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•  GR	MHD	simula4ons	(e.g.	Komissarov	01;	
Koide+	02;	McKinney	&	Gammie	04;	
Tchekhovskoy+	11)	

•  Quasi-steady	structure	
•  Extrac4on	of	BH	energy	
•  Lj	~	LEM	at	the	base	
•  Rela4vis4c	flow	(γ	>	
10-100)	around	the	axis	

•  Collima4on	by	disk	wind	
•  How	to	load	mass	?		

Or	neutrino	

GRMHD simulations of Poynting-dominated jets 1569

Figure 2. Same as Fig. 1, but outer scale is r = 102r g.

Fig. 6 shows !∞, which reaches up to !∞ ∼ 103–104, for an outer

scale of r = 104r g (panel A) and an outer scale of r = 103r g (panel

B). The inner-radial region is not shown, since !∞ is divergent near

the injection region where the ideal MHD approximation breaks

down. Different realizations (random seed of perturbations in disc)

lead up to about !∞ ∼ 104 as shown for the lower pole in the

colour figures. This particular model was chosen for presentation

for its diversity between the two polar axes. The upper polar axis

is fairly well structured, while the lower polar axis has undergone

an atypically strong magnetic pinch instability. Various realizations

show that the upper polar axis behaviour is typical, so this is studied

in detail below. The strong hollow-cone structure of the lower jet is

due to the strongest field being located at the interface between the

jet and the surrounding medium, and this is related to the fact that the

Figure 3. Contours for the disc–corona, corona–wind, and wind–jet bound-

aries at t ≈ 1500t g and an outer scale of r ≈ 102r g. The disc–corona bound-

ary is a cyan contour where β ≈ u/b2 = 3, the corona–wind boundary is

a magenta contour where β = 1, and the wind–jet boundary is a red con-

tour where b2/(ρ0c2) = 1. The black contour denotes the boundary beyond

which material is unbound and outbound (wind + jet).

Figure 4. Same as Fig. 3, but for t ≈ 1.4 × 104t g and an outer scale of r ≈
103r g. At large scales, the cyan and magenta contours closer to the equatorial

plane are not expected to cleanly distinguish any particular structure.

BZ-flux is ∝ sin2 θ , which vanishes identically along the polar axis.

It is only the disc+corona that has truncated the energy extracted,

otherwise the peak power would be at the equator. As described in

the next section, at larger radii the jet undergoes collimation that

results in more of the energy near the polar axis.

5.1 Radial jet structure

Fig. 7 shows the velocity structure of the Poynting-dominated

jet along a mid-level field line, which starts at θ j ≈ 46◦ on the

black hole horizon and goes to large distance, where the funnel

C⃝ 2006 The Author. Journal compilation C⃝ 2006 RAS, MNRAS 368, 1561–1582
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Fig. 3.— VLBA+GBT 86GHz false-color total intensity image of the M87 jet. The image is

produced by combining the visibility data over the two epochs on 2014 February 11 and 26. The

restoring beam (0.25 × 0.08mas in PA 0◦) is shown in the bottom-right corner of the image. The

peak intensity is 500mJybeam−1 and the off-source rms noise level is 0.28mJybeam−1, where the

resulting dynamic range is greater than 1500 to 1. (A color version of this figure is available in the

online journal.)

(Hada+	2013;	2016)	

The	high-resolu4on	radio	imaging	is	being	improved,	
revealing	the	structure	and	composi4on	of	M87	jet.	
	
EHT+ALMA	observa4on	will	be	done	in	April,	2017.	

(Asada	&	Nakamura	12;	Kino+15)	

The Astrophysical Journal Letters, 745:L28 (5pp), 2012 February 1 Asada & Nakamura
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Figure 2. Distribution of the radius of the jet as a function of the deprojected distance from the core in units of rs. We used images obtained by previous VLBA
measurements at 43 GHz (red circles) and at 15 GHz (orange circles), EVN measurements at 1.6 GHz (green circles), and MERLIN measurements at 1.6 GHz (blue
circles). The jet is described by two different shapes. The solid line indicates a parabolic structure with a power-law index a of 1.7, while the dashed line indicates
a conical structure with a of 1.0. HST-1 is located around 5 × 105 rs. The black area shows the size of the minor axis of the event horizon of the spinning black
hole with maximum spin. The gray area indicates the size of the major axis of the event horizon of the spinning black hole with maximum spin, and corresponds to
the size of the event horizon of the Schwarzschild black hole. The dotted line indicates the size of the inner stable circular orbit (ISCO) of the accretion disk for the
Schwarzschild black hole.

2006). Indeed, this is the first observational evidence detecting a
transition from parabolic to conical streamlines in extragalactic
jet systems.

4. DISCUSSION AND SUMMARY

4.1. Unconfined Structure: Downstream of HST-1

We consider a conical streamline (z ∝ ra, a = 1) for
supersonic jets. In an adiabatic jet, the internal pressure pjet
decreases with the axial distance z as z−2Γ (Γ: the ratio of
specific heats). So, we speculate that the constant expansion of
the jet radius and a conical structure downstream of HST-1 to
knot A in the M87 jet require the same axial gradient for the
external interstellar medium (ISM) pressure, pism, as pjet (Owen
et al. 1989). If pism decreases slower than pjet, then pism > pjet
at some distance so that a recollimation shock will be triggered
(Sanders 1983). The self-similar solution of a conical streamline
for the magnetized case (with a purely toroidal field component)
requires pism ∝ z−b, b = 4 (Zakamska et al. 2008). For a
general (non-self-similar) case, b > 2 is allowed in analytical
and numerical models (Tchekhovskoy et al. 2008; Lyubarsky
2009; Komissarov et al. 2009). X-ray observations reveal the
ISM properties such as the Bondi radius rB ∼ 250 pc and
the King core radius rc ≃ 1.4 kpc (see, e.g., Young et al.
2002; Di Matteo et al. 2003; Allen et al. 2006). Thus, the
region of conical streamlines in the M87 jet lies between rB and
the marginal radius for the power-law decay beyond rc in the
King profile, indicating that the ISM distribution is essentially
uniform. We thus rule out that the structure downstream of
HST-1 is hydrostatically confined by pism in order to conform to
a conical streamline.

In order to possess a conical streamline without any overcol-
limation between knots HST-1 and A, the condition pjet ! pism

should be maintained. Knots HST-1 to A do appear to be
overpressured with respect to the external pressure (Owen et al.
1989). However, the pjet of the inter-knot regions, as estimated
by the minimum energy argument for the VLA data (Sparks
et al. 1996), appears underpressured with respect to pism, as es-
timated by the recent X-ray observations (Young et al. 2002;
Rafferty et al. 2006). One possibility is an underestimation of
the magnetic field strength when the toroidal (azimuthal) com-
ponents are not considered (cf. Owen et al. 1989). It has been
further suggested that the magnetic field energy is at least in
equipartition (or even larger with a factor of 1–2) with the en-
ergy of the radiating ultrarelativistic electrons (Stawarz et al.
2005).

We note that overpressured knots do appear to have trails
of stationary recollimation shocks in purely hydrodynamic jets.
Falle & Wilson (1985) performed hydrodynamic simulations to
apply stationary recollimation shocks to the observed knots at
VLA scales under the assumption of the shallow ISM gradient
(pism ∝ z−1). Stationary features, however, are in conflict with
the observed large proper motions (Biretta et al. 1995, 1999),
while the ISM also does not appear to have such a gradient.
Therefore, we suggest that the highly magnetized nature of the
jet may be responsible for the conical part of the M87 jet.

4.2. Confined Structure: Upstream of HST-1

We next consider a parabolic streamline (1 < a " 2) for
supersonic jets. It is shown that the magnetized jet can be
parabolic in analytical and numerical models where the ISM
pressure is decreasing as pism ∝ z−b, b = 2 (Tchekhovskoy
et al. 2008; Komissarov et al. 2009). A self-similar solution also
exists for non-magnetized cases with a pure parabolic streamline
(a = 2) under the same pism dependence with b = 2 (Zakamska
et al. 2008). Their solution indicates pjet # pism with pressure

3



Blandford	&	Znajek	(1977)	

•  Slowly	rota4ng	Kerr	BH	

	
•  Steady,	axisymmetric	
•  Split-monopole	B	field	
•  Force-free	
approxima4on	
(Electromagne4cally	
dominated)	

a =
J

Mrgc
⌧ 1

E

Jp Sp =
E⇥H'

4⇡

(see	also	Beskin	&	Zheltoukhov	2013)	



BZ	process	with	large	BH	spin	a	

436 S. S. Komissarov
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Figure 3. Escape of the split-monopole magnetic field from a Schwarzschild black hole. Left panel: Magnetic flux surfaces of the split-monopole solution,
which was used as an initial solution in these numerical simulations. Right panel: Magnetic flux surfaces of the numerical solution at t = 5.
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Figure 4. Magnetospheric Wald problem. Left panel: The angular velocity of magnetic field lines. There are 15 contours equally spaced between 0 and 0.67.
The angular velocity first gradually increased towards the axis but then reaches a maximum and goes slightly down. The thick lines show the ergosphere (outer
line) and the inner light surface (inner line). Middle panel: The magnetic flux surfaces. Right panel: The distribution of (B2 − D2)/ max(B2, D2). There are 15
contours equally spaced between −0.12 and 1.0. This quantity monotonically decreases towards the current sheet in the equatorial plane within the ergosphere.
The thick line shows the ergosphere.

C⃝ 2004 RAS, MNRAS 350, 427–448

Field	line	ΩF	 D2-B2	

-  Many	other	FF/MHD	numerical	studies	show	BZ	process	works	with	
large	a.	(e.g.	Komissarov	01;	Koide+	02;	McKinney	&	Gammie	04;	Barkov	&	
Komissarov	08;	Tchekhovskoy+	11;	Ruiz+	12;	Contopoulos+	13)	

(Komissarov	2004)	

a = 0.9

But	the	detailed	mechanism	of	flux	produc4on	is	s4ll	debated	



Vacuum	Solu4on	
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Znajek, and Blandford to conclude that the hole behaves
quite generally as a rotating conductor. There are two
similarities between the Wald solution and the vacuum
solution of a rotating conductor in a magnetic field. The
invariant E B=*F"F„WD and a potential di6'erence ex-
ists across the field lines. Since the Wald field is similar
to the vacuum fields outside of a rotating magnetized

neutron star, Blandford and Znajek, Thorne, and Mac-
donald argued that in certain situations, the horizon
could be equated to a unipolar inductor.
The solution is given below in the frames of the zero

angular momentum observers (ZAMO's) (see Appendix
A for a definition).

80
„I(r +a )[(r a—)(r acos—8)+2a r(r —M)(1+cos 8)]—a bp sin 8Icosg,

—8,S'"
Ia [2r(r a)cos—8—(r —M)(r —a cos 8)(1+cos 8)]+(r +a )p r Ising,

—8 a0 I(r +a )[2r(r —a )cos 8—(r —M)(r acos 8—)(1+cos 8)]+rbp sin 8I,
—8 aA'~0 [(r —a )(r —a cos 8)+2a r(r —M)(1+cos 8) (r +a )p—]cosgsing,

(2.1a)

(2. lb)

(2.1c)

(2.1d)

(2. le)

where 80 is the strength of the uniform magnetic field at
infinity and A =(r +a ) —ba sin 8.
In this frame the electric field is purely radial at the

horizon, as for a spherical conductor. However, this re-
sult is frame dependent so it has no invariant physical
significance. Furthermore, the radial and time corn-
ponents of the ZAMO tetrad are singular at the horizon.
These two observations motivate the definition of horizon
fields in Sec. II B, which follow directly from the ZAMO
frames by (2.7).
In this "rest frame" of the horizon the magnetic and

the electric fields are radial as well. The analogy with the
conductor is strengthened at the expense of defining fields
in a null frame. The nature of the fields in the horizon
frame allowed Carter to show that the horizon is a sur-
face of constant electrostatic potential. '
The Wald field has an azimuthal Poynting Aux, but no

Poynting Aux into or out of the hole. There is no energy
extracting Poynting Aux, since there is no super-radiance
for vacuum fields when m=0 (Refs. 10 and 11) (where m
is the azimuthal quantum number of the field).
The concept of a potential involves separated points, so

it cannot be defined in a frame. It must be defined in a
coordinate system. In the stationary frames, when the
fields are evaluated at the horizon'

Boar+ (r+ —M) r+sin 8—2M cos 8(1+cos 8)0+— 4~ (r+ +a cos 8)

In the slow rotating case a/M «1,
—OHr+

80(3 cos 8—1) .8~c

(2.3)

(2.4)

that would simulate a unipolar generator.
The ZAMO radial electric field is equivalent to the ex-

istence of a fictitious surface charge density on the hor-
izon (see Fig. 1), a+ (Ref. 2):

—AH-+to= +ye
C

(2.2)

where the tilde means to evaluate in the stationary frames
(Boyer-Lindquist coordinates). Thus, there is a potential
drop across the field lines.
The Wald magnetic and electric fields are qualitatively

drawn in Fig. 1 in the Boyer-Lindquist coordinates. No-
tice that E-BWO. On polar field lines E B is of the same
sign. At lower latitudes E 8 changes sign on the field
lines. In the companion paper the sign reversal of E B
will be used to show that the component of E along B of
the vacuum solution cannot drive a global current system

FIG. 1. The Wald electric (the dashed lines} and magnetic
(solid lines) field lines. The e6'ective surface charge density is in-
dicated on the event horizon.

E

B

(Wald	1974;	Punsly	&	Coroni4	1989)	

•  Space-4me	rota4on	produces	E,	but	not	Bφ	
•  Bφ is	produced	by	Jp.		



Unipolar	induc4on	process	
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Pulsar	winds	

E

Jp

V'

r · Sp = �E · Jp

(Goldreich	&	Julian	1969)	 Steady,	axisymmetric	

E = �V' ⇥B

r⇥E = 0 E = �r�

E' = 0

Electric	field	screened	by	plasma	

E ·B = 0

E = �r⌦F

c
e' ⇥B

ΩF:	constant	along	a	field	line	

⌦F = ⌦pulsar

Origin	of	electric	poten4al	&	driving	source	
of	current	are	rota4ng	star.	Stellar	rota4on	
energy	reduces	as	their	feedbacks.	

Sp =
E⇥B'

4⇡



Blandford	&	Znajek	(1977)	
H' = �2⇡⌦FB

rp� sin ✓Condi4on	at	infinity	

H' = 2⇡(⌦F � ⌦H)B
rp� sin ✓ At	event	horizon	

•  Kerr	space-4me	
•  Steady,	axisymmetric	
•  Slowly	rota4ng	BH	
•  Split-monopole	B	field	

	
•  Force-free	approxima4on	

(Electromagne4cally	dom.)	

Brp� = const.

H' = const.

E = �⌦Fe' ⇥B

r · Sp = 0
What	drives	current	?	
How	BH	energy	reduces	?	

Sp =
E⇥H'

4⇡

In	the	MHD	approxima4on,	the	condi4ons	on	
the	fast	magnetosonic	surfaces	determine	the	
solu4on	(Beskin	&	Kuznetsova	00;	Beskin	10)	

Jp



Membrane	Paradigm	?	

•  Horizon	is	assumed	as	a	rota4ng	conductor.	Ohmic	dissipa4on	
increases	BH	entropy	(Thorne	et	al.	1986;	Penna	et	al.	2013)	

•  But	the	horizon	is	causally	disconnected	(Punsly	&	Coroni4	1989)	
•  Current	driving	mechanism	is	unclear	

•  ->	Mechanism	producing	the	flux	must	work	outside	the	horizon	

E

Jp

?	

Sp =
E⇥H'

4⇡



Debates	

(Okamoto	06;	09;	15)	

?	
E

Jp Sp =
E⇥H'

4⇡

•  Electric	current	is	driven	in	a	pair	crea4on	gap	?	

•  BH	reduces	its	energy	by	nega4ve	electromagne4c	
energy	inflow	?	 (Lasota,	Gourgoulhon,	Abramowicz,	Tchekhovskoy,	&	

Narayan	2014;	Koide	&	Baba	2014)	



Kerr	space-4me	

Boyer-Lindquist	coordinates	

Event	
horizon	

Ergosphere	
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,

MNRAS 442, 2855–2866 (2014)
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(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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The event horizon, where grr = 0, is located at rH = 1 +
√

1 − a2. The ergosphere is the region
r < res = 1 +

√
1 − a2 cos2 θ , where the Killing vector ξµ is space-like, ξ2 = gtt = −α2 +β2 > 0.

At infinity, this space-time asymptotes to the flat one.
The local fiducial observer (FIDO) [23,29], whose world line is perpendicular to the absolute

space, is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνnν = (−α, 0, 0, 0). (3)

The AM of this observer is nϕ = 0, and thus FIDO is also a zero AM observer (ZAMO) [23]. Note
that the FIDO frame is not inertial, but it can be used as a convenient orthonormal basis to investigate
the local physics [23,43,44]. It should also be confirmed that FIDOs are time-like, physical observers
(i.e., nµnµ = −1).

In the BL coordinates, one has the following nonzero metric components:

α =
√

ϱ2(

)
, βϕ = −2ar

)
,

γϕϕ = )

ϱ2 sin2 θ , γrr = ϱ2

(
, γθθ = ϱ2, (4)

where

ϱ2 = r2 + a2 cos2 θ , ( = r2 + a2 − 2r, ) = (r2 + a2)2 − a2( sin2 θ . (5)

BL FIDOs rotate in the same direction as the BH with the coordinate angular velocity

+ ≡ dϕ

dt
= −βϕ = 2ar

)
. (6)

The BL coordinates have a well-known coordinate singularity (α = 0 and γrr = ∞, where ( = 0)
at the horizon. The BL FIDOs are physical observers only outside the horizon.

The KS coordinates have no coordinate singularity at the event horizon. The coordinates t and ϕ

are different from those in the BL coordinates. The nonzero metric components in this coordinate
system are:

α = 1√
1 + z

, βr = z
1 + z

, γrϕ = −a(1 + z) sin2 θ ,

γϕϕ = )

ϱ2 sin2 θ , γrr = 1 + z, γθθ = ϱ2, (7)

where z = 2r/ϱ2 [K04,37]. The KS spatial coordinates are no longer orthogonal (γrϕ ̸= 0). From
the space-time symmetries,

gµνξ
µξν = gtt = −α2 + β2,

gµνξ
µχν = gtϕ = γϕjβ

j = βϕ ,

gµνχ
µχν = gϕϕ = γϕϕ (8)

are the same in the BL and KS coordinates. We should note that the KS FIDOs are different from
the BL FIDOs (K04).
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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The event horizon, where grr = 0, is located at rH = 1 +
√

1 − a2. The ergosphere is the region
r < res = 1 +

√
1 − a2 cos2 θ , where the Killing vector ξµ is space-like, ξ2 = gtt = −α2 +β2 > 0.

At infinity, this space-time asymptotes to the flat one.
The local fiducial observer (FIDO) [23,29], whose world line is perpendicular to the absolute

space, is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνnν = (−α, 0, 0, 0). (3)

The AM of this observer is nϕ = 0, and thus FIDO is also a zero AM observer (ZAMO) [23]. Note
that the FIDO frame is not inertial, but it can be used as a convenient orthonormal basis to investigate
the local physics [23,43,44]. It should also be confirmed that FIDOs are time-like, physical observers
(i.e., nµnµ = −1).

In the BL coordinates, one has the following nonzero metric components:

α =
√

ϱ2(

)
, βϕ = −2ar

)
,

γϕϕ = )

ϱ2 sin2 θ , γrr = ϱ2

(
, γθθ = ϱ2, (4)

where

ϱ2 = r2 + a2 cos2 θ , ( = r2 + a2 − 2r, ) = (r2 + a2)2 − a2( sin2 θ . (5)

BL FIDOs rotate in the same direction as the BH with the coordinate angular velocity

+ ≡ dϕ

dt
= −βϕ = 2ar

)
. (6)

The BL coordinates have a well-known coordinate singularity (α = 0 and γrr = ∞, where ( = 0)
at the horizon. The BL FIDOs are physical observers only outside the horizon.

The KS coordinates have no coordinate singularity at the event horizon. The coordinates t and ϕ

are different from those in the BL coordinates. The nonzero metric components in this coordinate
system are:

α = 1√
1 + z

, βr = z
1 + z

, γrϕ = −a(1 + z) sin2 θ ,

γϕϕ = )

ϱ2 sin2 θ , γrr = 1 + z, γθθ = ϱ2, (7)

where z = 2r/ϱ2 [K04,37]. The KS spatial coordinates are no longer orthogonal (γrϕ ̸= 0). From
the space-time symmetries,

gµνξ
µξν = gtt = −α2 + β2,

gµνξ
µχν = gtϕ = γϕjβ

j = βϕ ,

gµνχ
µχν = gϕϕ = γϕϕ (8)

are the same in the BL and KS coordinates. We should note that the KS FIDOs are different from
the BL FIDOs (K04).
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B
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(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.
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susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)
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where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.
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of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as
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= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
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equations ∇∗
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∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).
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of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT
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µ = −FµνI

ν gives us the energy equation as
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+ ∇ ·
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E × H
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= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as
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(D × B) · m

]
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−(E · m)D − (H · m)B

+1
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(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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General	condi4ons	of	magnetosphere	

•  Kerr	space4me	with	
arbitrary	spin	a (fixed)	
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number	density	

D ·B = 0
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Steady	axisymmetric	field	

2.3. Kerr BH magnetosphere

2.3.1. Electromagnetic fields. We study the axisymmetric electromagnetic field in Kerr

space-time which is filled with a plasma. (The steadiness of the field is partly discarded

in Section 5.) We put the additional assumptions similarly to TT14: (1) The poloidal B

field produced by the external currents (whose distribution is symmetric with respect to the

equatorial plane) is threading the ergosphere. We call the field lines threading the ergosphere

‘ergospheric field lines’. (2) The plasma in the BH magnetosphere is dilute and collisionless,

but its number density is high enough to screen the electric field along the B field lines, i.e.

D ·B = 0. (20)

The energy density of the particles is much smaller than that of the electromagnetic fields.

(3) The gravitational force is negligible compared with the Lorentz force. (The gravitational

force overwhelms the Lorentz force in a region very close to the event horizon [44], but the

physical condition in that region hardly affects its exterior.)

The condition D ·B = 0 and equation (11) lead to E ·B = 0. In the steady state, we have

∇×E = 0, which means that E is a potential field, and the axisymmetry leads to Eϕ = 0.

Then one can write

E = −ω ×B, ω = ΩFm. (21)

Substituting this equation into ∇×E = 0, one obtains

Bi∂iΩF = 0. (22)

That is, ΩF is constant along each B field line. The E field is also described by Ei = −ΩF∂iΨ

in terms of the magnetic flux function Ψ, so that each B field line is equipotential and ΩF

corresponds to the potential difference between the field lines.

In the steady, axisymmetric state, the equations (14) and (15) are reduced to

∇ ·
(
−Hϕ

4π
Bp

)
= Bi∂i

(
−Hϕ

4π

)
= −(Jp ×Bp) ·m, (23)

∇ ·
(
ΩF

−Hϕ

4π
Bp

)
= Bi∂i

(
ΩF

−Hϕ

4π

)
= −E · Jp, (24)

where the subscript p denotes the poloidal component. Here one sees that the poloidal AM

and Poynting fluxes are described by

Lp =
−Hϕ

4π
Bp, Sp = ΩF

−Hϕ

4π
Bp, (25)

respectively. It should be noted that Hϕ = ∗Fµνξµχν and ΩF = −Ftθ/Fϕθ are the same in

the BL and KS coordinates (K04).

TT14 shows that the condition ΩF > 0 is inevitable for the ergospheric field lines in the

steady, axisymmetric state (see also K04; K09). Furthermore, for the ergospheric field lines

crossing the outer light surface (see Section 2.3.2), the condition

ΩF > 0, Hϕ ̸= 0 (26)

has to be maintained, i.e. the poloidal AM and Poynting fluxes are steadily non-zero (TT14).

The following discussion in this paper focuses on how their values are causally determined

and the role of the negative energies as measured in the coordinate basis.
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in terms of the magnetic flux function Ψ, so that each B field line is equipotential and ΩF

corresponds to the potential difference between the field lines.

In the steady, axisymmetric state, the equations (14) and (15) are reduced to

∇ ·
(
−Hϕ

4π
Bp

)
= Bi∂i

(
−Hϕ

4π

)
= −(Jp ×Bp) ·m, (23)

∇ ·
(
ΩF

−Hϕ

4π
Bp

)
= Bi∂i

(
ΩF

−Hϕ

4π

)
= −E · Jp, (24)

where the subscript p denotes the poloidal component. Here one sees that the poloidal AM

and Poynting fluxes are described by

Lp =
−Hϕ

4π
Bp, Sp = ΩF

−Hϕ

4π
Bp, (25)

respectively. It should be noted that Hϕ = ∗Fµνξµχν and ΩF = −Ftθ/Fϕθ are the same in

the BL and KS coordinates (K04).

TT14 shows that the condition ΩF > 0 is inevitable for the ergospheric field lines in the

steady, axisymmetric state (see also K04; K09). Furthermore, for the ergospheric field lines

crossing the outer light surface (see Section 2.3.2), the condition

ΩF > 0, Hϕ ̸= 0 (26)

has to be maintained, i.e. the poloidal AM and Poynting fluxes are steadily non-zero (TT14).

The following discussion in this paper focuses on how their values are causally determined

and the role of the negative energies as measured in the coordinate basis.
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is the energy density, and

S = 1
4π

E × H (19)

is the Poynting flux (Si = −αT i
t ).

2.3. Kerr BH magnetosphere
2.3.1. Electromagnetic fields
We study the axisymmetric electromagnetic field in Kerr space-time, which is filled with a plasma.
(The steadiness of the field is partly discarded in Sect. 5.) We set additional assumptions similar to
TT14: (1) The poloidal B field produced by the external currents (whose distribution is symmetric
with respect to the equatorial plane) is threading the ergosphere. We call the field lines threading
the ergosphere “ergospheric field lines”. (2) The plasma in the BH magnetosphere is dilute and
collisionless, but its number density is high enough to screen the electric field along the B field
lines, i.e.,

D · B = 0. (20)

The energy density of the particles is much smaller than that of the electromagnetic fields. (3) The
gravitational force is negligible compared with the Lorentz force. (The gravitational force over-
whelms the Lorentz force in a region very close to the event horizon [44], but the physical condition
in that region hardly affects its exterior.)

The condition D · B = 0 and Eq. (11) lead to E · B = 0. In the steady state, we have ∇ × E = 0,
which means that E is a potential field, and the axisymmetry leads to Eϕ = 0. Then one can write

E = −ω × B, ω = $Fm. (21)

Substituting this equation into ∇ × E = 0, one obtains

Bi∂i$F = 0. (22)

That is, $F is constant along each B field line. The E field is also described by Ei = −$F∂i& in
terms of the magnetic flux function &, so that each B field line is equipotential and $F corresponds
to the potential difference between the field lines.

In the steady, axisymmetric state, Eqs. (14) and (15) are reduced to

∇ ·
(−Hϕ

4π
Bp

)
= Bi∂i

(−Hϕ

4π

)
= −(Jp × Bp) · m, (23)

∇ ·
(

$F
−Hϕ

4π
Bp

)
= Bi∂i

(
$F

−Hϕ

4π

)
= −E · Jp, (24)

where the subscript p denotes the poloidal component. Here one sees that the poloidal AM and
Poynting fluxes are described by

Lp = −Hϕ

4π
Bp, Sp = $F

−Hϕ

4π
Bp, (25)

respectively. It should be noted that Hϕ = ∗Fµνξ
µχν and $F = −Ftθ/Fϕθ are the same in the BL

and KS coordinates (K04).
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and û− · D̂ < 0. Then, one has u+ · D > 0 and u− · D < 0 in the
coordinate basis, which lead to v+ · D > 0 and v− · D < 0 since
ut > 0. Therefore, the particle motions can carry Jp ∥ D. This
implies Jp ⊥ Bp. The force-free approximation FµνIν = 0 (i.e.
ρ E + J × B = 0) is violated in this case, since Eϕ = 0.

In summary, D2 > B2 is the necessary and sufficient condition
for driving the electric currents to flow across the poloidal B field
lines (and then obtaining Hϕ ̸= 0) under our assumptions (1)–(3)
listed in Section 4.1.

5 U N I P O L A R IN D U C T I O N O F K E R R BH S

We discuss the unipolar induction process in the Kerr BH magne-
tosphere where the poloidal B field lines threading the ergosphere
are open, i.e. crossing the outer light surface. We mainly utilize the
BL coordinates rather than the KS ones in this section.

The light surfaces are defined as follows. In the BL coordinates,
when B̂ϕ = Bϕ = 0, the coordinate angular velocity of the drift
motion is $F, as deduced in Appendix B. The light surfaces are
the surfaces where the four-velocity of a particle which is rotating
with the coordinate angular velocity $F becomes null, i.e. f ($F, r,
θ ) = 0, where we have defined

f ($F, r, θ) ≡ (ξ + $Fχ )2 = −α2 + γϕϕ($F − $)2. (28)

There can be two light surfaces. One has $F − $ = α/
√

γϕϕ at the
outer light surface (where $ < $F), while $F − $ = −α/

√
γϕϕ at

the inner light surface (where $ > $F).
From the condition D · B = 0, equations (17) and (23) lead to

D = − 1
α

(ω + β) × B. (29)

Calculating D2 ≡ DiDi, one obtains in the BL coordinates

D2 = 1
α2

($F − $)2B2
p , (30)

where B2
p ≡ BrBr + BθBθ . This equation can be rewritten by using

equation (28) (cf. Komissarov 2004a)

(B2 − D2)α2 = −B2f ($F, r, θ) + 1
α2

($F − $)2H 2
ϕ , (31)

where we have used Hϕ = αBϕ (see equation 18). This equation is
useful for the following discussion.

5.1 Origin of the electromotive force

We show that there is no steady, axisymmetric state with $F = 0
and Hϕ = 0 for the B field lines threading the ergosphere. The
condition $F = 0 means E = 0, and D = (−1/α)β × B. Equation
(31) is reduced to

(B2 − D2)α2 = B2(α2 − β2). (32)

In the ergosphere, where α2 − β2 < 0, one has D2 > B2. Note that
B2 − D2 = FµνFµν/2 is a scalar, and thus B2 − D2 < 0 is valid
also in the KS coordinates. The D field stronger than the B field
drives the poloidal currents to flow across the poloidal B field lines,
as discussed in Section 4.2. These poloidal currents generate Hϕ

(equation 25). Therefore, the state with $F = 0 and Hϕ = 0 cannot
be maintained.

The poloidal currents (i.e. the charged particle flows) across the
poloidal B field lines due to the strong D field in the ergosphere
change the charge density distribution. This reduces the strength
of the D field. (We show the charge density distribution calculated

Figure 2. D2/B2 calculated for the Wald vacuum solution in the BL co-
ordinates, as functions of r for θ = π/2 (solid), 0.45π (dashed), and 0.4π
(dotted). The spin parameter is set as a = 0.9. For comparison, D2/B2

(=β2/α2) in the plasma-filled case with $F = 0 and Hϕ = 0 for θ = π/2 is
plotted by the dot–dashed line. The vertical line represents the event horizon
radius rH = 1.436. The outer boundary of the ergosphere is res = 2 for
θ = π/2.

for the Wald Bp field in Appendix C, which might be helpful for
understanding the reduction of the D field strength by the charged
particle flows across the poloidal B field lines.) Then equation (30)
implies that $F > 0 is realized and one finds a non-zero E field.

From this argument, we can conclude that the origin of the electro-
motive force is ascribed to the ergosphere in the unipolar induction
of the BH magnetosphere with D · B = 0.

The generation of such a strong D field may be understood as a
phenomenon similar to the pulsar case. In the vacuum case, we can
straightforwardly calculate D2/B2 by using the Wald solution (see
Appendix A), and find that the region where D2 > B2 is only in
the vicinity of the event horizon at the equatorial plane, as shown
in Fig. 2. In contrast, one has D2/B2 = β2/α2 in the plasma-filled
case with $F = 0 and Hϕ = 0 (equation 32), which is larger than
unity in the entire ergosphere (see the dot–dashed line in Fig. 2). The
enhancement of the electric field in the plasma-filled case compared
to the vacuum case is quite similar to the pulsar case (see equations 6
and 7 in Section 2.1). The charge distribution of the plasma screen
the D field component along the B field but enhances the total
strength of the D field. Note that the condition D2 > B2 is not due
to a shortage of the number of charged particles like the gap with
non-zero electric field along the magnetic field lines (Blandford &
Znajek 1977; Beskin, Istomin & Pariev 1992; Hirotani & Okamoto
1998), but rather, it arises due to a sufficiency of the charged particles
sustaining D · B = 0.

The divergence of D2/B2 near the event horizon in Fig. 2 is not
physical, just due to the BL coordinate singularity. In Appendix A,
we calculate D2/B2 in the KS coordinates, which does not show
any divergence (see Fig. A1).

We also find that no B field lines can have the condition of $F = 0
and Hϕ ̸= 0. Along such B field lines, the poloidal electromagnetic
angular momentum flux is non-zero, but the poloidal Poynting flux
is zero (see equations 25 and 26). The current closure requires
that such a B field line should have a part where the poloidal
currents cross this field line. Focusing on the currents crossing
the field line at the far zone, one finds that the Jp × Bϕ force
acts on the matter, converting the poloidal momentum flux of the
electromagnetic field to that of the matter. The matter should also

MNRAS 442, 2855–2866 (2014)
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,

MNRAS 442, 2855–2866 (2014)
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and û− · D̂ < 0. Then, one has u+ · D > 0 and u− · D < 0 in the
coordinate basis, which lead to v+ · D > 0 and v− · D < 0 since
ut > 0. Therefore, the particle motions can carry Jp ∥ D. This
implies Jp ⊥ Bp. The force-free approximation FµνIν = 0 (i.e.
ρ E + J × B = 0) is violated in this case, since Eϕ = 0.

In summary, D2 > B2 is the necessary and sufficient condition
for driving the electric currents to flow across the poloidal B field
lines (and then obtaining Hϕ ̸= 0) under our assumptions (1)–(3)
listed in Section 4.1.

5 U N I P O L A R IN D U C T I O N O F K E R R BH S

We discuss the unipolar induction process in the Kerr BH magne-
tosphere where the poloidal B field lines threading the ergosphere
are open, i.e. crossing the outer light surface. We mainly utilize the
BL coordinates rather than the KS ones in this section.

The light surfaces are defined as follows. In the BL coordinates,
when B̂ϕ = Bϕ = 0, the coordinate angular velocity of the drift
motion is $F, as deduced in Appendix B. The light surfaces are
the surfaces where the four-velocity of a particle which is rotating
with the coordinate angular velocity $F becomes null, i.e. f ($F, r,
θ ) = 0, where we have defined

f ($F, r, θ) ≡ (ξ + $Fχ )2 = −α2 + γϕϕ($F − $)2. (28)

There can be two light surfaces. One has $F − $ = α/
√

γϕϕ at the
outer light surface (where $ < $F), while $F − $ = −α/

√
γϕϕ at

the inner light surface (where $ > $F).
From the condition D · B = 0, equations (17) and (23) lead to

D = − 1
α

(ω + β) × B. (29)

Calculating D2 ≡ DiDi, one obtains in the BL coordinates

D2 = 1
α2

($F − $)2B2
p , (30)

where B2
p ≡ BrBr + BθBθ . This equation can be rewritten by using

equation (28) (cf. Komissarov 2004a)

(B2 − D2)α2 = −B2f ($F, r, θ) + 1
α2

($F − $)2H 2
ϕ , (31)

where we have used Hϕ = αBϕ (see equation 18). This equation is
useful for the following discussion.

5.1 Origin of the electromotive force

We show that there is no steady, axisymmetric state with $F = 0
and Hϕ = 0 for the B field lines threading the ergosphere. The
condition $F = 0 means E = 0, and D = (−1/α)β × B. Equation
(31) is reduced to

(B2 − D2)α2 = B2(α2 − β2). (32)

In the ergosphere, where α2 − β2 < 0, one has D2 > B2. Note that
B2 − D2 = FµνFµν/2 is a scalar, and thus B2 − D2 < 0 is valid
also in the KS coordinates. The D field stronger than the B field
drives the poloidal currents to flow across the poloidal B field lines,
as discussed in Section 4.2. These poloidal currents generate Hϕ

(equation 25). Therefore, the state with $F = 0 and Hϕ = 0 cannot
be maintained.

The poloidal currents (i.e. the charged particle flows) across the
poloidal B field lines due to the strong D field in the ergosphere
change the charge density distribution. This reduces the strength
of the D field. (We show the charge density distribution calculated

Figure 2. D2/B2 calculated for the Wald vacuum solution in the BL co-
ordinates, as functions of r for θ = π/2 (solid), 0.45π (dashed), and 0.4π
(dotted). The spin parameter is set as a = 0.9. For comparison, D2/B2

(=β2/α2) in the plasma-filled case with $F = 0 and Hϕ = 0 for θ = π/2 is
plotted by the dot–dashed line. The vertical line represents the event horizon
radius rH = 1.436. The outer boundary of the ergosphere is res = 2 for
θ = π/2.

for the Wald Bp field in Appendix C, which might be helpful for
understanding the reduction of the D field strength by the charged
particle flows across the poloidal B field lines.) Then equation (30)
implies that $F > 0 is realized and one finds a non-zero E field.

From this argument, we can conclude that the origin of the electro-
motive force is ascribed to the ergosphere in the unipolar induction
of the BH magnetosphere with D · B = 0.

The generation of such a strong D field may be understood as a
phenomenon similar to the pulsar case. In the vacuum case, we can
straightforwardly calculate D2/B2 by using the Wald solution (see
Appendix A), and find that the region where D2 > B2 is only in
the vicinity of the event horizon at the equatorial plane, as shown
in Fig. 2. In contrast, one has D2/B2 = β2/α2 in the plasma-filled
case with $F = 0 and Hϕ = 0 (equation 32), which is larger than
unity in the entire ergosphere (see the dot–dashed line in Fig. 2). The
enhancement of the electric field in the plasma-filled case compared
to the vacuum case is quite similar to the pulsar case (see equations 6
and 7 in Section 2.1). The charge distribution of the plasma screen
the D field component along the B field but enhances the total
strength of the D field. Note that the condition D2 > B2 is not due
to a shortage of the number of charged particles like the gap with
non-zero electric field along the magnetic field lines (Blandford &
Znajek 1977; Beskin, Istomin & Pariev 1992; Hirotani & Okamoto
1998), but rather, it arises due to a sufficiency of the charged particles
sustaining D · B = 0.

The divergence of D2/B2 near the event horizon in Fig. 2 is not
physical, just due to the BL coordinate singularity. In Appendix A,
we calculate D2/B2 in the KS coordinates, which does not show
any divergence (see Fig. A1).

We also find that no B field lines can have the condition of $F = 0
and Hϕ ̸= 0. Along such B field lines, the poloidal electromagnetic
angular momentum flux is non-zero, but the poloidal Poynting flux
is zero (see equations 25 and 26). The current closure requires
that such a B field line should have a part where the poloidal
currents cross this field line. Focusing on the currents crossing
the field line at the far zone, one finds that the Jp × Bϕ force
acts on the matter, converting the poloidal momentum flux of the
electromagnetic field to that of the matter. The matter should also

MNRAS 442, 2855–2866 (2014)
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f =0 :	light	surfaces	(same	in	BL	&	KS	coordinates)	

BL	coordinates	

The	inner	light	surface	for	0	<	ΩF	<	ΩH	
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Steady	state	for	field	lines	threading	
equatorial	plane	
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•  From	the	symmetry	

•  D2 > B2 is	possible	
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r · Sp = �E · Jp

r · Lp = �(Jp ⇥Bp) ·m

Similar	to	unipolar	induc4on	
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Figure 3. Escape of the split-monopole magnetic field from a Schwarzschild black hole. Left panel: Magnetic flux surfaces of the split-monopole solution,
which was used as an initial solution in these numerical simulations. Right panel: Magnetic flux surfaces of the numerical solution at t = 5.
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Figure 4. Magnetospheric Wald problem. Left panel: The angular velocity of magnetic field lines. There are 15 contours equally spaced between 0 and 0.67.
The angular velocity first gradually increased towards the axis but then reaches a maximum and goes slightly down. The thick lines show the ergosphere (outer
line) and the inner light surface (inner line). Middle panel: The magnetic flux surfaces. Right panel: The distribution of (B2 − D2)/ max(B2, D2). There are 15
contours equally spaced between −0.12 and 1.0. This quantity monotonically decreases towards the current sheet in the equatorial plane within the ergosphere.
The thick line shows the ergosphere.
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Field	line	ΩF	 D2-B2	

(Komissarov	2004)	

But	note	that	few	field	lines	are	threading	the	equatorial	plane	in	MHD	simula4ons	
(Komissarov	2005).	



Par4cles	near	equatorial	plane	
Causal production of Poynting flux in BZ process 5
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Figure 1. Motion of the positively (negatively) charged particle
near the equatorial plane in the BL coordinates. This schematic
picture is applicable both in the BL coordinate basis and in the
BL FIDO orthonormal basis.

the field lines. (Note that B2 −D2 = FµνF
µν/2 is a scalar,

so that one has D2 > B2 also in the KS coordinates.) This
leads to Hϕ ̸= 0 above the current crossing region. The value
of ΩF will be regulated so that the current crossing region
is finite (see Figure 4 of TT14), and thus it is expected to
depend on the microphysics in the ergosphere. The values
of ΩF and Hϕ will be determined by the conditions around
the equatorial plane and at infinity.

In the current crossing region, D is in the opposite di-
rection of E, i.e. D · E < 0, as seen in the BL coordinates
(see Figure 3 of TT14). This leads to (Jp×Bp) ·m < 0 and
E ·Jp < 0, which generate the poloidal electromagnetic AM
and Poynting fluxes (see equations 23 and 24). (We confirm
that D ·E < 0 also in the KS coordinates in Appendix B.)

All the ergospheric field lines crossing the outer light
surface have ΩF > 0 and Hϕ < 0 for the northern hemi-
sphere (Hϕ > 0 for the southern hemisphere), while ‘the
last ergospheric field line’, which passes the equatorial plane
at r = res, has ΩF = Hϕ = 0, along which the return current
flows upward (downward) in the northern (southern) hemi-
sphere (see Figure 3 below). Correspondingly, the current
crossing region extends over rH < r < res.

3.2 Production of particle negative energy

Equations (23) and (24) imply that the particles in the cur-
rent crossing region lose their AMs and energies by the feed-
back, +(Jp ×Bp) ·m and +E · Jp, from the production of
the electromagnetic AM and Poynting fluxes. We find that
this feedback can make the particles have negative energy
as measured in the coordinate basis.

The production of the particle negative energy can be
explained by showing the particle motions in the local or-
thonormal basis carried with the BL FIDOs, in which the
equation of a particle motion with four-velocity u, three-
velocity v, charge q, and mass m is written as

dûi

dt̂
=

q
m

(D̂i + ϵijkv̂
jB̂k), (30)

where Ĉi denotes the vector component in respect of the
FIDO’s orthonormal basis (Thorne, Price & Macdonald
1986, TT14). In this basis one can investigate local, instan-
taneous particle motions under the Lorentz force as special

−1

−0.5

0

0.5

1

0.1 1 10 100 1000

v̂r
,v̂

ϕ

t̂/τgy

D/B = 1.0

D/B = 1.1

D/B = 1.3v̂r

v̂ϕ

Figure 2. Velocity components v̂r (upper three lines with pos-
itive values) and v̂ϕ (lower three lines with negative values) of
the posively charged particle in the fixed BL FIDO’s orthonor-
mal basis as functions of time normalized by gyration time scale
τgy = m/q|B̂|. The solid, dashed, and dot-dashed lines are cal-
culation results for |D̂|/|B̂| = 1.0, 1.1, and 1.3, respectively. The
initial conditions are v̂r = v̂ϕ = 0.

relativistic dynamics. The AM and energy per mass of a
particle as measured in the coordinate basis are

lp = uµχ
µ = γϕϕ(v

ϕ − Ω)ut

=
√
γϕϕv̂

ϕût, (31)

ep = −uµξ
µ = [α2 + γϕϕΩ(v

ϕ − Ω)]ut

= (α+
√
γϕϕΩv̂

ϕ)ût, (32)

where we have used v̂ϕ = (
√
γϕϕ/α)(v

ϕ − Ω) (cf. Punsly
2008).

Near the equatorial plane, the B̂ field is approximately
perpendicular to that plane, because Bϕ = Hϕ/α = 0 at
that plane, and then the D̂ field is radial in that plane
(see Figure 1). The motion of a test particle can be eas-
ily solved in such fields (Landau & Lifshitz 1975). For the
case of D2 ! B2 which we focus on, the positively (nega-
tively) charged particles are accelerated in the directions of
D̂ (−D̂) and D̂ × B̂. In Figure 2, we show the calculation
results for |D̂|/|B̂| = 1.0, 1.1, and 1.3, where we fix the basis
and assume that the electromagnetic fields are uniform. For
D2 = B2 (i.e. |D̂|/|B̂| = 1.0) in particular, the particles are
strongly accelerated in the direction of D̂×B̂, and then one
obtains

v̂ϕ ≈ −1 (33)

in several tens of gyro radius scale ℓgy = m/q|B̂| (not nor-
malized by the gravitational radius). As a consequence, from
equations (31) and (32), one has

lp ≈ −√
γϕϕû

t < 0, (34)

ep ≈ (α−
√

β2)ût < 0, (35)

in the ergosphere, where α2 < β2 = γϕϕΩ
2. ForD2 > B2, v̂ϕ

does not approach −1, so that ep > 0 near the boundary of
the ergosphere where α2 = β2. However, α → 0 for r → rH
implies that ep < 0 can be realized near the horizon. Here
we emphasize that lp and ep are scalars, and thus lp < 0
and ep < 0 also in the KS coordinates.
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Figure 1. Motion of the positively (negatively) charged particle
near the equatorial plane in the BL coordinates. This schematic
picture is applicable both in the BL coordinate basis and in the
BL FIDO orthonormal basis.

the field lines. (Note that B2 −D2 = FµνF
µν/2 is a scalar,

so that one has D2 > B2 also in the KS coordinates.) This
leads to Hϕ ̸= 0 above the current crossing region. The value
of ΩF will be regulated so that the current crossing region
is finite (see Figure 4 of TT14), and thus it is expected to
depend on the microphysics in the ergosphere. The values
of ΩF and Hϕ will be determined by the conditions around
the equatorial plane and at infinity.

In the current crossing region, D is in the opposite di-
rection of E, i.e. D · E < 0, as seen in the BL coordinates
(see Figure 3 of TT14). This leads to (Jp×Bp) ·m < 0 and
E ·Jp < 0, which generate the poloidal electromagnetic AM
and Poynting fluxes (see equations 23 and 24). (We confirm
that D ·E < 0 also in the KS coordinates in Appendix B.)

All the ergospheric field lines crossing the outer light
surface have ΩF > 0 and Hϕ < 0 for the northern hemi-
sphere (Hϕ > 0 for the southern hemisphere), while ‘the
last ergospheric field line’, which passes the equatorial plane
at r = res, has ΩF = Hϕ = 0, along which the return current
flows upward (downward) in the northern (southern) hemi-
sphere (see Figure 3 below). Correspondingly, the current
crossing region extends over rH < r < res.

3.2 Production of particle negative energy

Equations (23) and (24) imply that the particles in the cur-
rent crossing region lose their AMs and energies by the feed-
back, +(Jp ×Bp) ·m and +E · Jp, from the production of
the electromagnetic AM and Poynting fluxes. We find that
this feedback can make the particles have negative energy
as measured in the coordinate basis.

The production of the particle negative energy can be
explained by showing the particle motions in the local or-
thonormal basis carried with the BL FIDOs, in which the
equation of a particle motion with four-velocity u, three-
velocity v, charge q, and mass m is written as

dûi

dt̂
=

q
m

(D̂i + ϵijkv̂
jB̂k), (30)

where Ĉi denotes the vector component in respect of the
FIDO’s orthonormal basis (Thorne, Price & Macdonald
1986, TT14). In this basis one can investigate local, instan-
taneous particle motions under the Lorentz force as special
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mal basis as functions of time normalized by gyration time scale
τgy = m/q|B̂|. The solid, dashed, and dot-dashed lines are cal-
culation results for |D̂|/|B̂| = 1.0, 1.1, and 1.3, respectively. The
initial conditions are v̂r = v̂ϕ = 0.

relativistic dynamics. The AM and energy per mass of a
particle as measured in the coordinate basis are

lp = uµχ
µ = γϕϕ(v

ϕ − Ω)ut

=
√
γϕϕv̂

ϕût, (31)

ep = −uµξ
µ = [α2 + γϕϕΩ(v

ϕ − Ω)]ut

= (α+
√
γϕϕΩv̂

ϕ)ût, (32)

where we have used v̂ϕ = (
√
γϕϕ/α)(v

ϕ − Ω) (cf. Punsly
2008).

Near the equatorial plane, the B̂ field is approximately
perpendicular to that plane, because Bϕ = Hϕ/α = 0 at
that plane, and then the D̂ field is radial in that plane
(see Figure 1). The motion of a test particle can be eas-
ily solved in such fields (Landau & Lifshitz 1975). For the
case of D2 ! B2 which we focus on, the positively (nega-
tively) charged particles are accelerated in the directions of
D̂ (−D̂) and D̂ × B̂. In Figure 2, we show the calculation
results for |D̂|/|B̂| = 1.0, 1.1, and 1.3, where we fix the basis
and assume that the electromagnetic fields are uniform. For
D2 = B2 (i.e. |D̂|/|B̂| = 1.0) in particular, the particles are
strongly accelerated in the direction of D̂×B̂, and then one
obtains

v̂ϕ ≈ −1 (33)

in several tens of gyro radius scale ℓgy = m/q|B̂| (not nor-
malized by the gravitational radius). As a consequence, from
equations (31) and (32), one has

lp ≈ −√
γϕϕû

t < 0, (34)

ep ≈ (α−
√

β2)ût < 0, (35)

in the ergosphere, where α2 < β2 = γϕϕΩ
2. ForD2 > B2, v̂ϕ

does not approach −1, so that ep > 0 near the boundary of
the ergosphere where α2 = β2. However, α → 0 for r → rH
implies that ep < 0 can be realized near the horizon. Here
we emphasize that lp and ep are scalars, and thus lp < 0
and ep < 0 also in the KS coordinates.
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the field lines. (Note that B2 −D2 = FµνF
µν/2 is a scalar,

so that one has D2 > B2 also in the KS coordinates.) This
leads to Hϕ ̸= 0 above the current crossing region. The value
of ΩF will be regulated so that the current crossing region
is finite (see Figure 4 of TT14), and thus it is expected to
depend on the microphysics in the ergosphere. The values
of ΩF and Hϕ will be determined by the conditions around
the equatorial plane and at infinity.

In the current crossing region, D is in the opposite di-
rection of E, i.e. D · E < 0, as seen in the BL coordinates
(see Figure 3 of TT14). This leads to (Jp×Bp) ·m < 0 and
E ·Jp < 0, which generate the poloidal electromagnetic AM
and Poynting fluxes (see equations 23 and 24). (We confirm
that D ·E < 0 also in the KS coordinates in Appendix B.)

All the ergospheric field lines crossing the outer light
surface have ΩF > 0 and Hϕ < 0 for the northern hemi-
sphere (Hϕ > 0 for the southern hemisphere), while ‘the
last ergospheric field line’, which passes the equatorial plane
at r = res, has ΩF = Hϕ = 0, along which the return current
flows upward (downward) in the northern (southern) hemi-
sphere (see Figure 3 below). Correspondingly, the current
crossing region extends over rH < r < res.

3.2 Production of particle negative energy

Equations (23) and (24) imply that the particles in the cur-
rent crossing region lose their AMs and energies by the feed-
back, +(Jp ×Bp) ·m and +E · Jp, from the production of
the electromagnetic AM and Poynting fluxes. We find that
this feedback can make the particles have negative energy
as measured in the coordinate basis.

The production of the particle negative energy can be
explained by showing the particle motions in the local or-
thonormal basis carried with the BL FIDOs, in which the
equation of a particle motion with four-velocity u, three-
velocity v, charge q, and mass m is written as

dûi

dt̂
=

q
m

(D̂i + ϵijkv̂
jB̂k), (30)

where Ĉi denotes the vector component in respect of the
FIDO’s orthonormal basis (Thorne, Price & Macdonald
1986, TT14). In this basis one can investigate local, instan-
taneous particle motions under the Lorentz force as special
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τgy = m/q|B̂|. The solid, dashed, and dot-dashed lines are cal-
culation results for |D̂|/|B̂| = 1.0, 1.1, and 1.3, respectively. The
initial conditions are v̂r = v̂ϕ = 0.

relativistic dynamics. The AM and energy per mass of a
particle as measured in the coordinate basis are

lp = uµχ
µ = γϕϕ(v

ϕ − Ω)ut

=
√
γϕϕv̂

ϕût, (31)

ep = −uµξ
µ = [α2 + γϕϕΩ(v

ϕ − Ω)]ut

= (α+
√
γϕϕΩv̂

ϕ)ût, (32)

where we have used v̂ϕ = (
√
γϕϕ/α)(v

ϕ − Ω) (cf. Punsly
2008).

Near the equatorial plane, the B̂ field is approximately
perpendicular to that plane, because Bϕ = Hϕ/α = 0 at
that plane, and then the D̂ field is radial in that plane
(see Figure 1). The motion of a test particle can be eas-
ily solved in such fields (Landau & Lifshitz 1975). For the
case of D2 ! B2 which we focus on, the positively (nega-
tively) charged particles are accelerated in the directions of
D̂ (−D̂) and D̂ × B̂. In Figure 2, we show the calculation
results for |D̂|/|B̂| = 1.0, 1.1, and 1.3, where we fix the basis
and assume that the electromagnetic fields are uniform. For
D2 = B2 (i.e. |D̂|/|B̂| = 1.0) in particular, the particles are
strongly accelerated in the direction of D̂×B̂, and then one
obtains

v̂ϕ ≈ −1 (33)

in several tens of gyro radius scale ℓgy = m/q|B̂| (not nor-
malized by the gravitational radius). As a consequence, from
equations (31) and (32), one has

lp ≈ −√
γϕϕû

t < 0, (34)

ep ≈ (α−
√

β2)ût < 0, (35)

in the ergosphere, where α2 < β2 = γϕϕΩ
2. ForD2 > B2, v̂ϕ

does not approach −1, so that ep > 0 near the boundary of
the ergosphere where α2 = β2. However, α → 0 for r → rH
implies that ep < 0 can be realized near the horizon. Here
we emphasize that lp and ep are scalars, and thus lp < 0
and ep < 0 also in the KS coordinates.
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Figure 4. Electromagnetic field structures of the BZ split-monopole solution as measured in the BL (left) and KS (right) coordinates.

We confirm this fact more generally in the KS coordi-
nates. From the calculation shown in Appendix B, we obtain

(B2 −D2)α2 = −BθBθf(ΩF, r, θ) + (BϕBϕ +BrBr)
ϱ2∆
Σ

+4r sin2 θ (ΩF − Ω)BrBϕ

+
4r2

Σ

[
1−

(
ΩF

Ω

)2
(
1− ϱ4

Σ

)]
(Br)2,(40)

where Σ > ϱ4 is generally satisfied (see equation B2). For the
BZ split-monopole solution as an example, in which Br > 0
and Bϕ < 0 at the northern hemisphere (see Section 4.2
below), Bθ ≈ 0, and ΩF ≈ ΩH/2, one has B2 − D2 > 0
in the region where Ω > ΩF. We see that B2 − D2 > 0 is
generally satisfied where Bθ is weak, BrBϕ < 0, and Ω >
ΩF. (Note that for the field lines threading the equatorial
plane, Bθ is the dominant field component near that plane,
where B2 −D2 < 0 can be realized.)

Therefore, for the field lines threading the horizon, the
force-free condition can be satisfied, and then no poloidal
current is driven to flow across the field lines in the steady
state. No AM or energy is transferred from the particles
to the electromagnetic fields. These properties clearly indi-
cate that the flux production mechanism for the field lines
threading the horizon is different from that for the field lines
threading the equatorial plane.

4.2 Electromagnetic structure

Here we focus on the electromagnetic structure of the BZ
split-monopole solution, and show that some properties are
measured differently in the BL and KS coordinates. This
analysis is useful for finding the essential physics in BZ pro-
cess for the field lines threading the horizon, which should
be independent of the adopted coordinate systems.

The split-monopole field is given by

Br = const.× sin θ
√
γ
, Bθ ≈ 0, (41)

which satisfies ∇ · B = 0. (Note that sin θ/
√
γ → 1/r2 for

r → ∞.) In the BL coordinates, one has

Bϕ =
1
α
Hϕ, (42)

Dθ =
−1
α

(ΩF − Ω)Br√γ. (43)

As is well known, Dθ changes its sign at the point where
Ω = ΩF (see Figure 4, left). We can see that Bϕ and Dθ

diverge as r → rH, while Br√γ is finite, and one has

|B̂r| ≪ |B̂ϕ| ∼ |D̂θ| (44)

near the horizon.
On the other hand, in the KS coordinates, one has

Bϕ =
αHϕ −Br sin2 θ(2rΩF − a)

∆ sin2 θ
, (45)

Dθ =
−1
α

(ΩFB
r − βrBϕ)

√
γ. (46)

Equation (45) is derived by rewriting Hϕ in equation (12)
with equation (11) and (B3) (K04). The regularity condition
at the horizon (∆ = 0) for the steady flow to pass with no
diverging physical quantities is given by

αHϕ = Br sin2 θ(2rΩF − a), (47)

which is equivalent to equation (38). We calculate Bϕ and
Dθ from r = rH towards infinity for small values of a and
ΩF = ΩH/2, and find that Bϕ < 0, that Dθ does not change
its sign (see Figure 4, right), and that

|B̂r| ≫ |B̂ϕ| ∼ |D̂θ| (48)

near the horizon. That is, the D field in the KS coordinates
is not only so weak that it cannot drive the cross-field current
but also it does not change its direction, i.e. D ·E > 0 in the
whole region. This situation is in stark contrast to the field
lines threading the equatorial plane, for which the cross-field
current is driven by the strong D field with D ·E < 0.

In the BL coordinates the point where Ω = ΩF and D =
0 appears special, and it was considered as a key in some
previous analytical discussions (e.g. Okamoto 2006, K09).
However, the physical quantities are clearly continuous or
seamless in the KS coordinates, as shown in Figure 4.

Below we generically consider the cases in which the
force-free condition is satisfied along the field lines threading
the horizon (see Section 4.1). In those cases, an essential
point is that the outward AM and Poynting fluxes, Lp =
−HϕBp/4π and Sp = −ΩFHϕBp/4π, are seamless along
each field line from the event horizon to infinity in the steady
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Consequently, the issue on the field lines threading the horizon is well defined as “How is

the steady current structure causally built?” We consider that this issue may not be resolved

by investigating only the steady-state structure. The phenomena at the horizon should be a

result from those having occurred outside the horizon in the prior times t. In Section 5, we

address this issue by discussing a time-dependent state evolving towards the steady state.

4.4. Negative electromagnetic energy?

Lasota et al. [31] and Koide & Baba [32] argue that the outward Poynting flux is mediated by

‘inflow of the negative electromagnetic energy’ (see also K09). Although this interpretation

analogous to the mechanical Penrose process looks attractive for causal production of the

Poynting flux, it is difficult to consider the flow of the steady field (rather than waves).

Furthermore, we find that the sign of the electromagnetic energy density depends on the

coordinates.

In the BL coordinates, the electromagnetic AM and energy densities can be written down

by (K09)

l =
1

4πα
γϕϕ(ΩF − Ω)(BθBθ +BrBr), (49)

e =
1

8πα

[
α2B2 + γϕϕ(Ω

2
F − Ω2)(BθBθ +BrBr)

]
. (50)

Thus l and e is negative (and diverges) near the horizon when ΩF < ΩH. This condition is

satisfied in the BZ split-monopole solution.

On the other hand, in the KS coordinates, the calculations shown in Appendix B lead to

4παl =
Σ sin2 θ

ϱ2
(ΩF − Ω)BθBθ − 2r sin2 θBrBϕ + ΩF(ϱ

2 + 2r) sin2 θ(Br)2 (51)

8παe =

[
Σ sin2 θ

ϱ2
(ΩF + Ω)(ΩF − Ω) +

ϱ2∆

Σ

]
BθBθ +∆ sin2 θ(Bϕ)2

−2a sin2 θBrBϕ +
[
1 + Ω2

F(ϱ
2 + 2r) sin2 θ

]
(Br)2. (52)

In the BZ split-monopole solution as an example, in whichBθ ≈ 0 andBϕ < 0 in the northern

hemisphere, one has

l > 0, e > 0. (53)

This condition is generally valid when Bθ is weak and BrBϕ < 0.

Note that

l = αT t
ϕ = −Tµ

ν nµχ
ν , e = −αT t

t = Tµ
ν nµξ

ν (54)

depend on the coordinates, while Ttϕ = Tµνξµχν and Ttt = Tµνξµξν are scalars. The concept

of the negative electromagnetic energy density depends on the coordinates, and thus it is

not physically essential.3

3 Lasota et al. [31] argue that the electromagnetic energy density calculated in the KS coordinates
is negative near the horizon, but they define the electromagnetic energy density as Tµν lµξν where
lµ = αnµ and nµ is the four-velocity of the BL FIDO.
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advection speed, like a steady particle energy flux Fp = (−αρmUt)Up (see Sect. 4.4 for a related
discussion). The Poynting flux is just a result of the currents flowing in the plasma with the potential
differences.

Consequently, the issue on the field lines threading the horizon is well defined as “How is the steady
current structure causally built?" We consider that this issue may not be resolved by investigating
only the steady-state structure. The phenomena at the horizon should be a result of those having
occurred outside the horizon in the prior times t. In Sect. 5, we address this issue by discussing a
time-dependent state evolving towards the steady state.

4.4. Negative electromagnetic energy?
Lasota et al. [31] and Koide and Baba [32] argue that the outward Poynting flux is mediated by “inflow
of the negative electromagnetic energy” (see also K09). Although this interpretation, analogous to
the mechanical Penrose process, looks attractive for causal production of the Poynting flux, it is
difficult to consider the flow of the steady field (rather than waves). Furthermore, we find that the
sign of the electromagnetic energy density depends on the coordinates.

In the BL coordinates, the electromagnetic AM and energy densities can be written down as (K09)

l = 1
4πα

γϕϕ(&F − &)(BθBθ + BrBr), (49)

e = 1
8πα

[
α2B2 + γϕϕ(&2

F − &2)(BθBθ + BrBr)
]

. (50)

Thus l and e are negative (and diverge) near the horizon when &F < &H. This condition is satisfied
in the BZ split-monopole solution.

On the other hand, in the KS coordinates, the calculations shown in Appendix B lead to

4παl = ( sin2 θ

ϱ2 (&F − &)BθBθ − 2r sin2 θBrBϕ + &F(ϱ2 + 2r) sin2 θ(Br)2 (51)

8παe =
[

( sin2 θ

ϱ2 (&F + &)(&F − &) + ϱ2*

(

]

BθBθ + * sin2 θ(Bϕ)2

− 2a sin2 θBrBϕ +
[
1 + &2

F(ϱ2 + 2r) sin2 θ
]
(Br)2. (52)

In the example of the BZ split-monopole solution, in which Bθ ≈ 0 and Bϕ < 0 in the northern
hemisphere, one has

l > 0, e > 0. (53)

This condition is generally valid when Bθ is weak and BrBϕ < 0.
Note that

l = αT t
ϕ = −Tµ

ν nµχν , e = −αT t
t = Tµ

ν nµξν (54)
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Origin	of	Schwarzschild	space4me	
The	source	of	the	Schwarzschild	gravita4onal	field	is	the	mass	
at	the	center,	but	this	informa4on	does	not	escape	to	outside.	
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Fig. 6 Space-time diagram of the inner and outer boundaries of the force-free region in

the BL and KS coordinates. In each diagram the left and right long arrows correspond to

the motions of the inner and outer boundaries, respectively, while the small arrows to the

propagation of light.

propagate towards the horizon, r → rH for t → ∞. In the KS coordinates, the inflow can pass

the horizon in a finite time of t = tH. In both of the coordinates, when the inner boundary

approaches the horizon, the outward signal from it becomes slower and slower and it can

hardly affect the force-free region. This will lead to the steady state.5

Although such a time-dependent state should be analyzed numerically, we use a toy

model to qualitatively illustrate the process of building the poloidal current

structure. This model assumes that (1) Bp is fixed to be split-monopole

∂r(
√
γBr) = 0, Bθ = 0 (55)

in the whole region, and that (2) the Kerr BH magnetosphere is separated into the force-

free region and the vacuum by geometrically thin boundaries moving radially. For further

simplicity, (3) we assume that the force-free region and the vacuum have their steady-state

structures, but the values of the physical quantities, particularly ΩF and Hϕ, keep updated

as determined by the varying conditions of the inner and outer boundaries.

Some of these assumptions would be violated in realistic experiments. Nevertheless we

consider that our toy model is useful to suggest the key points for resolving the issue

on the causality in the coordinate basis (Section 5.1.4), which also allows us to understand

how the steady state is maintained (Section 5.3).

5.1. Analysis in the BL coordinates

5.1.1. The force-free and vacuum regions. The electromagnetic quantities in the force-free

region are given as follows. The condition D ·B = 0 and ∇×E = 0 lead to

Eff
ϕ = Eff

r = 0, Eff
θ = −√

γΩFB
r, (56)

5 In some MHD simulations, a static plasma (not a vacuum) is initially given and then a central
star starts rotating [54] or a BH starts rotating [55]. They show that a switching-on wave propagates
outward and that the outflow region settles down to the steady state after it passes the outer fast
magnetosonic point [22].

16/27

Vacuum	→	Steady	FF	state	
Causal production of Poynting flux in BZ process 9

Br!

!"#$$%!

&'(#)*+()),-."/%"!

V<0!

Jr!

Sr!

Figure 5. Schematic picture of a time-dependent process evolv-
ing towards the steady state. The plasma particles keep injected
between the inner and outer light surfaces, and the vacuum is
being filled with those plasma. This picture focuses on the inflow.
The inner boundary of the force-free region propagates towards
the event horizon, producing the steady poloidal current structure
and the outward AM and Poynting fluxes.

agate into the vacuum, i.e. the radius of the outer bound-
ary r → ∞ for t → ∞. In the BL coordinates, the inflow
also continues to propagate towards the horizon, r → rH
for t → ∞. In the KS coordinates, the inflow can pass the
horizon in a finite time of t = tH. In both of the coordi-
nates, when the inner boundary approaches the horizon, the
outward signal from it becomes slower and slower and it
can hardly affect the force-free region. This will lead to the
steady state.5

Although such a time-dependent state should be ana-
lyzed numerically, we try to illustrate essential physics and
concept analytically by using a toy model. This model as-
sumes that (1) Bp is fixed to be split-monopole

∂r(
√
γBr) = 0, Bθ = 0 (55)

in the whole region, and that (2) the Kerr BH magneto-
sphere is separated into the force-free region and the vac-
uum by geometrically thin boundaries moving radially. For
further simplicity, (3) we assume that the force-free region
and the vacuum have their steady-state structures, but the
values of the physical quantities, particularly ΩF and Hϕ,
keep updated as determined by the varying conditions of
the inner and outer boundaries.

Some of these assumptions would be violated in realistic
experiments. Nevertheless we consider that our toy model
is sufficient to show the concept for resolving the issue on
the causality in the coordinate basis, which also allows us
to understand how the steady state is maintained, and to

5 In some MHD simulations, a static plasma (not a vacuum) is
initially given and then a central star starts rotating (Bogovalov
& Tsinganos 1999) or a BH starts rotating (Komissarov 2004b).
They show that a switching-on wave propagates outward and that
the outflow region settles down to the steady state after it passes
the outer fast magnetosonic point (Beskin 2010).

propose a framework for studies on more detailed plasma
physics.

5.1 Analysis in the BL coordinates

5.1.1 The force-free and vacuum regions

The electromagnetic quantities in the force-free region are
given as follows. The condition D · B = 0 and ∇ × E = 0
lead to

Eff
ϕ = Eff

r = 0, Eff
θ = −√

γΩFB
r, (56)

where

∂rΩF = 0. (57)

Hereafter we will put the subscript and superscript ‘ff’ on
the quantities in the force-free region. Equations (11) and
(12) give us

Dff
ϕ = Dff

r = 0, Dff
θ =

√
γ

α
(Ω− ΩF)B

r, (58)

Hff
ϕ = αBff

ϕ , Hff
r = αBr −

√
γΩDθ

ff , Hff
θ = 0. (59)

Equation ∇×H = 4πJ and the force-free condition lead to

∂rH
ff
ϕ = −4π

√
γJθ

ff = 0, (60)

∂θH
ff
ϕ = 4π

√
γJr

ff , (61)

These twe equations imply that ∂r(
√
γJr

ff) = 0. We focus on
the northern hemisphere, where Jr

ff < 0 and Hff
ϕ < 0. The

return current Jr
ff > 0 is assumed to be concentrated on the

equatorial plane. The poloidal AM and Poynting fluxes are

Lr
ff =

−Hff
ϕ

4π
Br, Sr

ff = ΩF
−Hff

ϕ

4π
Br, (62)

which satisfy ∂r(
√
γLr

ff) = 0 and ∂r(
√
γSr

ff) = 0.
In the vacuum region, one has ρ = J = 0. Equations

∇×E = 0 and ∇×H = 0 lead to

Evac
ϕ = 0, Hvac

ϕ = Bvac
ϕ = 0, (63)

which indicates

Lr
vac = Sr

vac = 0. (64)

Hereafter we will put the subscript and superscript ‘vac’ on
the quantities in the vacuum region.

5.1.2 The inner boundary of the force-free region

Let us focus on the inner boundary of the force-free (in-
flow) region, and derive the conditions on the boundary,
i.e. the junction conditions between the force-free and vac-
uum regions. The similar analysis can be done for the outer
boundary. For equation

−∂tD
r +

1
√
γ
∂θHϕ = 4πJr, (65)

we substitute

Dr = Dr
vacH(−R), (66)

Hϕ = Hff
ϕH(R), (67)

Jr = Jr
ffH(R) + ηrδ(R), (68)

where H(R) and δ(R) are the Heaviside step function and
the Dirac delta function, respectively, and
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region are given as follows. The condition D ·B = 0 and ∇×E = 0 lead to

Eff
ϕ = Eff

r = 0, Eff
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γΩFB
r, (56)
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star starts rotating [54] or a BH starts rotating [55]. They show that a switching-on wave propagates
outward and that the outflow region settles down to the steady state after it passes the outer fast
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where

∂rΩF = 0. (57)

Hereafter we will put the subscript and superscript ‘ff’ on the quantities in the force-free

region. Equations (11) and (12) give us

Dff
ϕ = Dff

r = 0, Dff
θ =

√
γ

α
(Ω− ΩF)B

r, (58)

Hff
ϕ = αBff

ϕ , Hff
r = αBr −

√
γΩDθ

ff , Hff
θ = 0. (59)

Equation ∇×H = 4πJ and the force-free condition lead to

∂rH
ff
ϕ = −4π

√
γJθ

ff = 0, (60)

∂θH
ff
ϕ = 4π

√
γJr

ff , (61)

These two equations imply that ∂r(
√
γJr

ff) = 0. We focus on the northern hemisphere, where

Jr
ff < 0 and Hff

ϕ < 0. The current flowing outward Jr
ff > 0, which prevents the BH from

charging up, is assumed to be concentrated on the equatorial plane. The poloidal AM and

Poynting fluxes are

Lr
ff =

−Hff
ϕ

4π
Br, Sr

ff = ΩF
−Hff

ϕ

4π
Br, (62)

which satisfy ∂r(
√
γLr

ff) = 0 and ∂r(
√
γSr

ff) = 0.

In the vacuum region, one has ρ = J = 0. Equations ∇×E = 0 and ∇×H = 0 lead to

Evac
ϕ = 0, Hvac

ϕ = Bvac
ϕ = 0, (63)

which indicates

Lr
vac = Sr

vac = 0. (64)

Hereafter we will put the subscript and superscript ‘vac’ on the quantities in the vacuum

region.

5.1.2. The inner boundary of the force-free region. Let us focus on the inner boundary of

the force-free (inflow) region, and derive the conditions on the boundary, i.e. the junction

conditions between the force-free and vacuum regions. The similar analysis can be done for

the outer boundary. For equation

−∂tD
r +

1
√
γ
∂θHϕ = 4πJr, (65)

we substitute

Dr = Dr
vacH(−R), (66)

Hϕ = Hff
ϕH(R), (67)

Jr = Jr
ffH(R) + ηrδ(R), (68)

where H(R) and δ(R) are the Heaviside step function and the Dirac delta function,

respectively, and

R = r − ri −
∫ t

0
V dt, (69)

where ri and V are the initial radius and the velocity of the boundary. The location of the

boundary is represented by R = 0. We have introduced ηr in equation (68), i.e. possible
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contribution to Jr from moving surface charges at the boundary. The assumption (3) stated

in the first part of this section implies that the timescale for the quantities in the force-free

and vacuum regions becoming adjusted for steady-state structure is much smaller than the

timescale of the boundary propagation. We focus on the latter timescale, considering that

only R = R(t) depends on t in equation (65). Then we have

−Dr
vacV δ(R) +

1
√
γ
(∂θH

ff
ϕ )H(R) = 4πJr

ffH(R) + 4πηrδ(R). (70)

Taking account of equation (61), we obtain

ηr =
−Dr

vac

4π

∣∣∣∣
R=0

V, (71)

which implies that the surface charge density on the boundary σ = −Dr
vac|R=0/4π. This can

be confirmed by integrating ∇ ·D = 4πρ over the infinitesimally thin (in the r direction)

region enclosing the small area on the boundary and taking account of Dr
ff = 0.

For equation

−∂tD
θ − 1

√
γ
∂rHϕ = 4πJθ, (72)

we substitute

Dθ = Dθ
vacH(−R) +Dθ

ffH(R), (73)

Jθ = ηθδ(R), (74)

and equation (67). We have introduced ηθ, possible contribution to Jθ from the surface

current flowing on the boundary. Then we have

−Dθ
vacV δ(R) +Dθ

ffV δ(R)− 1
√
γ
Hff

ϕδ(R) = 4πηθδ(R), (75)

which leads to

V =
1
√
γ

Hff
ϕ + 4π

√
γηθ

Dθ
ff −Dθ

vac

∣∣∣∣∣
R=0

. (76)

The last one of Maxwell equations nontrivial for the present problem is

∂tB
ϕ +

1
√
γ
(∂rEθ − ∂θEr) = 0, (77)

for which we substitute

Bϕ = Bϕ
ffH(R), (78)

Eθ = Evac
θ H(−R) + Eff

θ H(R), (79)

Er = Evac
r H(−R). (80)

Then we have

−Bϕ
ffV δ(R) +

1
√
γ

[
−Evac

θ δ(R) + Eff
θ δ(R)− (∂θE

vac
r )H(−R)

]
= 0. (81)

Integrating equation (81) over −ϵ < R < ϵ and take a limit of ϵ → 0, the last term vanishes,

and we obtain

V =
1
√
γ

Eff
θ − Evac

θ

Bϕ
ff

∣∣∣∣
R=0

,

=
α
√
γ

Dff
θ −Dvac

θ

Bϕ
ff

∣∣∣∣
R=0

, (82)
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ϕδ(R) = 4πηθδ(R), (75)

which leads to

V =
1
√
γ

Hff
ϕ + 4π

√
γηθ

Dθ
ff −Dθ

vac

∣∣∣∣∣
R=0

. (76)

The last one of Maxwell equations nontrivial for the present problem is

∂tB
ϕ +

1
√
γ
(∂rEθ − ∂θEr) = 0, (77)

for which we substitute

Bϕ = Bϕ
ffH(R), (78)

Eθ = Evac
θ H(−R) + Eff

θ H(R), (79)

Er = Evac
r H(−R). (80)

Then we have

−Bϕ
ffV δ(R) +

1
√
γ

[
−Evac

θ δ(R) + Eff
θ δ(R)− (∂θE

vac
r )H(−R)

]
= 0. (81)

Integrating equation (81) over −ϵ < R < ϵ and take a limit of ϵ → 0, the last term vanishes,

and we obtain

V =
1
√
γ

Eff
θ − Evac

θ

Bϕ
ff

∣∣∣∣
R=0

,

=
α
√
γ

Dff
θ −Dvac

θ

Bϕ
ff

∣∣∣∣
R=0

, (82)
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where we have used equation (11) for the last equality. EliminatingDθ
ff −Dθ

vac from equations

(76) and (82) leads to

V =
±α
√
γrr

√

1 +
4π

√
γηθ

Hff
ϕ

. (83)

Here we take the minus sign, since we have assumed that the inner boundary keeps mov-

ing inward. In Section 5.1.3, we will confirm that this assumption is consistent with the

electromagnetic structure which we found.

Let us consider the case of ηθ = 0. Then we have

V =
−α
√
γrr

, (84)

and

Hff
ϕ = −α

√
γϕϕ
γθθ

(Dff
θ −Dvac

θ )

∣∣∣∣
R=0

= −
√

γϕϕ
γθθ

[(Ω− ΩF)
√
γBr − αDvac

θ ]

∣∣∣∣
R=0

. (85)

Substituting dr = V dt for equation (1), we find

ds2 = γϕϕ(dϕ− Ωdt)2 + γθθdθ
2 ≥ 0, (86)

which has to be ds2 = 0. This means that the four-velocity of the boundary is null. In reality,

however, the particles at the boundary cannot propagate with this speed, and thus one can

conclude

ηθ > 0, (87)

i.e., the cross-field current must flow on the boundary. Note that equation (85) with αDvac
θ →

0 becomes equivalent to the regularity condition at the horizon (equation 38).

5.1.3. Consistency check. In our toy model of the time-dependent state, we have not

taken into account equations of the particle motions, using the force-free approximation for

the force-free region, but we have assumed that the inner boundary keeps moving inward,

i.e. V < 0. Here we examine the direction of the Lorentz force exerted on the particles at the

boundary, and confirm that it is consistent with the assumption of V < 0. It is reasonable

that the force-free approximation is not applicable for the boundary between the force-free

and vacuum regions, and indeed we have seen that the cross-field current flows there, ηθ > 0.

We have analyzed the structure of the electromagnetic quantities by using

the functions δ(R) and H(R). These functions were introduced because the per-

fect force-free plasma and the perfect vacuum are simply connected in our toy

model. In reality, however, the electromagnetic quantities must be continuously

distributed over a ‘boundary layer’ with a finite thickness. Let us consider the

equation of motion of the particles in this boundary layer. (Note that the mass den-

sity of the particles is not necessarily concentrated in the same boundary layer

as the electromagnetic quantities. Probably it is not so concentrated near the

boundary, and σ and ηθ are just produced by a large difference of the positive

and negative charge densities and their velocity difference. Therefore we do not

describe the mass density by using δ(R) in the same manner as σ.)
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∣∣∣∣
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∣∣∣∣
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however, the particles at the boundary cannot propagate with this speed, and thus one can

conclude
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i.e., the cross-field current must flow on the boundary. Note that equation (85) with αDvac
θ →

0 becomes equivalent to the regularity condition at the horizon (equation 38).

5.1.3. Consistency check. In our toy model of the time-dependent state, we have not

taken into account equations of the particle motions, using the force-free approximation for

the force-free region, but we have assumed that the inner boundary keeps moving inward,

i.e. V < 0. Here we examine the direction of the Lorentz force exerted on the particles at the

boundary, and confirm that it is consistent with the assumption of V < 0. It is reasonable

that the force-free approximation is not applicable for the boundary between the force-free

and vacuum regions, and indeed we have seen that the cross-field current flows there, ηθ > 0.

We have analyzed the structure of the electromagnetic quantities by using

the functions δ(R) and H(R). These functions were introduced because the per-

fect force-free plasma and the perfect vacuum are simply connected in our toy

model. In reality, however, the electromagnetic quantities must be continuously

distributed over a ‘boundary layer’ with a finite thickness. Let us consider the

equation of motion of the particles in this boundary layer. (Note that the mass den-

sity of the particles is not necessarily concentrated in the same boundary layer

as the electromagnetic quantities. Probably it is not so concentrated near the

boundary, and σ and ηθ are just produced by a large difference of the positive

and negative charge densities and their velocity difference. Therefore we do not

describe the mass density by using δ(R) in the same manner as σ.)
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If we describe those particles as a one-fluid as in Section 3.3, the equation of the

particle motions ∇ν(ρmUµUν) = Fµ
νIν and the continuity equation ∇ν(ρmUν) = 0

lead to the equation in the r direction as

ρmU
ν∇νU

r = ρDr +
γθθ
α
√
γ
JθBϕ. (88)

In the boundary layer, Dr has a value between Dr
ff = 0 and Dr

vac|R=0 = −4πσ, and

the sign of the dominant part of ρ should be the same as σ. Bϕ has a value between

Hff
ϕ/α < 0 and Hvac

ϕ /α = 0, and the sign of the dominant part of Jθ should be the

same as ηθ. These mean that the Lorentz force on the particles in the boundary

layer is in the direction of −r, and therefore our assumption V < 0 is consistent

with the electromagnetic structure.

The particles also feel the inertial forces which are included in the left hand

side of equation (88). Among these, the centrifugal force owing to the azimuthal

motion is in the outward direction. However, the particles in the boundary

layer keep transferring their AMs to the electromagnetic AM flux (according

to equation 93 below), so that the centrifugal force is not expected to become

stronger than the gravitational force if the particles are injected with zero AM,

i.e., V ϕ = Ω (see equation 31).

In order to check the consistency of our model more rigorously, fully time-

dependent numerical calculations without the assumptions that we set are

required, but they are beyond the scope of this paper.

Let us also check the Lorentz force direction for the outer boundary. Equations

(71), (76), and (82) are valid with changes ηr → −ηr and ηθ → −ηθ, and thus one obtains

the conditions Dr
vac|R=0 = 4πσ and ηθ < 0. These indicate F r

νI
ν > 0, which is consistent

with the assumption that the outer boundary keeps moving outward.

5.1.4. Causal production of the AM and Poynting fluxes. Since V < 0 for the inner

boundary and Bϕ
ff = Bff

ϕ/γϕϕ = Hff
ϕ/αγϕϕ < 0, equation (82) means

Dff
θ |R=0 > Dvac

θ |R=0. (89)

The electromagnetic AM density is given as l = −DθBr√γ/4π. Then equation (89) indicates

lff |R=0 < lvac|R=0. (90)

That is, the inner boundary of the force-free region converts the vacuum with larger AM

density into the force-free plasma with smaller AM density. Now equation (14) can be written

as

Br∂r

(
−Hϕ

4π

)
= −∂tl +

√
γJθBr. (91)

Substituting

l = lvacH(−R) + lffH(R) (92)

and equations (67) and (74) for equation (91), we obtain

Lr
ff =

[
V (lff − lvac) +

√
γηθBr

]

R=0
. (93)

Taking account of equations (87) and (90), we find that the electromagnetic AM flux in

the force-free region is produced by the conversion of the electromagnetic AM density from
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the vacuum to the force-free plasma through the boundary and the torque of the cross-field

current at the boundary.

Equation (93) can also be derived from equation (76). These equations also mean that

Hff
ϕ is produced by the displacement current

√
γV (Dθ

ff −Dθ
vac) and the cross-field current

−4π
√
γηθ. None of these two contributions appears in the steady state (see Sections 4.1 and

4.2).

Equation (15) can be reduced to

Br∂r

(
ΩF

−Hϕ

4π

)
= −∂te− ErJ

r − EθJ
θ. (94)

Substituting

e = evacH(−R) + effH(R) (95)

and equations (67), (68), and (74) for equation (94), we obtain

Sr
ff =

[
V (eff − evac)− Erη

r − Eθη
θ
]

R=0
. (96)

By using the expressions

eff =
1

8π
(Eff

θ D
θ
ff +Bϕ

ffH
ff
ϕ +BrHr), (97)

evac =
1

8π
(Evac

r Dr
vac + Evac

θ Dθ
vac +BrHr), (98)

we find that

Er|R=0 =
Eff

r + Evac
r

2

∣∣∣∣
R=0

, Eθ|R=0 =
Eff

θ + Evac
θ

2

∣∣∣∣
R=0

(99)

satisfy equation (96). In equation (96), the term −Erηr|R=0 = αDr
vacD

vac
r V/8π < 0. One can

see that the Poynting flux in the force-free region is produced by the electromagnetic energy

conversion V (eff − evac)|R=0 and the work of the cross-field current −Eθηθ|R=0.

5.2. Analysis in the KS coordinates

We can obtain the same conclusions as above in the KS coordinates, where the calculations

are complicated compared to those in the BL coordinates due to γrϕ ̸= 0. Equations having

different shapes from those in the BL coordinates are

Dff
θ =

1

α
(−√

γΩFB
r +

√
γβrBϕ), (100)

Hff
ϕ = αBff

ϕ −√
γβrDθ

ff , Hff
r = αBr, (101)

for the force-free region, and

Hvac
ϕ = αBvac

ϕ −√
γβrDθ

vac = 0, (102)

for the vacuum region. From equations (65), (72), and (77), we obtain

ηr =
−Dr

vac

4π

∣∣∣∣
R=0

V, (103)

V =
1
√
γ

Hff
ϕ + 4π

√
γηθ

Dθ
ff −Dθ

vac

∣∣∣∣∣
R=0

(104)

=

[
1
√
γ

α(Bff
ϕ −Bvac

ϕ ) + 4π
√
γηθ

Dθ
ff −Dθ

vac

− βr

]

R=0

, (105)
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Fig. 6 Space-time diagram of the inner and outer boundaries of the force-free region in

the BL and KS coordinates. In each diagram the left and right long arrows correspond to

the motions of the inner and outer boundaries, respectively, while the small arrows to the

propagation of light.

propagate towards the horizon, r → rH for t → ∞. In the KS coordinates, the inflow can pass

the horizon in a finite time of t = tH. In both of the coordinates, when the inner boundary

approaches the horizon, the outward signal from it becomes slower and slower and it can

hardly affect the force-free region. This will lead to the steady state.5

Although such a time-dependent state should be analyzed numerically, we use a toy model

to qualitatively illustrate the process of building the poloidal current structure. This model

assumes that (1) Bp is fixed to be split-monopole

∂r(
√
γBr) = 0, Bθ = 0 (55)

in the whole region, and that (2) the Kerr BH magnetosphere is separated into the force-

free region and the vacuum by geometrically thin boundaries moving radially. For further

simplicity, (3) we assume that the force-free region and the vacuum have their steady-state

structures, but the values of the physical quantities, particularly ΩF and Hϕ, keep updated

as determined by the varying conditions of the inner and outer boundaries.

Some of these assumptions would be violated in realistic experiments. Nevertheless we

consider that our toy model is useful to suggest the key points for resolving the issue on the

causality in the coordinate basis (Section 5.1.4), which also allows us to understand how the

steady state is maintained (Section 5.3).

5.1. Analysis in the BL coordinates

5.1.1. The force-free and vacuum regions. The electromagnetic quantities in the force-free

region are given as follows. The condition D ·B = 0 and ∇×E = 0 lead to

Eff
ϕ = Eff

r = 0, Eff
θ = −

√
γΩFB

r, (56)

5 In some MHD simulations, a static plasma (not a vacuum) is initially given and then a central
star starts rotating [54] or a BH starts rotating [55]. They show that a switching-on wave propagates
outward and that the outflow region settles down to the steady state after it passes the outer fast
magnetosonic point [22].
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Condi4on	at	the	horizon	
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-	Ohm’s	law	for	the	current	flowing	on	the	membrane	
(Thorne	et	al.	1986	“Membrane	Paradigm”)	

where we have used equation (11) for the last equality. EliminatingDθ
ff −Dθ

vac from equations

(76) and (82) leads to

V =
±α
√
γrr

√

1 +
4π

√
γηθ

Hff
ϕ

. (83)

Here we take the minus sign, since we have assumed that the inner boundary keeps mov-

ing inward. In Section 5.1.3, we will confirm that this assumption is consistent with the

electromagnetic structure which we found.

Let us consider the case of ηθ = 0. Then we have

V =
−α
√
γrr

, (84)

and

Hff
ϕ = −α

√

γϕϕ
γθθ

(Dff
θ −Dvac

θ )

∣

∣

∣

∣

R=0

= −
√

γϕϕ
γθθ

[(Ω− ΩF)
√
γBr − αDvac

θ ]

∣

∣

∣

∣

R=0

. (85)

Substituting dr = V dt for equation (1), we find

ds2 = γϕϕ(dϕ− Ωdt)2 + γθθdθ
2 ≥ 0, (86)

which has to be ds2 = 0. This means that the four-velocity of the boundary is null. In reality,

however, the particles at the boundary cannot propagate with this speed, and thus one can

conclude

ηθ > 0, (87)

i.e., the cross-field current must flow on the boundary. Note that equation (85) with αDvac
θ →

0 becomes equivalent to the regularity condition at the horizon (equation 38).

5.1.3. Consistency check. In our toy model of the time-dependent state, we have not

taken into account equations of the particle motions, using the force-free approximation for

the force-free region, but we have assumed that the inner boundary keeps moving inward,

i.e. V < 0. Here we examine the direction of the Lorentz force exerted on the particles at the

boundary, and confirm that it is consistent with the assumption of V < 0. It is reasonable

that the force-free approximation is not applicable for the boundary between the force-free

and vacuum regions, and indeed we have seen that the cross-field current flows there, ηθ > 0.

The particle number density nff of the force-free region is high enough to screen the

electric field along the B field lines, i.e. Dr
ff = 0. We may even assume that nff ≫ ρff/e,

where ρff is the charge density of the force-free region, and then the distribution of nff is

not directly related to that of ρff . On the other hand, n approaches zero at the boundary

towards the vacuum region, where n ≫ ρ/e is not valid, and non-zero surface charge density

σ just implies non-zero surface mass density σm. Thus we can write the equation of the

particle motions in the r direction as ∇ν [σmU rUνδ(R) + ρmffU r
ffU

ν
ffH(R)] = F r

νI
ν and the

continuity equation as ∇ν [σmUνδ(R) + ρmffUν
ffH(R)] = 0, where ρmff is the mass density of

the force-free region. We combine these two equations, use Uν
ff∂νH(R) = U t

ff(V
r
ff − V )δ(R),
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Conclusion	

•  The	current	driving	(Sp	produc4on)	mechanism	in	BZ	
process	can	be	discussed	only	in	the	4me-dependent	
state	towards	steady	state	

•  In	the	steady	state,	Sp	needs	no	electromagne4c	
source.	The	steady	currents	can	keep	flowing	in	the	
ideal	MHD	condi4on.	No	gap	is	needed.	The	BH	
rota4onal	energy	is	reduced	directly	by	Sp	without	
being	mediated	by	the	nega4ve	energies.		

•  Our	argument	is	based	on	some	assump4ons.	
Detailed	plasma	simula4ons	are	needed	to	validate	it	





MHD	model	

Sp = 4⇡⇢c2�vpE > 0 for	 vp < 0, E < 0
Energy	flux	density	

19
90
Ap
J.
..
36
3.
.2
06
T

(Takahashi	et	al.	1990)	

Separa4on	surface	
may	be	located	outside	
the	ergosphere.	

⌦F ⇠ !H

2

Bernoulli	constant	

Ergo	
sphere	 -	Cross-field	(iner4al	driw)	

currents	cannot	produce	all	
of	Sp	

(Komissarov	2009)	

-	MHD	simula4ons	show	
the	steady	state	without	
nega4ve	par4cle	energy	
(Komissarov	2005)	

⌦F = ⌦± ↵
p
�''



Nega4ve-energy	par4cle	inflow	
Sp

@r
p
�(�↵⇢mUtU

r) = E · Jp < 0

�Ut < 0, Ur < 0



FF	simula4on	results	
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Figure 2. Monopole field solution for a = 0.1 and B 0 = 1 at time t = 50.
(a) The angular velocity of magnetic field lines at r = 3. The perturbative
solution of Blandford and Znajek gives ! = 0.5 !h, where !h is the angular
velocity of the black hole. (b) H φ of the numerical solution (crosses) and of
the perturbative solution (continuous line) at r = 3. (c) Ě·B̌ along θ = 1 and
θ = π − 1. The small unscreened component Ě∥ of the electric field drives
the conductivity current towards the black hole in the upper hemisphere and
away from it in the lower hemisphere.

reason it has been playing a key role in the development of black
hole electrodynamics. One important property of this solution is that
all magnetic field lines penetrate the black hole horizon. Macdonald
(1984) attempted to construct numerical steady-state solutions for
a more reasonable configuration of the magnetic field where only
a fraction of the magnetic field lines originate from the black hole
itself. The remaining magnetic flux splits between field lines orig-
inating from the accretion disc and field lines passing through the
gap between the hole and the disc. In general, the angular velocity of
magnetic field lines in steady-state force-free magnetospheres has
to be prescribed, so one faces the task of setting physically sensible
boundary conditions for all these three different types of magnetic
field lines. In the case of the field lines originating from the accre-
tion disc, the solution is obvious. Their angular velocity is given by
the angular velocity of the disc at the footpoints. As for the other
two kinds of magnetic field lines, this task is less trivial. In their
solution, Macdonald & Thorne (1982) and later Macdonald (1984)
appealed to the existing analogy between the black hole horizon and
a rotating conducting sphere. They concluded that only field lines
penetrating the event horizon rotate, whereas in the gap, ! = 0.

A somewhat simpler problem is the magnetospheric (plasma-
filled) version of the Wald (1974) problem for a rotating black hole
(see also Section 5.1). In this problem, just like in the problem
considered by Macdonald (1984), only a small fraction of the mag-
netic field lines penetrate the black hole horizon. If the analysis of
Macdonald & Thorne (1982) was correct, then only these field lines
would be forced to rotate. Komissarov (2002b) tried to find a steady-
state force-free solution to this problem by means of time-dependent
numerical simulations, but failed. The numerical solution invariably
evolved towards the state where B2 − D2 turned negative inside the
ergosphere. In fact, the solution seemed to indicate the development
of a current sheet in the equatorial plane within the ergosphere with
all magnetic field lines penetrating the current sheet being forced
to rotate in the same sense as the black hole. If this conclusion is
correct, a critical revision of the current perception of the role of the
event horizon in the black hole electrodynamics, as well as of the
virtues of the membrane paradigm, is required. Thus, the magne-
tospheric Wald problem is an ultimate ‘Rosetta Stone’ for research
into black hole electrodynamics.

To achieve high resolution within the ergosphere, these simula-
tions were carried out using the multigrid technique. We start with
a relatively low-resolution grid and continue simulations until the
solution becomes more or less steady within r = 4. Then the resolu-
tion is increased by a factor of 2 and the simulations are continued
until a new approximately steady-state solution is reached, and so
on. During the grid refinement the numerical solution on the finer
grid is found via interpolation. The final grid has 800 cells in the
θ -direction (θ ∈ [0, π]) and 1000 cells in the r-direction (r ∈ [0.9r +,
110]). The initial solution is described by the same B as in the vac-
uum solution of (Wald 1974, equation 101) and has E = 0, which
implies a non-rotating magnetosphere.

Fig. 4 shows the final solution, at t = 126, for a Kerr black hole
with a = 0.9. As suggested in Komissarov (2002b), a current sheet
is formed in the equatorial plane within the black hole ergosphere.
This is clearly seen in the right panel of Fig. 4, which shows the
distribution of (B2 − D2)/ max(B2, D2). Near the equator the pre-
dominantly radial electric field is larger than the magnetic field
and drives the electric current across the poloidal magnetic field
lines. Both the radial component (the middle panel of Fig.4) of the
magnetic field and its azimuthal component exhibit a break in the
equatorial plane on the scale of the current sheet. The most im-
portant result is shown in the left panel of Fig. 4: all the magnetic

C⃝ 2004 RAS, MNRAS 350, 427–448
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(a) The angular velocity of magnetic field lines at r = 3. The perturbative
solution of Blandford and Znajek gives ! = 0.5 !h, where !h is the angular
velocity of the black hole. (b) H φ of the numerical solution (crosses) and of
the perturbative solution (continuous line) at r = 3. (c) Ě·B̌ along θ = 1 and
θ = π − 1. The small unscreened component Ě∥ of the electric field drives
the conductivity current towards the black hole in the upper hemisphere and
away from it in the lower hemisphere.

reason it has been playing a key role in the development of black
hole electrodynamics. One important property of this solution is that
all magnetic field lines penetrate the black hole horizon. Macdonald
(1984) attempted to construct numerical steady-state solutions for
a more reasonable configuration of the magnetic field where only
a fraction of the magnetic field lines originate from the black hole
itself. The remaining magnetic flux splits between field lines orig-
inating from the accretion disc and field lines passing through the
gap between the hole and the disc. In general, the angular velocity of
magnetic field lines in steady-state force-free magnetospheres has
to be prescribed, so one faces the task of setting physically sensible
boundary conditions for all these three different types of magnetic
field lines. In the case of the field lines originating from the accre-
tion disc, the solution is obvious. Their angular velocity is given by
the angular velocity of the disc at the footpoints. As for the other
two kinds of magnetic field lines, this task is less trivial. In their
solution, Macdonald & Thorne (1982) and later Macdonald (1984)
appealed to the existing analogy between the black hole horizon and
a rotating conducting sphere. They concluded that only field lines
penetrating the event horizon rotate, whereas in the gap, ! = 0.

A somewhat simpler problem is the magnetospheric (plasma-
filled) version of the Wald (1974) problem for a rotating black hole
(see also Section 5.1). In this problem, just like in the problem
considered by Macdonald (1984), only a small fraction of the mag-
netic field lines penetrate the black hole horizon. If the analysis of
Macdonald & Thorne (1982) was correct, then only these field lines
would be forced to rotate. Komissarov (2002b) tried to find a steady-
state force-free solution to this problem by means of time-dependent
numerical simulations, but failed. The numerical solution invariably
evolved towards the state where B2 − D2 turned negative inside the
ergosphere. In fact, the solution seemed to indicate the development
of a current sheet in the equatorial plane within the ergosphere with
all magnetic field lines penetrating the current sheet being forced
to rotate in the same sense as the black hole. If this conclusion is
correct, a critical revision of the current perception of the role of the
event horizon in the black hole electrodynamics, as well as of the
virtues of the membrane paradigm, is required. Thus, the magne-
tospheric Wald problem is an ultimate ‘Rosetta Stone’ for research
into black hole electrodynamics.

To achieve high resolution within the ergosphere, these simula-
tions were carried out using the multigrid technique. We start with
a relatively low-resolution grid and continue simulations until the
solution becomes more or less steady within r = 4. Then the resolu-
tion is increased by a factor of 2 and the simulations are continued
until a new approximately steady-state solution is reached, and so
on. During the grid refinement the numerical solution on the finer
grid is found via interpolation. The final grid has 800 cells in the
θ -direction (θ ∈ [0, π]) and 1000 cells in the r-direction (r ∈ [0.9r +,
110]). The initial solution is described by the same B as in the vac-
uum solution of (Wald 1974, equation 101) and has E = 0, which
implies a non-rotating magnetosphere.

Fig. 4 shows the final solution, at t = 126, for a Kerr black hole
with a = 0.9. As suggested in Komissarov (2002b), a current sheet
is formed in the equatorial plane within the black hole ergosphere.
This is clearly seen in the right panel of Fig. 4, which shows the
distribution of (B2 − D2)/ max(B2, D2). Near the equator the pre-
dominantly radial electric field is larger than the magnetic field
and drives the electric current across the poloidal magnetic field
lines. Both the radial component (the middle panel of Fig.4) of the
magnetic field and its azimuthal component exhibit a break in the
equatorial plane on the scale of the current sheet. The most im-
portant result is shown in the left panel of Fig. 4: all the magnetic
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Monopole	solu4on	with	a	=	0.1		
(Komissarov	2004)	

We	consider	that	a	small	field-aligned	electric	field	may	appear	
in	numerical	simula4ons	and	in	reality	with	small	resis4vity	

D ·B 6= 0


