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Known Mass Inequalities
The Positive Mass Theorem (Schoen-Yau 1979, Witten
1981)
Among all time-symmetric asymptotically flat initial data sets for
the Einstein-Vacuum Equations, flat Euclidean 3-space is the
unique minimizer of the total mass.

m ≥ 0

The Penrose Inequality (Huisken-Ilmanen 2001, Bray
2001)
Among all time-symmetric asymptotically flat initial data sets for
the Einstein-Vacuum Equations with an outermost minimal
surface Σ of area A, the Schwarzschild slice is the unique
minimizer of the total mass.

m ≥ 1
2

R (R =
√

A/4π)
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Natural Questions

The Angular Momentum Case
Is the Kerr slice the unique minimizer of the total mass among
all asymptotically flat axisymmetric maximal gauge initial data
sets for the Einstein-Vacuum Equations with an outermost
minimal surface Σ of area A and (Komar) angular momentum
J?

m ≥ 1
2
(
R2 +

4J2

R2

)1/2



Natural Questions

The Charged Case I
Is the Reissner-Nordström slice the unique minimizer of the
total mass among all asymptotically flat time-symmetric initial
data sets for the Einstein-Maxwell Equations with an outermost
minimal surface Σ of area A and charge Q?

m ≥ 1
2
(
R +

Q2

R
)

(Q =

∫
S2
∞

E · n)

Recall;

The Time-Symmetric Einstein-Maxwell Contraints

Sg = 2(|E |2g + |B|2g), divg E = divg B = 0, E ×g B = 0



Natural Questions

The Charged Case II
(Gibbons ‘84) Is the Majumdar-Papapetrou slice with the
horizon consisting of two components of opposite charges the
unique minimizer of the total mass among all asymptotically flat
time-symmetric initial data sets for the Einstein-Maxwell
Equations with an outermost minimal surface Σ = ∪Σi of area
A = ΣAi and charges {Qi}?

m ≥
∑

i

1
2
(
Ri +

Q2
i

Ri

)
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Charged Case I

Answers:
I Yes, provided Σ is connected

(Jang 1979, Huisken-Ilmanen 2001).

I No, in general
(Weinstein-Y. 2004).

Recall;

The Topology of Horizon Σ

Σ is diffeomorphic to ∪S2

each S2 stable minimal surface in (M3, g).
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Charged Case II

Answers: No : Brill-Lindquist satisfies m < 1
2
∑2

i=1 Ri
(Dain-Weinstein-Y. 2010).
Remark: By setting quasi-local mass-like quantities;

mi =
1
2
(
Ri +

Q2
i

Ri

)
, or

√
1
4

R2
i +

J2
i

R2
i

the inequalities
m ≥

∑
mi .

do not hold, as they reduces to m ≥ 1
2
∑

Ri in vacuum.
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The Charged Case I: Σ connected

I Flow Σ by Inverse Mean Curvature; ∂x
∂t = 1

H n.

I Use the Geroch Monotonicity (sharpened by Jang)

dmH(Σ(t))
dt

≥ R
32π

∫
Σ(t)

Sg ≥ 0

of the Hawking Mass mH(Σ) = R
2 (1− 1

16π

∫
Σ H2) and the

scalar curvature is Sg = 2(|E |2 + |B|2).
I Hawking mass converges to ADM mass as Σ → S2

∞.
I Cauchy-Schwarz inequality and Q =

∫
S2
∞

E · n.
I Jump over discontinuities with Huisken-Ilamen’s weak flow.

Penrose Inequality with Charge when Σ is connected

m ≥ 1
2

(
R +

Q2

R

)
with ‘=’ iff Reissner-Nordström.
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The Majumdar-Papapetrou (MP) metric

I gij = u4δij ,

u =

(
1 +

µ

r1
+

µ

r2

)1/2

I Ei = 2∇i log u,

Bi = 0

, Sg = 2|E |2

r1, r2 are the distances to p1 = (0, 0, 1), p2 = (0, 0,−1) in R3 .

I The total mass is m = 2µ.
I The total asymptotic area of Σ is A = 8πµ2.
I The total charge is Q = 2µ.
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Counterexample

An Almost Counter-Example

m − 1
2

(
R +

Q2

R

)
= µ

(
2− 3√

2

)
< 0

I MP is not asymptotically flat.
I MP has no horizon.
I In Weinstein-Y.(2004), two copies of

Majumdar-Papapetrouare truncated at their necks, and
glued to rectify the features.
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Cosmic Censorship is Safe

I Jang (1979):

m ≥ 1
2

(
R +

Q2

R

)

m

m −
√

m2 −Q2 ≤ R ≤ m +
√

m2 −Q2

I Only the upper bound on R follows from Cosmic
Censorship using Penrose’s heuristic argument.

I Our counter-example violates the lower bound.
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Brill-Lindquist initial data

I gij = u4δij ,

u =

(
1 +

µ

2r1
+

µ

2r2

)
r1, r2 are the distances to p1 = (0, 0, 1), p2 = (0, 0,−1) in R3 .

I The total mass is m = 2µ.
I The area radii are R1 = R2 > 2µ (Gibbons ‘72)
I The outermost horizon is not connected for µ sufficiently

small.

A Counter-Example
(Dain-Weinstein-Y. 2010)

m − 1
2

∑
i

Ri < 0
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Multiple Components

Stability of Σ ⇒ multiple components

I If the outermost horizon is connected, then there exists
x ∈ Σ ∩ {z = 0}. Then an estimate by Schoen says there
exists ε > 0 such that

sup
Σ1∩B(x ,ε)

|A| ≤ C
∫

Σ1∩B(x ,2ε)
|A|2dx

where the RHS is o(µ) as µ → 0 and Σ1 = Σ ∩ B(x , r) with
r < 1. This says |Σ1| > C, with C independent of µ

I Bray’s Penrose inequality

2µ ≥
√
|Σ|
16π

says |Σ| → 0 as µ → 0.
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Conformal Flows via Linear Elliptic Equations

Consider the one-parameter familes of metric on R3\{0}

g(t) = U(t)4(dr2 + r2dω2)

where
U(t) = e−t +

m
2re−t

are Schwarzschild metrics, while

U(t) =
(

e−t +
m + Q
2re−t

)1/2(
e−t +

m −Q
2re−t

)1/2

are Reissner-Nordström metrics.



Conformal Flows via Linear Elliptic Equations

Set u(t) = U(t)/U(0), then a function v(t) defined by
u(t) = exp

∫ t
0 v(τ)dτ satisfy, for all t ,

Lg(t)v(t) = 0, Lg(t)v(t) =
3
4
|E |2gv(t)

for Schwarzschild and Reissner-Nordström metrics
respectively, where Lg = 4g − 1

8Sg . This is crucial to Bray’s
proof of RPI.

Question:
Any physical meaning to this gauge invariance?

Partial Answer:
Ohashi-Shiromizu-Yamada (2009)



Summary

Results For Solutions of the Einstein-Maxwell Constraints:

I Σ connected ⇒ m ≥ 1
2

(
R +

Q2

R

)
.

I Σ not connected ⇒ m − 1
2

(
R +

Q2

R

)
< 0 is possible

(glued and perturbed Majumdar-Papapetroudata).

I Σ not connected ⇒ m − 1
2
∑

i

(
Ri +

Q2
i

Ri

)
< 0 is possible

(Brill-Lindquist initial data.)
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Open Problems:

I The Charged Case

I R ≤ m +
√

m2 −Q2

I The Rotating Case

I m ≥ 1
2

(
R2 +

4J2

R2

)1/2

for Σ connected

I
R2

2
≤ m2 +

√
m4 − J2
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