 Tomographic Power Spectra of Cosmic Shear

Gravitational shear can be simply related to the lensing convergence: the weighted mass distribution integrated along the line of sight (e.g.,
see Mellier 1999; Bartelmann & Schneider 2001; Schneider 2006 for thorough reviews). Photometric redshift information on source galaxies
allows us to subdivide galaxies into redshift bins, enabling more cosmological information to be extracted, which is referred to as lensing
tomography (e.g., Hu 1999; Huterer 2002; Takada & Jain 2004). In the context of cosmological gravitational lensing the convergence field
with tomographic information is expressed as a weighted projection of the three-dimensional mass density fluctuation field:

κ(i)(θ) =

∫ χH

0

dχW(i)(χ)δ[χ, χθ], (3)

where θ is the angular position on the sky, χ is the comoving angular diameter distance, and χH is the distance to the Hubble horizon. The
lensing weight function W(i)(χ) in the i-th redshift bin, defined to lie between the comoving distances χi and χi+1, is given by

W(i)(χ) =


W0

n̄i
a−1(χ) χ

∫ χi+1

χi

dχs ns(z)
dz

dχs

χs − χ

χs
, χ ≤ χi+1,

0, χ > χi+1,

(4)

where W0 ≡ (3/2) Ωm0H
2
0 and ns(z) is the redshift selection function of source galaxies, which is normalized as

∫ ∞
0

dz ns(z) = n̄g with
n̄g being the average number density of galaxies per unit steradian (see around Eqn. [20] in § 4.1 for our definition of the source redshift
distribution). Also n̄i is the average number density of sub-sample galaxies in the i-th redshift bin defined as

n̄i =

∫ χi+1

χi

dχs ns(z)
dz

dχs
. (5)
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The cosmic shear fields are measurable only in a statistical sense. The most conventional methods used in the literature are the shear
two-point correlation function. The Fourier transformed counterpart is the shear power spectrum. For lensing tomography of nz redshift bins,
using the flat-sky and Limber’s approximations (Limber 1954), there are nz(nz + 1)/2 spectra available:

P(ij)(l) =

∫ χH

0

dχW(i)(χ)W(j)(χ) χ−2Pδ

(
k =

l

χ
; χ

)
, (6)

where Pδ(k) is the three-dimensional mass power spectrum. Note that hereafter the quantities with subscript “δ” denote those of the mass
density fluctuations. For l >∼ 100 the major contribution to P(ij)(l) comes from non-linear clustering (e.g., see Fig. 2 in Takada & Jain 2004).
We employ the fitting formula for the non-linear Pδ(k) proposed in Smith et al. (2003), assuming that it can be applied to dark energy
cosmologies by replacing the growth rate used in the formula with that for a given dark energy model. We note in passing that the issue of
accurate power spectra for general dark energy cosmologies still needs to be addressed carefully (Huterer & Takada 2005; also see Ma 2007
for the related discussion).

As can be found form Eqn. (6), the lensing power spectra contain cosmological information via both the lensing efficiency kernel and
the mass clustering information contained in Pδ , e.g. which almost equally contribute to the final sensitivity to dark energy parameters. On
the other hand, the non-Gaussian errors of the lensing fields arise from the non-Gaussianity of the nonlinear mass clustering in structure
formation. Thus, even if the underlying mass distribution is highly non-Gaussian, the cosmological information the lensing carries would be
to some extent preserved via the lensing efficiency kernel, which is one of notable differences from other methods such as the galaxy power
spectrum.

In reality, the observed power spectrum is contaminated by the intrinsic ellipticity noise. Assuming that the intrinsic ellipticity distribu-
tion is uncorrelated between different galaxies, the observed power spectrum between redshift bins i and j can be expressed as

P obs
(ij)(l) = P(ij)(l) + δK

ij
σ2

ε

n̄(i)

(7)

where σε is the rms intrinsic ellipticities per component. Note that the shot noise contamination could be positive and negative due to the
statistical nature of shear, in contrast to the galaxy power spectrum where the shot noise contamination is always positive definite due to the
nature of point statistics. It should be also noted that the Kronecker delta symbol δK

ij accounts for the fact that the cross-spectra with i 6= j
are not contaminated by the shot noise. Therefore the shot noise contamination needs not be subtracted from the estimated cross spectra that
would reduce residual uncertainties in practice.

3 COVARIANCES OF THE COSMIC SHEAR POWER SPECTRA

3.1 Definition

In reality the lensing power spectrum has to be estimated from the Fourier or spherical harmonic coefficients of the observed lensing fields
constructed for a finite survey. In this paper we assume the flat-sky approximation and thus use Fourier wavenumbers l, which are equivalent
to spherical harmonic multipoles l in the limit l À 1 (Hu 2000). Because the survey is finite, an infinite number of Fourier modes are
not available, and rather the discrete Fourier decomposition has to be constructed in terms of the fundamental mode that is limited by the
survey size as will be in detail discussed below. We assume a homogeneous survey geometry for simplicity and do not consider any complex
boundary and/or masking effects. For this case, as shown in Appendix B of Takada & Bridle (2007), the lensing power spectrum of the a-th
multipole bin, la, may be estimated as

P est
(ij)(la) =

1

Ωs

∫
|l′|∈la

d2l′

A(la)
κ̃

(i)l′ κ̃(j)−l′ , (8)

where Ωs is the survey area, the integration range is confined to the Fourier modes lying in the annulus of a given width, la −∆la/2 ≤ l′ ≤
la + ∆la/2 and A(la) denotes the integration area in the Fourier space approximately given by A(la) ≡

∫
|l′|∈la

d2l′ ≈ 2πla∆la for the
case of la À ∆la. Throughout this paper we use the subscripts a, b to denote the multipole bins, while we use the subscripts i, j or i′, j′ to
denote the redshift bins.

Once an estimator of the lensing power spectrum is defined, it is straightforward to compute the covariance (Scoccimarro et al 1999;
Cooray & Hu 2001; Takada & Bridle 2007). The covariance of cosmic shear power spectra describes statistical uncertainties of the power
spectrum measurement for a given survey as well as how two spectra at different multipole and/or redshift bins are correlated with each other.
Extending the formulation developed in Scoccimarro et al. (1999) to the tomography case (Takada & Bridle 2007), the covariance matrix of
the lensing power spectra is given by

[C ]AB ≡ 〈P est
(ij)(la)P est

(i′j′)(lb)〉 − P(ij)(la)P(i′j′)(lb) ≡ CovGaussian + CovNG

=
δK

ab

(2la + 1)∆lfsky

[
P obs

(ii′)(la)P obs
(jj′)(la) + P obs

(ij′)(la)P obs
(ji′)(la)

]
+

1

4πfsky

∫
|l|∈la

d2l

A(la)

∫
|l′|∈lb

d2l′

A(lb)
T(iji′j′)(l,−l, l′,−l′), (9)

where fsky is the sky coverage (fsky = Ωs/4π). We have shown two contributions to the covariance: the terms in the square brackets
constitute the Gaussian contribution, and last term is the non-Gaussian term which is given by the lensing trispectrum T defined as

〈κ(i)(l1)κ(j)(l2)κ(i′)(l3)κ(j′)(l4)〉 ≡ (2π)2δD(l1 + l2 + l3 + l4)T(iji′j′)(l1, l2, l3, l4). (10)
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In the Limber approximation, T is a simple projection of the 3D mass trispectrum Tδ given as

T(iji′j′)(l, l
′, l′′, l′′′) =

∫ χH

0

dχ W(i)(χ)W(j)(χ)W(i′)(χ)W(j′)(χ)χ−6Tδ(k, k′, k′′, k′′′; χ), (11)

with k = l/χ and so on. Finally, the indices A, B in the covariance matrix of Eqn. (9) run over both multipole and redshift bins. For
tomography with nz redshift bins, there are nz(nz + 1)/2 different spectra available at each multipole. Hence, with nl multipole bins, the
indices A, B take values A, B = 1, 2, . . . , nl × nz(nz + 1)/2. For example, for nz = 3 and nl = 100, the covariance matrix C has
dimension 600 × 600.

The first term of the covariance matrix (second line on the r.h.s. of Eqn. [9]) represents the Gaussian error contribution ensuring that the
two power spectra of different multipoles are uncorrelated via δK

ab, while the second term gives the non-Gaussian errors includes correlation
between power spectra at different l’s. The two terms both scale with sky coverage as ∝ 1/fsky (but see below for an additional dependence
in T ). Note that the intrinsic ellipticity noise contributes only to the Gaussian errors via P obs

(i) , as long as intrinsic alignments of galaxy
ellipticities are negligible. It should be also noted that the non-Gaussian term does not depend on the multipole bin width ∆l (because∫
d2l/A(l) ≈ 1), so increasing ∆l only reduces the Gaussian contribution. However, the signal-to-noise ratio and parameter forecasts we

will show below do not depend on the multipole bin width if the bin width is not very coarse (also see Scoccimarro et al. 1999 for the related
discussion for the case of 3D mass power spectrum).

Figure 1 gives a quick summary of the impact of non-Gaussian errors on the shear power spectrum. The parameters for the cosmo-
logical model and lensing survey are described in § 4.1. The shaded boxes around the solid curve show the expected Gaussian errors on
the power spectrum for the assumed survey. The shot noise contribution to the Gaussian errors becomes greater than the sample variance at
wavenumbers l greater than the intersection of the power spectrum points with the shot noise line (dashed). The horizontal and vertical error
bars demonstrate the impact of the non-Gaussian errors on the power spectrum measurements at each multipole bins. There are two effects.
First, the neighboring multipole bins are not independent: the width of each horizontal error bar represents the range of multipoles where the
cross-correlation coefficient of power spectra (around the central multipole in that bin) is greater than 0.1 (see § 4.4 for the details). Second,
the vertical error bars show the increase in the power spectrum measurement uncertainties due to non-Gaussian errors. These are significant
over the range 100 <∼ l <∼ 103, where (a) nonlinear clustering is important, and (b) sample variance dominates over shot noise.

3.2 Effect of Finite Survey Area: Beat-Coupling Contribution

As pointed out in Hamilton, Rimes & Scoccimarro (2006; also see Rimes & Hamilton 2005 and Sefussati et al. 2006), there is an additional
contribution to the covariance arising from the imperfect sampling of the Fourier modes due to a finite survey area, which we will often refer
as to the beat-coupling contamination. For a finite survey of size L (we will hereafter assume a survey area of Ωs = L2 for simplicity), the
uncertainty principle tells us that we cannot measure Fourier modes to a better accuracy than ε = 2π/L: two modes that differ by ε, l ± ε,
cannot be distinguished due to the limited resolution6. All statistics we measure contains these uncertainties. Therefore we need to allow the
trispectrum in the covariance (9) to have the uncertainties given as

T (l + ε,−l + ε′, l′ + ε′′,−l′ + ε′′′) (12)

where all the wavevectors ε with/without primes denote the fundamental modes with magnitude |ε| ' 2π/L but can have different ori-
entations. Note that, since the power spectrum depends only on the length of wavenumber k in a statistically homogeneous and isotropic
universe, an estimation of the power spectrum of wavenumber l is not affected by the uncertainty principle as long as it is smoothly varying
and l À ε:

P (|l + ε|) ' P (l). (13)

Hence, the Gaussian error term in the covariance (9) is not affected by the beat-coupling contamination.
For the non-Gaussian term, there is a non-vanishing contribution due the beat-coupling effect. Even for l À ε, nonlinear clustering

predicts non-vanishing correlations between the modes with wavevectors l and ε. Surprisingly, this effect yields additional contribution to
the covariance that are not negligible, as we show below (and as shown by Rimes & Hamilton 2005 for the 3D power spectrum).

3.3 Halo Model Approach for the Covariance

To compute the lensing power spectrum covariance using Eqn. (9), we need to model the mass trispectrum. The model predictions need to
describe the non-linear regime of clustering because most of the useful cosmological information in lensing is contained on small angular
scales. In this paper, we employ the dark matter halo approach (Seljak 2000; Peacock & Smith 2000; Ma & Fry 2000; Scoccimarro et al.
2001; also see Cooray & Sheth 2002 for a review), where the n-point correlations of the mass distribution are modeled in terms of two
separate contributions: correlation of dark matter particles within one halo, and correlations of particles in different halos. In previous work
we have found that, up to the 4-point correlation functions, the halo model gives fairly accurate predictions to match N -body simulation
results at ∼ 10− 30% level (Takada & Jain 2002, 2003a,b). For our purpose, the halo model prescription is reasonably adequate; we discuss
possible improvements below.

6 Note that ε for the fundamental mode is not to be confused with the intrinsic ellipticity, ε!
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Based on the halo model approach the mass trispectrum is given by

Tδ(k, k′, k′′, k′′′) = TPT
δ (k, k′, k′′, k′′′) + T 1h

δ (k, k′, k′′, k′′′), (14)

where T 1h
δ denotes the 1-halo term and TPT

δ denotes the perturbation theory prediction (e.g., Makino et al. 1992; Jain & Bertschinger 1994;
also see Bernardeau et al. 2002 for a review). The details of our halo model implementation are given in Takada & Jain (2003a,b). We
will calculate the two contributions to Tδ given above, and thus estimate the non-Gaussian covariance as the sum of two terms: CovNG =
CovNG,PT + CovNG,1h.

In Eqn. (14) we have dropped the 2- and 3-halo term contributions. We have thus assumed that the full trispectrum is well approximated
by the sum of the 1-halo term and the perturbation theory prediction. Our rationale for this approximation is: (1) The 1-halo term is dominant
in the highly non-linear regime, while in the linear regime the Gaussian assumption for the errors is sufficient. (2) For the different halo
terms (2-halo term etc.), there are uncertainties in the model, such as the halo exclusion effect (Takada & Jain 2003a; Fosalba et al. 2005).
The perturbation theory prediction is an approximate replacement for these multiple-halo terms. Takada & Jain (2003b) showed for example
that the the lensing three-point functions computed in this manner are in better agreement with the simulations than the standard halo model
predictions (1-, 2- plus 3-halo terms).

Let us consider the contribution of the perturbation theory trispectrum to the covariance. As derived in Appendix A, the full PT mass
trispectrum (including the fundamental mode uncertainty) can be computed as

TPT
δ (ka + ε′

k,−ka + ε′′
k , kb + ε̃′′′

k ,−kb + ε̃′′′′
k ) ≈ TPT

δ (ka,−ka, kb,−kb)

+8P L
δ (ka)P L

δ (kb)P
L
δ (εk)F2(εk,−ka) [F2(εk, kb) + F2(εk,−kb)] , (15)

where εk with prime superscripts denote the fundamental modes for a given survey and εk ≡ ε′
k + ε′′

k . The function F2 is the Fourier-
space kernel of the 2nd-order density perturbation defined by Eqn. (A3), P L

δ (k) is the linear-order mass power spectrum and TPT
δ is the

tree-level PT mass trispectrum. In perturbation theory, TPT
δ ∼ O([P L

δ (k)]3) where k ∼ ka, kb, while the beat-coupling term is of order
P L

δ (k)2P L
δ (εk). So the latter is greater than the former if P L

δ (εk) > P L
δ (k), which holds for modes of interest for the CDM power spectrum

on wavenumber larger than the turnover scale, which are accessible from current and upcoming surveys.
In the “translinear” regime where the beat-coupling contribution is most significant in the covariance, it roughly gives Cov ∼

P (ε)P (k)P (k′) because the kernel F2 ∼ O(1) or equivalently the quantity Cov/P (k)P (k′) ∼ P (ε) = constant. This is consistent
with the plateau seen for k >∼ 0.2 in Fig. 2 in Hamilton et al. (2006). In this regime, the the signal-to-noise ratio for the power spectrum
amplitude (defined below in § 4.3) ceases to grow with increasing wavenumber (also see Rimes & Hamilton 2005 and Neyrinck et al. 2006
for simulation- and halo model based studies, and Lee & Pen 2008 measurements from the SDSS galaxy power spectrum). In the next section
we will show the results for lensing, which are modified by line-of-sight projections.

Substituting Eqn. (15) into Eqn. (9) gives the contribution to the covariance. The angle integration for the beat-coupling terms, combined
with the Limber’s approximation, is given by∮

dθk
2π

F2(εk, k) =
6

7
, (16)

so that that the PT trispectrum contribution to the non-Gaussian errors of the lensing covariance can be expressed as

Cov[P(ij)(la), P(i′j′)(lb)]
NG,PT ≈ 1

4πfsky

[∫ 2π

0

dθ

2π
TPT

(iji′j′)(la, lb, cos θ)

+16
(

6

7

)2
∫

dχ W(i)W(j)W(i′)W(j′)χ
−6P L

δ

(
ka =

la
χ

)
P L

δ

(
kb =

lb
χ

)
P L

δ

(
εk =

2π

Lχ

)]
, (17)

where

TPT
(iji′j′)(la, lb, cos θ) =

∫
dχ W(i)W(j)W(i′)W(j′)χ

−6TPT
δ (ka,−ka, kb,−kb; cos θ) , (18)

and ka · kb ≡ kakb cos θ. Note that the covariance above depends on the survey size through the prefactor fsky = L2/4π = Ωs/4π and the
additional dependence of the beat-coupling term on εk.

Next let us consider the 1-halo term contribution, which dominates at small angular scales. Although the trispectrum generally depends
on four wavevectors, the 1-halo term depends only on the length of each vector since we assume spherical halos. This allows us to make the
approximation, even in the presence of the beat-coupling contamination, as

Cov[P(ij)(la), P(i′j′)(lb)]
NG,1h =

1

4πfsky

∫
|l|∈la

d2l

A(la)

∫
|l′|∈lb

d2l′

A(lb)
T 1h

(iji′j′)(|l + ε|, | − l + ε′|, |l′ + ε′′|, | − l′ + ε′′′|)

' 1

4πfsky

∫
|l|∈la

d2l

A(la)

∫
|l′|∈lb

d2l′

A(lb)
T 1h

(iji′j′)(l, l, l
′, l′)

=
1

4πfsky
T 1h

(iji′j′)(la, la, lb, lb), (19)

where we have assumed that the multipoles of interest, where the non-Gaussian errors are relevant, are greater than the fundamental mode of
a given survey: la, lb À ε = 2π/L, and on the third equality of the r.h.s. we have assume the trispectrum varies smoothly within bins of l.
Thus the 1-halo term is not affected by the beat-coupling contamination.

c© 0000 RAS, MNRAS 000, 1–21



Non-Gaussian Errors in Weak Lensing Surveys 7

For a given model, we compute the lensing covariance as the sum of the Gaussian contribution, the first term on the r.h.s. of Eqn. (9),
and the non-Gaussian contributions, given by CovNG,PT in Eqn. (17) and CovNG,1h in Eqn. (19). As one demonstration of our halo model
approach we compare the model predictions for the covariances of angular galaxy power spectrum with the SDSS measurement result of Lee
& Pen (2008) in Appendix B, where an encouraging agreement is found.

4 RESULTS

4.1 Model Parameters

To compute the lensing observables, we need to specify a cosmological model and survey parameters. We will forecast below how the non-
Gaussian errors degrade parameter determination through measurements of power spectra as a function of survey parameters that are chosen
to represent future weak lensing surveys (from both ground and space).

We include all the key parameters that may affect lensing observables within the CDM and dark energy cosmological framework. Our
fiducial model is based on the WMAP 5-year results (Komatsu et al. 2008): the density parameters for dark energy, CDM and baryon are
Ωde(= 0.74), Ωcdmh2(= 0.11), and Ωbh2(= 0.0227) (note that we assume a flat universe); the primordial power spectrum parameters
are the spectral tilt, ns(= 0.963), the running index, αs(= 0), and the normalization parameter of primordial curvature perturbations,
As ≡ δ2

ζ(= 2.41× 10−9) (the values in the parentheses denote the fiducial model). We employ the transfer function of matter perturbations,
T (k), with baryon oscillations smoothed out (Eisenstein & Hu 1999), and adopt the primordial power spectrum given in Appendix C in
Takada et al. (2006), where the primordial spectrum amplitude is normalized at k0 = 0.002 Mpc−1 following the convention in Komatsu et
al. (2008). Note that the present-day rms mass fluctuations enclosed within spheres of radius 8h−1Mpc, σ8 ' 0.80 for our fiducial model.
The dark energy equation of state, which governs redshift evolution of the energy density of dark energy together with Ωde, is parametrized
as w(a) = w0 + wa(1 − a), with fiducial values w0 = −1 and wa = 0.

We model the redshift distribution of galaxies with a function specified by one parameter z0 (which depends on survey depth):

ns(z; z0) = n0 × 4z2 exp
[
− z

z0

]
, (20)

where the normalization is fixed by setting n0 = 1.18 × 109 per unit steradian corresponding to n0 ' 100 arcmin−2. The redshift
dependence is same as that assumed in Takada & Jain (2004) or Huterer et al. (2006), but the normalization is fixed. This simple form has
nice properties as follows. The mean redshift of source galaxies, zm, is given by zm ≡

∫ ∞
0

dzzns(z; z0)/
∫ ∞
0

dzns(z; z0) = 3z0. Thus
once the mean redshift is specified, the average number density of galaxies (or equivalently the survey depth) is also specified: e.g., for
zm = 0.7, 1.0, 1.2 and 1.5 the corresponding number densities are n̄g ≡

∫ ∞
0

dz n(z) ' 10, 30, 51 and 100 arcmin−2, respectively. Hence
the source distribution above can roughly represent future planned lensing surveys, DES, Subaru Weak Lensing Survey, LSST, and SNAP,
simply by adjusting the parameter z0 (e.g. Hoekstra & Jain 2008 for a review).

The fiducial survey we will assume in the following is a ground-based weak lensing survey that is given by survey area 2000 deg2, mean
source redshift zm = 1 corresponding to n̄g ' 30 arcmin−2, and rms intrinsic ellipticity σε = 0.22. Our fiducial survey roughly resembles
the Subaru Weak Lensing Survey (Miyazaki et al. 2006).

4.2 Correlation Coefficients of the Power Spectrum Covariance

The correlation coefficients of the power spectrum covariances quantify the relative strengths of the off-diagonal components to the diagonal
components; e.g., the correlation strengths between band powers at different multipole bins for the case of no tomography. The correlation
coefficient is defined from Eqn. (9) as

rAB ≡ CAB√
CAACBB

. (21)

The coefficients are normalized so that r = 1 for the diagonal components with A = B. For the off-diagonal components with A 6= B,
rAB → 1 implies strong correlation between the power spectra of A- and B-th bins, while rAB = 0 corresponds to no correlation. As
shown in Eqn. (9), the relative importance of the non-Gaussian errors in the power spectrum covariance depends on the bin width of angular
multipoles assumed. For larger bin width, the non-Gaussian error contributions get suppressed relative to the Gaussian errors.

Figure 2 shows the correlation coefficients for the fiducial ground-based survey above and the case of no tomography. One can see that
the correlation coefficients are well below 0.5 for low multipoles, but increase as one goes to smaller angular scales, because the lensing
signal is more affected by non-linear clustering. This result can be compared to the coefficients of the 3D mass power spectrum, where strong
correlations, r >∼ 0.5, can be seen even in the weakly non-linear regime (Scoccimarro et al. 1999; Takahashi et al. in prep.). The weaker
correlations in the lensing power spectrum are due to the line-of-sight projections of independent lensing structures at different redshifts,
making the weak lensing fields closer to the Gaussian limit.

Although the covariance matrix is symmetric, we have chosen to show different cases in the upper-left and lower-right elements: intrinsic
ellipticity contributions to the covariance are included only in the lower-right. Because the shot noise only contributes to the Gaussian terms
(diagonal elements) in the covariance matrix (the denominator of Eqn. [21] for rAB), it lowers r. As one considers smaller angular scales
where the multipoles lie well in the shot-noise dominated regime, the power spectrum becomes less affected by the non-Gaussian errors for
a given survey. Therefore, a survey with smaller number density of source galaxies is relatively less affected by the non-Gaussian errors.
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8 M. Takada & B. Jain

Figure 2. Power spectrum cross-correlation coefficients rAB (see Eqn. [21]) for our fiducial ground-based lensing survey. We consider a single redshift bin
(no tomography case), so the indices (A, B) run over 30 logarithmic bins in multipole space over the range 50 ≤ l ≤ 3000. The off-diagonal components
arise purely from the non-Gaussian errors as shown in Eqn. (9). The upper-left and lower-right off-diagonal components are the results without and with shot
noise contamination due to intrinsic ellipticities, respectively. One can see significant correlations at higher l. However, shot noise suppresses the relative
importance of non-Gaussian correlations.

We have also checked that our model predictions fairly well reproduce the simulation results for the correlation coefficients shown in
Table 2 in Cooray & Hu (2001; also see White & Hu 2000) for multipoles 200 <∼ l <∼ 2000 (when we adjusted our model parameters and
multipole bin widths to match those used by these authors).

4.3 Signal-to-Noise for the Lensing Power Spectrum

A useful way to quantify the impact of the non-Gaussian errors is to study the expected signal-to-noise ratio (S/N ) for measuring the lensing
power spectrum from a given survey, which is independent of the multipole bin widths assumed, as long as the power spectrum does not vary
rapidly within the bin widths. The S/N may be defined, using the covariance from Eqn. (9), as(

S

N

)2

=
∑
A,B

P(ij)(la)
[
C−1

]
AB

P(i′j′)(lb), (22)

where C−1 is the inverse of the covariance matrix and the summation indices A, B correspond to the dimension of the covariance matrix
and run over multipole bins and redshift bins. Note that the power spectra in the above equation represent the lensing signal and do not
include the shot noise. The S/N defined above is equivalent to the Fisher information content studied in Tegmark et al. (1997), Rimes &
Hamilton (2005) and Lee & Pen (2008). It describes the accuracy in measuring the amplitude of the lensing power spectrum when the shape
is completely known.

Figure 3 shows the expected S/N as a function of the maximum multipole lmax, where the power spectrum information over 50 ≤
l ≤ lmax is included in the S/N calculation. The solid curve shows the S/N obtained from our fiducial model prediction for the lensing
covariance developed in § 3. It can be compared with the result without the non-Gaussian sample variances, i.e. for the Gaussian error case.
As expected, the S/N increases with increasing lmax due to the gain in multipole modes probed. However, the S/N ceases to increase
at lmax

>∼ 4000, i.e. little cosmological information is available from these high multipoles, because the shot-noise contamination becomes
dominant in the covariances. The impact of the non-Gaussian errors on the S/N also changes with lmax in a characteristic way. For small lmax

such as lmax
<∼ 500, the effect is small, i.e. the S/N is close to the Gaussian case. For larger lmax where the lensing fields are more affected

by the nonlinear regime of mass clustering, the S/N decreases by up to a factor of 2 as explicitly shown in the lower panel. The dotted curve
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Figure 3. The expected cumulative signal-to-noise ratio (S/N ) for the power spectrum is shown as a function of maximum multipole lmax, where the
power spectrum information over 50 ≤ l ≤ lmax is included. The dashed and bold-solid curves show the results without and with the non-Gaussian error
contribution to the covariance, respectively. The dotted curve shows the result when the beat-coupling contribution is ignored, while the dot-dashed curve is
the result when the nonlinear beat-coupling effect is assumed (see text for the details). The survey parameters are as in Figure 1. The lower panel shows the
percentage difference relative to the S/N with Gaussian errors.

shows the result obtained when the beat-coupling effect on the covariance due to a finite survey area is ignored. This contribution appears to
be non-negligible over a range of lmax, from a few hundreds to ∼ 1000. However, in contrast to the case of 3D mass power spectrum (Rime
& Hamilton 2005; Neyrinck et al. 2006), a clear plateau shape in the S/N curves on scales before the shot noise dominated regime cannot
be seen. Hence the line-of-sight projection appears to weaken the impact of non-Gaussian errors; lensing at a given angular scale arises from
mass fluctuations over a wide range of length scales that may span linear to nonlinear regimes.

Since the magnitude of the beat-coupling effect is not yet well tested from simulations, we also estimate the “worst-case” impact by
replacing the linear mass power spectra appearing in Eqn. (17) with the nonlinear power spectra. This case, abbreviated NLBC for nonlinear
beat coupling, is shown by the dot-dashed curve in Figure 3. Physically this may arise if the mass distribution on highly nonlinear scales,
such as the mass distribution within a dark matter halo, is correlated with the mass fluctuations on very large length scales (such correlations
are in fact likely to be very weak). The S/N in this case saturates or increases very slowly for lmax

>∼ 300, resulting in a substantial decrease
in the S/N (up to a factor of 5).

In Appendix B we compare our halo model predictions with the measurements by Lee & Pen (2008) of the S/N for the angular power
spectrum of SDSS galaxies. The standard halo model developed in § 3 is in reasonable agreement with the measurements, consistent with
the 10-30% level agreement we found previously between the halo model and simulations (Takada & Jain 2002,2003b). Even so, we will
continue to use the NLBC model to estimate the worst case impact of the non-Gaussian errors. Further detailed studies of the power spectrum
covariances for 3D mass and 2D lensing are in preparation (Takahashi et al. and Sato et al. in preparation).

We also estimate the contribution made by the PT trispectrum to the covariance: in Figure 3, the thin-solid curve in the lower panel
shows the result when its contribution is ignored. The difference between the bold- and thin-solid curves is barely visible (at lmax ∼ 100),
therefore the PT trispectrum contribution is very small.

The solid curve in Figure 4 shows how the S/N changes with survey depth, i.e. the mean source redshift zm ≡ 〈zs〉. Given a mean
source redshift the average number density of source galaxies is specified by Eqn. (20), which in turn determines the shot noise contribution
to the covariances. The S/N is greater for a deeper survey, and increases by a factor of 5 between zm = 0.6 and zm = 1.5, because the
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10 M. Takada & B. Jain

Figure 4. The solid curve shows the dependence of S/N on mean source redshift for the source galaxy distribution given by Eqn. (20), assuming non-Gaussian
errors. Power spectrum information over 50 ≤ l ≤ 3000 is included, and the survey parameters are as in Figure 1. The x-axis label above the panel shows the
corresponding number density of source galaxies. Deeper surveys are more affected by non-Gaussian errors, due to the reduced contribution of shot noise. The
dashed curve shows the result for 4 z-bin redshift tomography. The lower panel shows the percentage degradation in S/N compared to the Gaussian errors
(with the same number of redshift bins in each case). Adding redshift information not only increases the S/N , but also reduces the impact of the non-Gaussian
errors.

lensing signal is higher. However, the impact of non-Gaussian errors on the S/N also becomes more significant for a deeper survey. These
results are insensitive to other choices of lmax such as lmax = 1000 or 104, as shown in Figure C1.

The dashed curve in Figure 4 demonstrates that adding tomographic redshift information into the lensing power spectrum measurement
not only increases the total S/N ’s (also see Fig. 5 in Takada & Jain 2004), but also reduces the impact of the non-Gaussian errors. Compared
to no tomography case, adding four redshift bins reduces the impact of non-Gaussian errors on the S/N , e.g. to ∼ 35% from ∼ 50% when
lmax = 3000. Note that four redshift bin tomography is our fiducial survey design for our forecasts of parameter determination shown below.

Finally, in Appendix C we show how the S/N depends on the shot noise and the σ8 assumed.

4.4 Principal Component Analysis of Lensing Covariance

A principal component analysis of the power spectrum covariance is useful to quantify how the spectra of different multipoles are correlated
and how many independent modes exist (see also Scoccimarro et al. 1999 for a similar study for the 3D mass power spectrum). Since the
covariance matrix is symmetric by definition, it can always be decomposed as

Cab =
∑
m

Sam(λm)2Sbm, (23)

where λm is the m-th eigenvalue or principal component, S = ST,
∑

c
SacSbc = δab and S is normalized so as to satisfy

∑
b
(Sab)

2 = 1.
We consider here no tomography case for simplicity, therefore the dimension of the covariance is given by number of multipole bins.
The matrix Sam is considered as the projection matrix as it describes how the power in the a-th multipole bin is projected onto the m-
th eigenmode. Using this representation, the inverse of the covariance matrix is given by [C−1]ab =

∑
m

Sam(1/λm)2Sbm. Hence, the
signal-to-noise given by Eqn. (22) can be rewritten as
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Non-Gaussian Errors in Weak Lensing Surveys 11

Figure 5. Left panel: The projection matrix of Sam for the principal component decomposition of the power spectrum covariance is plotted as a function of
multipole bins la. We employed 50 bins for the multipole binning, i.e. the dimension of Sam is 50 × 50, and we assumed the survey parameters same as in
Figure 1. The absolute value of |Sam| for the eight cases of m = 2, 10, 15, 20, 25, 30, 35, 40, 49 are shown. The projection matrix around l ∼ 103 gets
contributions from a wide range of neighboring multipoles. Right panel: The differential contribution to the (S/N)2 at each multipole bin. The dashed and
solid curves show the results with the Gaussian and non-Gaussian errors, respectively. The power spectra with l ∼ 2000 contribute most to the S/N , but are
also strongly affected by the non-Gaussian errors. For a survey of 2000 degree2, S/N >∼ 3 can be expected in each multipole bins for 100 <∼ l <∼ 2 × 104.
The d(S/N)2 plotted here scales with sky coverage roughly as d(S/N)2 ∝ fsky.

(
S

N

)2

=
∑
m

{
1

λm

∑
a

SP
amPa

}2

. (24)

The equation above expresses the S/N as a sum of contributions from independent eigenmodes.
The projection matrix elements, |Sam|, for selected values of m between 2 and 50 are shown against the multipole bins in the left panel

of Figure 5. Note that elements of Sam can be both positive and negative. For the m-th element, |Sam| peaks at a = m. The projection
matrix Sam quantifies the correlation between band powers of neighboring bins. The horizontal error bars in Figure 1 are defined as the range
of |Sam| ≥ 0.1 around each multipole bins. The projection matrices for the modes around l ∼ 103 are found to have broader tails, reflecting
stronger correlations between neighboring multipole bins due to the non-Gaussian errors. For the modes of l ∼ 100 or l >∼ 4000, Sam has a
steep peak at a = m, i.e. it is close to the diagonal matrix. At the high l end this is due to the dominance of shot noise over non-Gaussian
terms in the covariance. Using this approach, a more sophisticated decorrelating scheme of the band powers may be developed extending the
method for the galaxy power spectrum measurement (e.g., Tegmark et al. 2002) to the lensing case.

The right panel of Figure 5 shows the differential contributions of each principal component to the total S/N for the fiducial survey. Note
that this plot is shown as a function of the multipole bins rather than the principal components, assuming that the m-th principal component
arise mainly from the m-th multipole bin as shown in the left panel. The solid and dashed curves display the results when the non-Gaussian
errors are included or ignored, respectively. The power spectrum at l ∼ 3000 is most accurately measurable for both cases. More generally,
a detection of the lensing signal at more than 3σ can be expected over the wide range 100 <∼ l <∼ 104 even in the presence of non-Gaussian
errors. It should be noted that (S/N)2 ∝ fsky (for a fixed n̄g) to good approximation, therefore the result shown here can be scaled to a
survey of arbitrary area. Non-Gaussian errors degrade the differential S/N by up to a factor of 2. The vertical error bars at each multipole
bin in Figure 1 are computed using: σ(P (lm))/P (lm) = ±[d(S/N)2m]−1/2.

We may summarize the results so far: non-Gaussian errors do affect the lensing power spectrum measurement, and therefore must be
included in measurement analyses for ongoing and planned future surveys (see also Semboloni et al. 2007). The impact of non-Gaussian
errors depends on various ingredients such as survey parameters, range of multipoles and cosmological parameters (especially σ8), and these
dependencies need to be carefully taken into account if a calibration of the covariance is done based on simulations which may not span the
full range of parameters.

4.5 The Impact of Non-Gaussian Errors on Parameter Estimations

In this section we address how the non-Gaussian errors degrade the ability of a given weak lensing survey to constrain cosmological param-
eters, especially the parameters of dark energy.

To do this, we use the Fisher matrix formalism to estimate accuracies of estimating parameters given the power spectrum measurement.
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12 M. Takada & B. Jain

Cosmological Parameters: Lensing+CMB

Gaussian Non-Gauss. Non-Gauss. w/o BC Non-Gauss. w NLBC

σ(Ωde) 0.018 0.019(6%) 0.019(6) 0.021(17)
σ(ln As) 0.024 0.025(4%) 0.024(0) 0.024(0)
σ(w0) 0.21 0.22(5%) 0.22(5) 0.24(14)
σ(wa) 0.61 0.63(3%) 0.62(2) 0.67(10)
σ(ns) 0.012 0.012(0%) 0.012(0) 0.012(0)
σ(αs) 0.0033 0.0034(3%) 0.0033(0) 0.0034(3)

σ(wpivot) 0.056 0.061(9%) 0.058(4) 0.065(16)

Table 1. Summary of parameter constraints for lensing tomography with 4 redshift bins, combined with Planck CMB priors. Column 2: assuming Gaussian
errors; Column 3: including the non-Gaussian errors; Columns 4 and 5: the errors for the non-Gaussian errors, but ignoring the beat-coupling contribution,
and assuming the non-linear beat-coupling (NLBC) contribution to the non-Gaussian errors (see text for the details), respectively. The numbers in round
bracket show degradation in the errors compared to the Gaussian case. All errors are 68% confidence-level errors and include marginalization over other
parameters. Note that we include power spectrum information over the multipole range 50 ≤ l ≤ 3000 and assuming fiducial survey parameters as in
Figure 1: Ωsurvey = 2000 degree2, n̄g ' 30 arcmin−2, 〈zs〉 ' 1, and σε = 0.22.

The parameter forecasts we obtain depend on the fiducial model and are also sensitive to the choice of free parameters. Our fiducial parameters
of the cosmological model and lensing survey are given in § 4.1.

Using the covariance matrix (9), the Fisher matrix is given by

F WL
αβ =

∑
A,B

∂P(ij)(la)

∂pα

[
C−1

]
AB

∂P(i′j′)(lb)

∂pβ
, (25)

where pα (α = 1, 2, . . .) denotes a set of parameters. The marginalized 1σ error on the α-th parameter pα is given by σ2(pα) = (F −1)αα,
where F −1 is the inverse of the Fisher matrix. It is sometimes useful to consider projected constraints in a two-parameter subspace to see
how the two parameters are correlated, and this can be studied following the method described in § 4.1 in Takada & Jain (2004).

Weak lensing alone cannot constrain all the cosmological parameters simultaneously due to parameter degeneracies. However, the
parameter degeneracies will be efficiently broken by combining the weak lensing constraints with constraints from the CMB temperature
and polarization anisotropies (e.g. Takada & Jain 2004). When computing the Fisher matrix for the CMB, we employ 9 parameters in total:
the Thomson scattering optical depth to the last scattering surface, τ(= 0.087) plus the 8 parameters described in § 4.1. We use the publicly-
available CAMB code (Lewis et al. 2000), based on CMBFAST (Seljak & Zaldarriaga 1996), to compute the angular power spectra of
temperature anisotropy, CTT

l , E-mode polarization, CEE
l , and their cross correlation, CTE

l . Note that we ignore the B-mode spectra arising
from the primordial gravitational waves. Specifically we consider the noise per pixel and the angular resolution of the Planck experiment
that were assumed in Eisenstein et al. (1998). In this calculation we use the range of multipoles 10 ≤ l ≤ 1500 for CTT

l and CTE
l and use

2 ≤ l ≤ 1500 for CEE
l , respectively. Therefore we do not include the ISW effect on the temperature spectra at low multipoles l <∼ 10 which

might be affected by a possible contribution of clustered dark energy. To be conservative, however, we do not include the CMB information
on dark energy equation of state parameters, w0 and wa (also see Takada & Bridle 2007). We first compute the inverse of the CMB Fisher
matrix, F −1

CMB, for the 9 parameters in order to obtain marginalized errors on the parameters, and then re-invert a sub-matrix of the inverse
Fisher matrix that includes only the rows and columns for the parameters beside w0 and wa. The sub-matrix of the CMB Fisher matrix
derived in this way describes accuracies of the 7 parameter determination, including degeneracies with the dark energy parameters w0 and
wa for the hypothetical Planck data sets. The CMB Fisher matrix is added to the lensing Fisher matrix as F αβ = F WL

αβ + F CMB,sub
αβ

(α, β = 1, 2, . . . , 9), where the elements of the CMB Fisher sub-matrix including dark energy parameters w0 or/and wa are set to zero.
Table 1 summarizes forecasts for parameter constraints that are expected from lensing tomography of 4 redshift bins (with CMB priors),

for our fiducial survey parameters as in Figure 1. We include the power spectrum information over 50 ≤ l ≤ 3000 and bin the galaxies
such that their number densities in each redshift bin are about equal for a given redshift distribution of galaxies (see Eqn.[20]). Notice that
σ(wpivot) shows the error in the dark energy equation of state at the best constrained redshift, pivot redshift – it is equivalent to the error on
a constant w = w0, with wa fixed to the fiducial value.

One of our main results is given in Column 3 in Table 1, which gives parameter errors including non-Gaussian covariances. These
degrade parameter errors typically by less than 10%. This is much smaller than the degradation in the signal-to-noise ratio of power spectrum
measurement shown in Figure 4 (a factor of 0.65). Note that the unmarginalized error on each parameter is degraded by roughly similar
amount to that for the S/N . If we take the volume of the Fisher error ellipsoid (in our 8-dimensional parameter space) as inversely pro-
portional to the S/N magnitude, then non-Gaussian errors enlarge the Fisher volume by a factor of about 1.54 (' 1/0.65). So if all the
eight principal axes of the Fisher ellipsoid are equally stretched by the non-Gaussian errors, each parameter error would be degraded only
by about 6%[' (1.54)1/8 − 1], which is the maximum degradation seen in Table 1. In reality, lensing carries information from distance
factors, which is not degraded by non-Gaussian errors. Also, non-Gaussian errors change the directions of the principal axes, or equivalently
the directions and degrees of parameter degeneracies in parameter space, and we have further combined with the CMB information – both
effects can change the results for a particular parameter.

Our results in Table 1 can be compared with Table 4 in Cooray & Hu (2001). They found about a 15% increase in parameter errors
due to non-Gaussian errors, with a set of 5 parameters for the Fisher parameter forecasts. Their results can be understood in terms of our
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Figure 6. Fisher errors on dark energy parameters, with and without non-Gaussian errors in the lensing covariances. We use lensing tomography with 4 redshift
bins and Planck CMB priors. The non-Gaussian errors enlarge the areas of the error ellipses in the subspaces of (Ωde, w0) and (w0, wa) by 26% and 12%,
respectively. Table 1 gives the one-dimensional marginalized errors on each parameter.

Figure 7. As in the previous figure, but using the non-linear beat-coupling contribution for the non-Gaussian errors. This enlarges the error ellipses (compared
to the Gaussian case) by a factor of 2 and ∼ 25%, respectively.

findings as follows. First, a fiducial cosmology with higher normalization σ8 ' 1 was assumed in contrast to our σ8 ' 0.8. They also
considered no tomography case. For these assumptions non-Gaussian errors degrades the S/N by a factor 2 (see Figure C1). Further since
they worked with fewer parameters, 5 in contrast to our 8 parameters, the degradation in the marginalized error of each parameter is expected
to be ∼ 15% ' 21/5 − 1. Therefore our results are consistent with theirs.

In summary the impact of non-Gaussian errors on parameter estimations depends on the number of parameters used and the priors used
in the analysis. The degradation in the marginalized accuracy of a parameter of interest is generally smaller than that in the total S/N of the
power spectrum.

Column 4 in Table 1 shows the errors when ignoring the beat-coupling contribution to the non-Gaussian errors – the effect is very
small. Column 5 shows the results when using the nonlinear beat-coupling contribution to the non-Gaussian errors as studied in Figure 3.
This model is intended to be an upper bound on the beat-coupling contribution. But even in this case non-Gaussian errors degrade parameter
accuracies by less than 20%.

The non-Gaussian errors induce correlations between band powers of the lensing power spectra in multipole as well as redshift space.
One may expect that the correlations degrade parameters that are more sensitive to the amplitude of the lensing power spectrum as discussed
in Cooray & Hu (2001) and Takada & Bridle (2007). Table 1 does show that the error on Ωde is more degraded than the other parameters
(Ωde is most sensitive to the lensing spectrum amplitude for a flat universe, and is also better constrained by lensing than the CMB).

Figures 6 and 7 show how non-Gaussian errors enlarge the projected error ellipses in two-parameter subspaces of dark energy pa-
rameters. Our fiducial model for non-Gaussian errors predicts that error ellipses are only slightly enlarged, while including the nonlinear
beat-coupling effect enlarges the area of error ellipse by a factor of 2 in the (Ωde, w0)-subspace, and the area by ∼ 25% in the (w0, wa)-
subspace.

In Figure 8 we study how the impact of the non-Gaussian contribution on the marginalized error of four parameters (Ωde, ln As, wpivot,
wa) change with survey depth. It should be noted that, although the parameter errors are estimated for our fiducial survey area (2000 deg2)
combined with the Planck priors, the error shown in the y-axis is multiplied by f

1/2
sky ' 0.22 in order to make it easier to reinterpret the
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Figure 8. The marginalized 68% errors for the parameters Ωde, ln As wpivot, and wa as a function of survey depth (as in Figure 4). These errors are obtained
from a Fisher matrix analysis combined with the Planck priors. The parameter errors improve with increasing source redshifts, but the error degradation due
to non-Gaussian errors become larger.

results shown here for any survey area and depth. The errors roughly scale with f
−1/2
sky even in the presence of the beat-coupling term in

the covariance which does not have this dependence. Although the marginalized errors for these parameters are improved for higher redshift
surveys, the impact of the non-Gaussian errors are more significant, as expected from Figure 4. More encouragingly, the error degradation is
generally small, less than ∼ 10%, for survey depth up to zm ' 1.5 we have considered here.

4.6 Degradations in the Presence of Systematic Errors

In reality there are various sources of systematic errors that affect weak lensing measurements. As discussed in several recent studies (Huterer
& Takada 2005; Huterer et al. 2006; Ma et al. 2005; Amara & Refregier 2007; Bernstein 2008), stringent control of those systematic errors
is required in order to retain the ability of a given weak lensing survey for constraining cosmology. As we have shown, non-Gaussian corre-
lations between the lensing spectra at different multipoles and redshift are important, and themselves depend on the underlying cosmological
parameters. On the other hands, the systematic errors generally have a different dependence on multipole and redshift. Therefore including
the non-Gaussian covariances into the analysis may help discriminate cosmological signals from systematic errors. This is the issue we hope
to address in this subsection.

To do this we model the systematic errors following the method in Huterer et al. (2006): we introduce parameters to describe the
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Figure 9. Degradation in the marginalized errors of dark energy parameters Ωde, wpivot and wa as a function of the priors on the multiplicative shear errors
(Left panel) or the centroids of redshift bins (Right). Predictions for both Gaussian and non-Gaussian covariances are shown. Fiducial survey parameters and
four redshift bins are as in Table 1. For the non-Gaussian covariance case, the degradation is relative to the Gaussian error results without the systematic errors,
so it includes the degradation caused by non-Gaussian errors as well as systematic errors.

systematic errors and include them as nuisance parameters into the Fisher analysis. In this paper we consider redshift and multiplicative shear
errors – the parametrization we use is not generic, but is expected to account for the salient effects.

A multiplicative “calibration bias” in measuring shear is one of typical errors that arise in measuring weak lensing signals (e.g.
Massey et al. 2007). The general multiplicative error acts on a galaxy image at some redshift zs and angular direction θ as γ(zs, θ) →
γ(zs, θ) [1 + ζ(zs, θ)], where ζ is the multiplicative error (bias) in shear. Therefore the lensing spectrum estimated from galaxies in the i-
and j-th tomographic redshift bins, P̂(ij), can be biased from the true spectrum P(ij) as

P̂(ij)(l) = P(ij)(l) [1 + ζi + ζj ] . (26)

Here for simplicity we have assumed that the multiplicative errors ζ are not correlated with the cosmological lensing signals, and are
dependent only in the tomographic redshift bins, not on multipoles, after averaging. We therefore introduce Ns nuisance parameters for the
multiplicative shear errors.

The second systematic error we consider arises from photometric redshift (photo-z) errors. The uncertainties in photo-z estimates –
the scatter, bias and fraction of outliers – may significantly degrade the cosmological information of lensing surveys. Statistical errors in
photo-z’s do not by themselves cause problems for lensing tomography because the tomographic redshift bins are derived from an enormous
number of redshifts. Rather it is the mean bias in redshift bins that leads to systematic errors in lensing. Therefore we introduce the bias in
the centroid of each tomographic redshift bin as a nuisance parameter. We thus introduce Ns nuisance parameters for lensing tomography
with Ns redshift bins. To compute the Fisher derivatives for these parameters, we vary each centroid by some small amount δz as

〈zs〉i-th redshift bin → 〈zs〉i-th redshift bin + δzs (27)

and then compute the lensing power spectra for the shifted redshift distribution.
We thus have a total of 9 + Ns parameters for the two cases, multiplicative shear errors and photo-z’s errors, and we marginalize over

the Ns nuisance parameters in each case by adding the Gaussian priors.
Figure 9 shows the degradation in the marginalized errors of Ωde, wpivot and wa as a function of the priors on the multiplicative shear

errors (left panel) and the redshift bin centroids (right). We compare the results obtained when the non-Gaussian errors are included or
ignored. Here “degradation” means that the marginalized error for a given parameter is compared to the error for the Gaussian case without
systematic errors: so it shows the effects of both non-Gaussian errors and systematic errors. It is evident from Figure 9 that in the presence
of these systematic errors, non-Gaussian errors cause very little degradation. For the multiplicative shear error, with the prior σ(ζ) = 0.01
chosen to keep the total degradation below 50%, the differences between the results with and without non-Gaussian errors are about 3, 5 and
2% for Ωde0, wpivot and wa, respectively. For the photo-z error, with the prior σ(δzs) = 0.01, those are about 1, 4 and 2%. These numbers
can be compared with the results in Table 1 – the degradations in these dark energy parameters are slightly less significant in the presence
of the systematic errors. Therefore, including the cosmological non-Gaussian errors in the covariance slightly mitigates requirements on the
control of systematic errors

5 COVARIANCE OF REAL-SPACE SHEAR CORRELATIONS

The real-space correlation function of cosmic shear is another convenient statistic often used in the literature. It has been used in lensing
survey measurements (e.g., Fu et al. 2008), as it does not require corrections for survey geometry and masking effects. In this section we
study the covariances of the shear correlation functions.
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Figure 10. Left panel: The diagonal components of the covariance matrix for the shear two-point correlation function as a function of separation angles. The
dashed and bold-solid curves are obtained assuming the Gaussian and non-Gaussian errors, respectively. These can be compared with the two-point correlation
amplitude ξE . The dotted curve is the shot noise contribution due to the intrinsic ellipticities. Survey parameters are as in Figure 1, however, the covariances
plotted here are [Cov×2000]1/2, effectively corresponding to the case for survey area 1 deg2, for illustrative purpose. Right panel: The correlation coefficients
r(θ1, θ2) for the two-point correlation function defined as in Eqn. (21). Note that the assumed θ1 for each curve is given by the value of θ2 at which r = 1.
Shot noise is ignored in this plot. The two dashed curves show the results when for the Gaussian error case, for the smallest and largest angles, θ1 ' 1.2 and
160 arcminutes, respectively.

The shear E-mode correlation function, ξE(θ), is defined in terms of the lensing power spectrum as

ξE(θ) =

∫
ldl

2π
P (l)J0(lθ), (28)

where J0(x) is the zero-th order Bessel function. Joachimi et al (2008) recently developed a useful formula that allows one to compute
the covariances of the real-space correlations in terms of the power spectrum covariance. Extending this method to the case including the
non-Gaussian error contributions, the covariance of ξE(θ) can be expressed as

Cov[ξE(θ), ξE(θ′)] ' 1

πΩs

∫ ∞

0

ldl J0(lθ)J0(lθ
′)P (l)2 +

1

4π2Ωs

∫ ∞

0

ldl

∫ ∞

0

l′dl′J0(lθ)J0(l
′θ′)T̄ (l, l′), (29)

where T̄ is the angle averaged lensing trispectrum (see the second term on the r.h.s. of Eqn.[9]). We consider no tomography case and
ignored shot noise contamination here. The first term on the r.h.s. is the Gaussian error, while the second term gives the non-Gaussian error
contribution. There are notable differences between the covariances of the power spectrum and the real-space correlation. Even for a pure
Gaussian field, the first term is non-vanishing for the off-diagonal components of the covariance when θ 6= θ′: i.e., the correlation functions
of different angles are always correlated with each other. Also note that the Gaussian covariance does not depend on the bin width of angles.
The non-Gaussian errors increase both the diagonal and off-diagonal terms of the covariance.

Thus the cross-correlations between different angles need to be properly taken into account when estimating cosmological parameters
from the measured correlation functions. The cosmological interpretation of the measured correlation functions from the CFHT survey (Fu et
al. 2008) was made using covariances calibrated with ray-tracing simulations (Semboloni et al. 2007). Simulation based methods are indeed
needed to study the covariances; however, accurate calibration of the covariances requires a sufficient number of the realizations (ideally
>∼ 100 realizations to attain % level accuracy at each bin). In addition the simulations are usually done assuming some representative

cosmological models, such as the concordance ΛCDM model. Therefore it is computationally expensive to explore covariances in parameter
space. Having an analytic method to compute the covariance is useful and complementary to such simulation based methods (also see
Schneider et al. 2002).

The left panel of Figure 10 shows our model predictions for the diagonal components of the covariance matrix of the shear correlation
function assuming survey parameters as in Figure 1. For illustrative purpose, the covariance is scaled as [Cov × 2000]1/2, to roughly
correspond to a survey with area 1 deg2. The covariance amplitude then becomes similar to the shear correlation function (thin solid curve).
The dashed and bold-solid curves are the results obtained assuming Gaussian errors (the first term in Eqn. [29]) and also including non-
Gaussian errors, respectively. Non-Gaussian errors become more important as one goes to smaller angular scales, θ <∼ 50′; at the smallest
scales θ ∼ 1′ currently probed, non-Gaussian errors increase the sample variance by a factor of 1.7. This is smaller than the factor of 4 effect
found in Semboloni et al. (2007). The difference may be ascribed partly to the difference in the assumed σ8 (0.8 vs. 1), leading to ∼ 20% in
Cov1/2 (see Figure C1). In addition, it appears that they may have underestimated the Gaussian covariance contribution, which is estimated
by integrating the two-point correlations measured from simulations over a finite range of separation angles. Resolving this difference in
detail is beyond the scope of this paper, but a detailed study based on simulations would be worth pursuing. The dotted curve is the shot noise
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contamination computed as

Covshot-noise[ξE(θi), ξE(θj)] =
2σ2

ε

Npair

' 2.1 × 10−8
(

θ

1′

)−2 (
n̄g

30arcmin−2

)−2
(

Ωs

1deg2

)−1 (
∆ln θ

0.46

)−1 (
σε

0.22

)2

δK
ij , (30)

where Npair is the total number of galaxy pairs, available from a given survey, that are separated by separation angle θ within bin width ∆θ.
It can be approximately expressed in terms of survey parameters as Npair ' πθ2∆ln θ × n̄2

gΩs. The Kronecker delta function δK
ij is needed

as the shot noise contributes only to the diagonal terms of the covariance. A factor of 2 in the numerator of Eqn. (30) accounts for the fact
that our definition of σε is for the rms intrinsic ellipticities per component while the shear E-mode correlation arises from the sum of the two
shear components.

The right panel of Figure 10 shows the correlation coefficients for the two-point function, defined as in Eqn. (21). Note that the shot
noise contamination, which only contributes to the diagonal terms of the covariance matrix, is ignored in this plot, and therefore the off-
diagonal correlation coefficients are relatively amplified compared to the case including the shot noise. Compared to Figure 2, there are
significant correlations between the two-point correlations of different separation angles. Also each curve is asymmetric around the peak,
reflecting stronger correlations at smaller scales. For comparison, the dashed curves show the results for the Gaussian error case for two cases
of the smallest and largest θ1’s. Perhaps surprisingly there are even greater cross-correlations than the non-Gaussian error cases, implying
the non-Gaussian errors preferentially contribute to the diagonal components.

The results above imply that, if the real-space correlation functions are used to extract cosmological information, inclusion of cross-
correlations between different angles in the analysis is critically important (e.g. Schneider et al. 2002). For example, we will use the covariance
predictions developed in this paper in order to estimate an upper bound on neutrino masses from the CFHT lensing data, and have indeed
found a significant effect of the covariances on the cosmological parameter constraints (Ichiki, Takada & Takahashi 2008).

6 DISCUSSION

In this paper we have studied how non-Gaussian errors due to nonlinear clustering affect measurements of weak lensing power spectra. We
have also estimated the degradation in the accuracies of cosmological parameters inferred from future lensing surveys. We pay particular
attention to a non-Gaussian contribution that has not been included in the lensing literature so far, the “beat coupling” contribution first
studied by Rimes & Hamilton (2005) in 3-dimensional simulations. This term vanishes in the infinite area limit, but for finite survey areas it
can dominate the non-Gaussian contribution over some range of angular scales. We use two analytical models to compute it. Both are based
on the halo model and must be tested with N-body simulations, but based on preliminary comparisons we expect the simulation results to
converge somewhere between the two models (Figure B1 also supports this empirically). Our findings can be summarized as follows.

• Non-Gaussian covariances significantly increase statistical errors on lensing spectra and cause correlations between different multipole
bins (see Figures 1 and 2).
• The cumulative signal-to-noise (S/N ) ratio, integrated up to a multipoles >∼ 1000, is degraded by up to a factor of 2 (or 5 for the worst

case scenario) compared to the Gaussian case (Figure 3). The degradation is smaller for shallower surveys and when including tomographic
redshift information (Figure 4).
• For parameter estimations from the lensing spectra, non-Gaussian errors enlarge the volume of the error ellipsoid in parameter space by

a factor that is comparable to the S/N degradation.
• However, since lensing impacts multiple parameters the degradation in the marginalized error for individual parameters is much smaller.

E.g., for an 8 parameter Fisher analysis the accuracies of dark energy parameters are degraded by less than 10% ' 21/8 − 1 (or 20%) as
shown in Table 1 and Figures 6, 7 and 8.

We have also included two kinds of systematic errors in our analysis: shear calibration and photo-z bias. Since systematic errors in
weak lensing generally have a different dependence on multipoles and redshifts, including the non-Gaussian errors in the analysis slightly
mitigates requirements on the control of systematic errors (Figure 9). Our model for the power spectrum covariance also allows us to compute
the covariance of shear correlation functions, currently used in the analysis of actual measurements. This is presented in Section 5.

The results derived from our analytical method can be used in making realistic forecasts of the ability of future lensing surveys to
constrain cosmological parameters. A simulation based study is needed to test our predictions and choose the detailed model (Sato et al,
in preparation). The effects of survey geometry and masking can also be estimated from such simulations. However, numerical estimation
of the covariances is computationally expense: more than 1000 realizations of ray-tracing simulations are ideally needed to estimate the
covariances at accuracies better than 10% (e.g., see Takahashi et al, in preparation). It would be even more expensive to study the dependence
of the covariances on cosmological and survey parameters. Therefore, the analytical method developed here is useful and complementary
to such simulation based studies. For example our method allows one to extend the covariances for arbitrary cosmological and survey
parameters.

The fact that lensing is significantly affected by non-Gaussianity implies that the power spectrum does not carry all the information
contained in lensing fields. Higher-order correlations can be useful in extracting additional cosmological information. For example, com-
bining two- and three-point correlation functions can significantly improve cosmological parameter accuracies (e.g., Takada & Jain 2004).
However, one has to properly take into account covariances of higher-order moments by including non-Gaussian errors. This requires going
up to 6-point correlations for the bispectrum. We have found that parameter constraints from bisepctrum tomography are degraded more
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by non-Gaussian covariances than for the power spectrum. Combining the power spectrum and bispectrum is still powerful in breaking
parameter degeneracies (Takada & Jain, in preparation).

Finally, we comment on the possibility of combining all observables available from multicolor imaging surveys. Besides the lensing
power spectra, there are various observables that probe large-scale structure: counting statistics of galaxy clusters, baryon acoustic oscilla-
tions, the full galaxy angular correlation functions, galaxy-lensing cross-correlation, and so on. Even though these probe the same cosmic
mass density field, combining these observables can improve accuracies on cosmological parameter (for example, see Takada & Bridle
2007). Several open questions remain on strategies for combining observables in the presence of systematic errors. To address such issue
quantitatively, all covariances between the observables used have to be correctly taken into account. Such a study is challenging, but will be
needed to exploit the full potential of future surveys to constrain the nature of dark energy or possible modifications of gravity.
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APPENDIX A: DERIVATION OF THE BEAT-COUPLING CONTRIBUTION TO THE LENSING COVARIANCE

In this section we derive the beat-coupling contribution to the power spectrum covariance in more detail (also see Hamilton et al. 2006 and
Sefusatti et al. 2006).

Let us begin by recalling the definition of the 3D mass trispectrum in terms of the mass fluctuation field δm(k):

〈δm(k1)δm(k2)δm(k3)δm(k4)〉 ≡ (2π)3δD(k1234)Tδ(k1, k2, k3, k4), (A1)

where we have introduced notation such as k1234 ≡ k1 + k2 + k3 + k4, and the Dirac delta function imposes the condition that the four
wavevectors k1, · · · , k4 form a closed 4-point configuration in Fourier space. According to perturbation theory (e.g. see Bernardeau et al.
2002 for a thorough review), the mass trispectrum can be expressed in terms of the linear mass power spectrum as

TPT
δ (k1, k2, k3, k4) = 4

[
F2(k12,−k1)F2(k12, k3)P

L
δ (k12)P

L
δ (k1)P

L
δ (k3) + F2(k12,−k1)F2(k12, k4)P

L
δ (k12)P

L
δ (k1)P

L
δ (k4)

+F2(k12,−k2)F2(k12, k3)P
L
δ (k12)P

L
δ (k2)P

L
δ (k3) + F2(k12,−k2)F2(k12, k4)P

L
δ (k12)P

L
δ (k2)P

L
δ (k4)
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δ (k1)P

L
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, (A2)

where the kernels F2 and F3 are given by

F2(k1, k2) =
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+

k2
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)
k1 · k2
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+

2
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2
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1k2

2

(A3)
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1
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(A4)

with another kernel G2 defined as

G2(k1, k2) ≡
3

7
+
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+
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)
k1 · k2

k1k2
+
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. (A5)

Note that, due to the condition k1 + k2 + k3 + k4 = 0, there are many other ways to express the mass trispectrum (A2). For convenient
purpose of our following discussion, we wrote down the mass trispectrum such that all the term has arguments of k1a where a = 2, 3 or 4.

The covariance of the mass power spectra of two wevenumbers k and k′ arises from the 4-point correlations of δm with specific
configurations in Fourier space: 〈Pδ(k)Pδ(k

′)〉 = 〈δm(k)δm(−k)δm(k′)δm(−k′)〉, because of Pδ(k) = 〈δm(k)δm(−k)〉 and so on. Note
that, even for the diagonal terms of the covariance where k = k′, the two vectors k and k′ generally differ in direction. As discussed in § 3.2,
for any survey of a finite sky or volume coverage, we cannot measure Fourier modes to a better accuracy than the fundamental model of the
survey, say εk = 2π/D, where D is a linear scale of the survey region: two modes that differ by εk cannot be in practice distinguished due
to the limited resolution. Taking into account this uncertainty, the PT trispectrum contribution to the non-Gaussian part of the mass power
spectrum covariance arises from the following mass trispectrum (also see Hamilton et al. 2006):

CovNG,PT[Pδ(k), Pδ(k
′)] ←− TPT

δ (k + ε′
k,−k + ε′′

k , k′ + ε′′′
k ,−k′ + ε′′′′

k ), (A6)
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where the vectors εk with prime superscripts denote the fundamental modes of amplitude 2π/D.
Assuming the case that the modes of interest are much greater than the fundamental modes, e.g. k, k′ À ε′k, substituting Eqn. (A6) into

Eqn. (A2) yields

TPT
δ (k + ε′

k,−k + ε′′
k , k′ + ε′′′

k ,−k′ + ε′′′′
k ) ≈ TPT

δ (k,−k, k′,−k′)

+4P L
δ (εk)P L

δ (k)P L
δ (k′)

[
F2(εk,−k)F2(εk, k′) + F2(εk,−k)F2(εk,−k′) + F2(εk, k)F2(εk, k′) + F2(εk, k)F2(εk,−k′)

]
, (A7)

where εk ≡ ε′
k +ε′′

k . In the derivation above, we have used the fact that the first four terms in the square bracket on the r.h.s. of Eqn. (A2) can
be computed as F2(k12,−k1)P

L
δ (k12)P

L
δ (k1) ≈ F2(ε

′ + ε′′
k ,−k)P L

δ (|ε′
k + ε′′

k |)P L
δ (k) when k1 = k + ε′ and k2 = −k + ε′′, which are

thus proportional to P (εk) and greater than the other terms because F2 ∼ O(1) and P L
δ (εk) À P L

δ (k) for a CDM spectrum. The other terms
are computed as F2(k13,−k1)P

L
δ (k13)P

L
δ (k1) ≈ F2(|k + k′|,−k)P L

δ (|k + k′|)P L
δ (k) under the assumption k À εk, and are rewritten

as the form of the standard trispectrum contribution, TPT
δ (k,−k, k′,−k′). By integrating the equation above over angles of wavevectors k

and k′, combined with the Limber’s approximation and the lensing projection, the contribution to the lensing covariance given by Eqn. (17)
can be obtained.

Although a rather mathematical derivation of the beat-coupling was described above, we will in the following make a more intuitive
explanation on the beat-coupling effect within the framework of the halo model approach. In the halo model picture, the mass density
fluctuation field of a given wavevector k is expressed as the sum of the mass fluctuations in the highly nonlinear regime, confined within one
halo, and the mass fluctuations in the weakly nonlinear regime arising from the halo distribution, which we here refer as to the 1-halo term,
δ1h

m , and the perturbation theory contribution, δPT
m , respectively:

δm(k) = δPT
m (k) + δ1h

m(k). (A8)

In the presence of the fundamental mode uncertainty the mass fluctuations in the weakly nonlinear regime contain contributions of physical
correlations between the modes of k and ε arising from nonlinearities of gravitational clustering. More precisely, based on the perturbation
theory, the density fluctuation field δPT

m can be expanded as

δPT
m (k + εk) = δ(1)

m (k + εk) + δ(2)
m (k + εk) + δ(3)

m (k + εk) + · · ·

≈ δ(1)
m (k) +

∫
d3q

(2π)3
F2(q, q − k − εk)δ(1)

m (q)δ(1)
m (k + εk − q)

+

∫
d3q1

(2π)3
d3q2

(2π)3
F3(q1, q2, k + εk − q1 − q2)δ

(1)
m (q1)δ

(1)
m (q2)δ

(1)
m (k + εk − q1 − q2) + · · · , (A9)

where δ
(1)
m , δ

(2)
m and δ

(3)
m are the linear-, 2nd- and 3rd-order contributions of the mass fluctuations in the perturbative expansion (e.g., see

Jain & Bertschinger 1994), and in the second equality on the r.h.s. of the equation above we have used that the linear-order fluctuations
are only slowly varying with wavenumbers for a CDM model, δ

(1)
m (k + εk) ≈ δ

(1)
m (k). Thus gravitational instability that doesn’t have

any characteristic scale predicts that all the fluctuations of different scales are coupled to each other. In particular, the 2nd-order den-
sity fluctuations are found to contain contributions arising from the correlations between the fluctuations of k and the fundamental mode:
F2(k, εk)δ

(1)
m (k)δ

(1)
m (εk) when q = k. Such contributions to the power spectrum covariance indeed arise after taking the ensemble aver-

age such as 〈δ(1)
m (−k)δ(1)(q)δ

(1)
m (k + εk − q)〉 in the covariance calculation. Thus the beat-coupling contribution is caused by the physical

correlation between the mass fluctuations of large- and small-distance scales as predicted by the perturbation theory of mass clustering. In
other words, if there are no such correlations, e.g. in the case of the linear regime, the power spectrum measured from a finite survey is not
influenced by the fundamental mode uncertainty.

On the other hand, the highly nonlinear mass fluctuations are unlikely to be affected by the fundamental mode uncertainty as follows.
Since the mass fluctuations in the highly nonlinear regime are very likely to lie inside a halo, the self-gravitating bound object, the mass
distribution within the halo would be sufficiently decoupled from and unaffected by large-scale fluctuations, for example as in the stable
clustering ansatz where the highly nonlinear fluctuations are assumed to be totally decoupled from the Hubble flow. Therefore the 1-halo
trispectrum contribution to the power spectrum covariance is unlikely to be contaminated by the beat-coupling effect. Note that, although the
1-halo term also depends on the halo mass function in addition to the mass distribution inside a halo, the mass function can be mapped out
from the linear-order mass fluctuations to zero-th order approximation, as done in the Press-Schechter prescription, and therefore would not
be affected by the fundamental mode uncertainty according to the rationale discussed in the previous paragraph.

APPENDIX B: COVARIANCES OF ANGULAR MASS POWER SPECTRUM: COMPARISON OF OUR MODEL
PREDICTION WITH LEE & PEN

In this appendix, as one check of our model, we will show the comparison of our model predictions with the SDSS angular galaxy power
spectrum recently measured in Lee & Pen (2008).

The formulation we have developed in this paper is readily applied to the angular power spectrum of mass clustering if the redshift
weight function for lensing, W(i)(χ) (e.g. see Eqn. [6]), is replaced with the selection function of a given galaxy survey as

W(i)(χ) → pg(z)
dz

dχ
, (B1)

where pg(z) is the selection function: pg(z) is unity if z is in the range of redshifts surveyed, otherwise zero. Note that the selection function
should be normalized so as to satisfy

∫
dz pg(z) = 1.
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Figure B1. Comparison of our model predictions with the SDSS measurements of Lee & Pen (2008), for the cumulative signal-to-noise (or the information
content) of the mass or galaxy angular power spectrum, respectively. The survey parameters are taken to resemble the SDSS result. As in Figure 3, the solid
and dotted curves are the results obtained including the non-Gaussian errors with and without the beat-coupling effect, while the dashed curve is the result
for the Gaussian error case, which scales as (S/N)2 ∝ l2max. Our model predictions taking account of non-Gaussian errors are in fairly good agreement
with the measurement result, even though there is uncertainty due to galaxy bias (see text). The dot-dashed curve shows the result assuming the nonlinear
beat-coupling, which is smaller than the measurement by a factor of a few.

Figure B1 shows the cumulative signal-to-noise ratio expected for measuring angular power spectrum of the mass distribution over
multipole range 2 ≤ l ≤ lmax as a function of the maximum multipole lmax, assuming a survey with area Ωs = 100 deg2 and redshift
coverage 0.3 ≤ z ≤ 0.4 that are chosen to resemble the survey parameters in Lee & Pen. Here we didn’t include the shot noise contamination
such that our (S/N)2 given by Eqn. (22) becomes equivalent to the Fisher information content I studied in Lee & Pen, where the shot noise
contamination due to discrete galaxy distribution is subtracted. It should be also worth noting that the galaxy bias uncertainty may not so
largely change our results for mass power spectrum, as the bias factor to some extent cancels out in the (S/N)2 evaluation. For the linear
bias case, the (S/N)2’s for mass and galaxy distribution are exactly equivalent as Pg = b2Pδ and [Cov(Pg)]−1 = b−4[Cov(Pδ)]

−1.
The solid and dotted curves show our model predictions including non-Gaussian errors, but with and without the beat-coupling effect,

respectively, while the dashed curve show the result for the Gaussian error, which scales as l2max in the absence of shot noise. Several
interesting points can be found from this plot. First, the beat-coupling effect appears to be more significant for this angular power spectrum
than the lensing spectrum, because the angular power spectrum has a much narrower redshift coverage, i.e. less line-of-sight projection.
More precisely, since the comoving angular diameter distance to z ' 0.35 is χ ' 1400Mpc for our fiducial cosmology, the translinear
regime of k ' [0.1, 1]Mpc−1, where the beat-coupling is expected to be significant (Rimes & Hamilton 2005), appears over a wider range
of multipoles l ' kχ ' [140, 1400]. For the lensing case, the translinear regime signature is smeared out by the projection over a wider
range of redshifts. Second, very encouragingly, our model predictions fairly well reproduce the measurement results. On the other hand, the
dot-dashed curve show the the result obtained assuming the nonlinear beat-coupling effect. This prediction underestimates the measurement
by a factor of 3 on lmax

>∼ 500, implying an overestimation of the beat-coupling effect in this prescription.

APPENDIX C: DEPENDENCE OF THE LENSING S/N ON OTHER PARAMETERS

In this appendix we study how the impact of non-Gaussian errors on the S/N for the lensing measurement depends on shot noise, multipole
range, source redshift and cosmological parameters.

The shot noise of intrinsic ellipticities contributes only to the diagonal terms of the power spectrum covariances. Hence switching off
the shot noise terms in the covariances, corresponding to the case of an infinite number density of source galaxies, enhances the effect of
non-Gaussian errors on the S/N , which is studied in the left panel of Figure C1. Note that, in this case, the S/N value for the Gaussian
error case scales with lmax as S/N ∝ lmax. Compared to Figure 3, the S/N values are significantly boosted, e.g. by an order of magnitude
on lmax

>∼ 104 for the Gaussian error case. Comparing the lower panels of this plot and Figure 3 also manifests that non-Gaussian errors
more degrades the S/N when the shot noise is ignored. Hence, the shot noise is found to not only significantly reduce the total S/N at
lmax

>∼ 1000, but also mitigate the impact of the non-Gaussian errors.
The middle pane shows similar results to Figure 4, but for different choices of lmax; lmax = 1000, 3000 and 104, respectively. The

impact of the non-Gaussian errors appears to be very similar for these lmax.
The lensing signals as well as the non-Gaussian errors are both sensitive to strengths of nonlinear mass clustering that is characterized
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Figure C1. Left panel: As in Figure 3, but the shot noise due to the intrinsic ellipticities is ignored. For reference, the thin-solid curve shows the result shown
by the bold-solid curve in Figure 3. Note that the y-axis range in the middle and right panels are different from those in the left panel. Middle panel: As in the
left panel of Fig. 4, but for three different choices of the maximum multipole, lmax = 1000, 3000 and 104. The dashed and solid curves for each case of lmax

show the results for Gaussian and non-Gaussian errors, respectively. Right panel: The dependence of the total S/N on σ8 is shown. The S/N increases with
increasing σ8 for lmax

>∼ 2000, but the non-Gaussian errors degrade the S/N more strongly, due to stronger nonlinear clustering.

by σ8. The right panel of Figure C1 shows how the S/N varies with σ8 assumed, but other parameters being fixed. Note that our fiducial
model has σ8 ' 0.8. For the Gaussian error cases, the S/N amplitudes increase with increasing σ8 as expected, due to the reduced shot
noise in relative by the enhanced lensing signals. For the non-Gaussian error cases, however, the S/N amplitudes are more degraded with
increasing σ8 due to stronger nonlinearities of mass clustering, as explicitly demonstrated in the lower panel. An even more interesting is, over
a range of multipoles 200 <∼ lmax

<∼ 1000, the total S/N amplitudes decrease with σ8 due to stronger effects of the non-Gaussian errors.
Thus this modestly large dependence of the non-Gaussian covariances on σ8 would need to be realized, if the covariances are calibrated
based on simulations assuming some σ8 that is different from the true cosmology. For example, Semboloni et al. (2007) studied the non-
Gaussian covariances for the real-space cosmic shear correlation function using simulations with σ8 = 1, so the non-Gaussian effect may be
overestimated if the universe has a smaller σ8 such as σ8 ≈ 0.8.
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