Riemannian geometric aspects of Penrose-type inequalities

Sumio Yamada

Mathematical Institute Tohoku University

JGRG 21 Sendai, September 2011

▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

Variational Formulations of Mass Inequalities PMT and Riemannian Penrose Inequality Generalizations Answers to the Questions

Variational Formulations of Mass Inequalities PMT and Riemannian Penrose Inequality Generalizations Answers to the Questions

One-Black-Hole Argument for the Charged Case I Jang/Huisken-Ilmanen argument

Variational Formulations of Mass Inequalities PMT and Riemannian Penrose Inequality Generalizations Answers to the Questions

One-Black-Hole Argument for the Charged Case I Jang/Huisken-Ilmanen argument

A Two-Black-Hole Counterexample to the Charged Case I The Majumdar-Papapetrou Metric Relation to Cosmic Censorhip

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Variational Formulations of Mass Inequalities PMT and Riemannian Penrose Inequality Generalizations Answers to the Questions

One-Black-Hole Argument for the Charged Case I Jang/Huisken-Ilmanen argument

A Two-Black-Hole Counterexample to the Charged Case I The Majumdar-Papapetrou Metric Relation to Cosmic Censorhip

A Two-Black-Hole Counterexample to the Charged Case II Brill-Lindquist initial data Property of Stable Minimal Surface

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Variational Formulations of Mass Inequalities PMT and Riemannian Penrose Inequality Generalizations Answers to the Questions

One-Black-Hole Argument for the Charged Case I Jang/Huisken-Ilmanen argument

A Two-Black-Hole Counterexample to the Charged Case I The Majumdar-Papapetrou Metric Relation to Cosmic Censorhip

A Two-Black-Hole Counterexample to the Charged Case II Brill-Lindquist initial data Property of Stable Minimal Surface

Schwarzschild/Reissner-Nordström spacelike slice as Solitons Evolving Metrics by Isometries

Variational Formulations of Mass Inequalities PMT and Riemannian Penrose Inequality Generalizations Answers to the Questions

One-Black-Hole Argument for the Charged Case I Jang/Huisken-Ilmanen argument

A Two-Black-Hole Counterexample to the Charged Case I The Majumdar-Papapetrou Metric Relation to Cosmic Censorhip

A Two-Black-Hole Counterexample to the Charged Case II Brill-Lindquist initial data Property of Stable Minimal Surface

Schwarzschild/Reissner-Nordström spacelike slice as Solitons Evolving Metrics by Isometries

Summary

Variational Formulations of Mass Inequalities PMT and Riemannian Penrose Inequality

Generalizations Answers to the Questions

One-Black-Hole Argument for the Charged Case I Jang/Huisken-Ilmanen argument

A Two-Black-Hole Counterexample to the Charged Case I The Majumdar-Papapetrou Metric Relation to Cosmic Censorhip

A Two-Black-Hole Counterexample to the Charged Case II Brill-Lindquist initial data Property of Stable Minimal Surface

Schwarzschild/Reissner-Nordström spacelike slice as Solitons Evolving Metrics by Isometries

Summary

Known Mass Inequalities

The Positive Mass Theorem (Schoen-Yau 1979, Witten 1981)

Among all time-symmetric asymptotically flat initial data sets for the Einstein-Vacuum Equations, flat Euclidean 3-space is the unique minimizer of the total mass.

 $m \ge 0$

Known Mass Inequalities

The Positive Mass Theorem (Schoen-Yau 1979, Witten 1981)

Among all time-symmetric asymptotically flat initial data sets for the Einstein-Vacuum Equations, flat Euclidean 3-space is the unique minimizer of the total mass.

 $m \ge 0$

The Penrose Inequality (Huisken-Ilmanen 2001, Bray 2001)

Among all time-symmetric asymptotically flat initial data sets for the Einstein-Vacuum Equations with an outermost minimal surface Σ of area *A*, the Schwarzschild slice is the unique minimizer of the total mass.

$$m \geq rac{1}{2}R \quad (R = \sqrt{A/4\pi})$$

Variational Formulations of Mass Inequalities PMT and Riemannian Penrose Inequality Generalizations

Answers to the Questions

One-Black-Hole Argument for the Charged Case I Jang/Huisken-Ilmanen argument

A Two-Black-Hole Counterexample to the Charged Case I The Majumdar-Papapetrou Metric Relation to Cosmic Censorhip

A Two-Black-Hole Counterexample to the Charged Case II Brill-Lindquist initial data Property of Stable Minimal Surface

Schwarzschild/Reissner-Nordström spacelike slice as Solitons Evolving Metrics by Isometries

Summary

The Angular Momentum Case

Is the Kerr slice the unique minimizer of the total mass among all asymptotically flat axisymmetric maximal gauge initial data sets for the Einstein-Vacuum Equations with an outermost minimal surface Σ of area *A* and (Komar) angular momentum *J*?

$$m \ge \frac{1}{2} \left(R^2 + \frac{4J^2}{R^2} \right)^{1/2}$$

Natural Questions

The Charged Case I

Is the Reissner-Nordström slice the unique minimizer of the total mass among all asymptotically flat time-symmetric initial data sets for the Einstein-Maxwell Equations with an outermost minimal surface Σ of area *A* and charge *Q*?

$$m \geq \frac{1}{2}\left(R + \frac{Q^2}{R}\right)$$
 $(Q = \int_{S^2_{\infty}} E \cdot n)$

Recall;

The Time-Symmetric Einstein-Maxwell Contraints

$$S_g=2(|E|_g^2+|B|_g^2), \quad \operatorname{div}_g E=\operatorname{div}_g B=0, \quad E imes_g B=0$$

Natural Questions

The Charged Case II

(Gibbons '84) Is the Majumdar-Papapetrou slice with the horizon consisting of two components of opposite charges the unique minimizer of the total mass among all asymptotically flat time-symmetric initial data sets for the Einstein-Maxwell Equations with an outermost minimal surface $\Sigma = \bigcup \Sigma_i$ of area $A = \Sigma A_i$ and charges $\{Q_i\}$?

$$m \geq \sum_{i} \frac{1}{2} \left(R_i + \frac{Q_i^2}{R_i} \right)$$

Variational Formulations of Mass Inequalities

PMT and Riemannian Penrose Inequality Generalizations

Answers to the Questions

One-Black-Hole Argument for the Charged Case I Jang/Huisken-Ilmanen argument

A Two-Black-Hole Counterexample to the Charged Case I The Majumdar-Papapetrou Metric Relation to Cosmic Censorhip

A Two-Black-Hole Counterexample to the Charged Case II Brill-Lindquist initial data Property of Stable Minimal Surface

Schwarzschild/Reissner-Nordström spacelike slice as Solitons Evolving Metrics by Isometries

Summary

Charged Case I

Answers:

 Yes, provided Σ is connected (Jang 1979, Huisken-Ilmanen 2001).

Recall;

The Topology of Horizon $\boldsymbol{\Sigma}$

 Σ is diffeomorphic to $\cup S^2$ each S^2 stable minimal surface in (M^3, g) .

Charged Case I

Answers:

- Yes, provided Σ is connected (Jang 1979, Huisken-Ilmanen 2001).
- No, in general (Weinstein-Y. 2004).

Recall;

The Topology of Horizon $\boldsymbol{\Sigma}$

 Σ is diffeomorphic to $\cup S^2$ each S^2 stable minimal surface in (M^3, g) .

Charged Case II

Answers: No : Brill-Lindquist satisfies $m < \frac{1}{2} \sum_{i=1}^{2} R_i$ (Dain-Weinstein-Y. 2010).

Remark: By setting quasi-local mass-like quantities;

$$m_i = \frac{1}{2} (R_i + \frac{Q_i^2}{R_i}), \text{ or } \sqrt{\frac{1}{4}R_i^2 + \frac{J_i^2}{R_i^2}}$$

the inequalities

$$m\geq \sum m_i.$$

do not hold, as they reduces to $m \ge \frac{1}{2} \sum R_i$ in vacuum.

Variational Formulations of Mass Inequalities PMT and Riemannian Penrose Inequality Generalizations Answers to the Questions

One-Black-Hole Argument for the Charged Case I Jang/Huisken-Ilmanen argument

A Two-Black-Hole Counterexample to the Charged Case I The Majumdar-Papapetrou Metric Relation to Cosmic Censorhip

A Two-Black-Hole Counterexample to the Charged Case II Brill-Lindquist initial data Property of Stable Minimal Surface

Schwarzschild/Reissner-Nordström spacelike slice as Solitons Evolving Metrics by Isometries

Summary

Flow Σ by Inverse Mean Curvature; $\frac{\partial x}{\partial t} = \frac{1}{H}n$.

- Flow Σ by Inverse Mean Curvature; $\frac{\partial x}{\partial t} = \frac{1}{H}n$.
- Use the Geroch Monotonicity (sharpened by Jang)

$$rac{dm_{H}(\Sigma(t))}{dt} \geq rac{R}{32\pi}\int_{\Sigma(t)}\mathcal{S}_{g} \geq 0$$

of the Hawking Mass $m_H(\Sigma) = \frac{R}{2}(1 - \frac{1}{16\pi}\int_{\Sigma}H^2)$ and the scalar curvature is $S_g = 2(|E|^2 + |B|^2)$.

- Flow Σ by Inverse Mean Curvature; $\frac{\partial x}{\partial t} = \frac{1}{H}n$.
- Use the Geroch Monotonicity (sharpened by Jang)

$$rac{dm_{\mathcal{H}}(\Sigma(t))}{dt} \geq rac{R}{32\pi}\int_{\Sigma(t)}\mathcal{S}_g \geq 0$$

of the Hawking Mass $m_H(\Sigma) = \frac{R}{2}(1 - \frac{1}{16\pi}\int_{\Sigma}H^2)$ and the scalar curvature is $S_g = 2(|E|^2 + |B|^2)$.

• Hawking mass converges to ADM mass as $\Sigma \to S_{\infty}^2$.

- Flow Σ by Inverse Mean Curvature; $\frac{\partial x}{\partial t} = \frac{1}{H}n$.
- Use the Geroch Monotonicity (sharpened by Jang)

$$rac{dm_{\mathcal{H}}(\Sigma(t))}{dt} \geq rac{R}{32\pi}\int_{\Sigma(t)}\mathcal{S}_g \geq 0$$

of the Hawking Mass $m_H(\Sigma) = \frac{R}{2}(1 - \frac{1}{16\pi}\int_{\Sigma}H^2)$ and the scalar curvature is $S_g = 2(|E|^2 + |B|^2)$.

- Hawking mass converges to ADM mass as $\Sigma \to S_{\infty}^2$.
- Cauchy-Schwarz inequality and $Q = \int_{S^2_{\infty}} E \cdot n$.

- Flow Σ by Inverse Mean Curvature; $\frac{\partial x}{\partial t} = \frac{1}{H}n$.
- Use the Geroch Monotonicity (sharpened by Jang)

$$rac{dm_{H}(\Sigma(t))}{dt} \geq rac{R}{32\pi}\int_{\Sigma(t)}\mathcal{S}_{g} \geq 0$$

of the Hawking Mass $m_H(\Sigma) = \frac{R}{2}(1 - \frac{1}{16\pi}\int_{\Sigma}H^2)$ and the scalar curvature is $S_g = 2(|E|^2 + |B|^2)$.

- Hawking mass converges to ADM mass as $\Sigma \to S^2_{\infty}$.
- Cauchy-Schwarz inequality and $Q = \int_{S^2_{\infty}} E \cdot n$.
- Jump over discontinuities with Huisken-Ilamen's weak flow.

Penrose Inequality with Charge when Σ is connected

$$m \ge \frac{1}{2}\left(R + \frac{Q^2}{R}\right)$$
 with '=' iff Reissner-Nordström.

Variational Formulations of Mass Inequalities PMT and Riemannian Penrose Inequality Generalizations Answers to the Questions

One-Black-Hole Argument for the Charged Case I Jang/Huisken-Ilmanen argument

A Two-Black-Hole Counterexample to the Charged Case I The Majumdar-Papapetrou Metric Relation to Cosmic Censorhip

A Two-Black-Hole Counterexample to the Charged Case II Brill-Lindquist initial data Property of Stable Minimal Surface

Schwarzschild/Reissner-Nordström spacelike slice as Solitons Evolving Metrics by Isometries

Summary

►
$$g_{ij} = u^4 \delta_{ij}$$
,

•
$$g_{ij} = u^4 \delta_{ij}, \quad u = \left(1 + \frac{\mu}{r_1} + \frac{\mu}{r_2}\right)^{1/2}$$

•
$$g_{ij} = u^4 \delta_{ij},$$
 $u = \left(1 + \frac{\mu}{r_1} + \frac{\mu}{r_2}\right)^{1/2}$
• $E_i = 2\nabla_i \log u,$ $, S_g = 2|E|^2$

•
$$g_{ij} = u^4 \delta_{ij},$$
 $u = \left(1 + \frac{\mu}{r_1} + \frac{\mu}{r_2}\right)^{1/2}$
• $E_i = 2\nabla_i \log u,$ $B_i = 0, S_g = 2|E|^2$

•
$$g_{ij} = u^4 \delta_{ij},$$
 $u = \left(1 + \frac{\mu}{r_1} + \frac{\mu}{r_2}\right)^{1/2}$
• $E_i = 2\nabla_i \log u,$ $B_i = 0, S_g = 2|E|^2$

 r_1, r_2 are the distances to $p_1 = (0, 0, 1), p_2 = (0, 0, -1)$ in \mathbb{R}^3 .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

•
$$g_{ij} = u^4 \delta_{ij},$$
 $u = \left(1 + \frac{\mu}{r_1} + \frac{\mu}{r_2}\right)^{1/2}$
• $E_i = 2\nabla_i \log u,$ $B_i = 0, S_g = 2|E|^2$

 r_1, r_2 are the distances to $p_1 = (0, 0, 1), p_2 = (0, 0, -1)$ in \mathbb{R}^3 .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The total mass is
$$m = 2\mu$$
.

•
$$g_{ij} = u^4 \delta_{ij},$$
 $u = \left(1 + \frac{\mu}{r_1} + \frac{\mu}{r_2}\right)^{1/2}$
• $E_i = 2\nabla_i \log u,$ $B_i = 0, S_g = 2|E|^2$

 r_1, r_2 are the distances to $p_1 = (0, 0, 1), p_2 = (0, 0, -1)$ in \mathbb{R}^3 .

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

- The total mass is $m = 2\mu$.
- The total asymptotic area of Σ is $A = 8\pi\mu^2$.

•
$$g_{ij} = u^4 \delta_{ij},$$
 $u = \left(1 + \frac{\mu}{r_1} + \frac{\mu}{r_2}\right)^{1/2}$
• $E_i = 2\nabla_i \log u,$ $B_i = 0, S_g = 2|E|^2$

 r_1, r_2 are the distances to $p_1 = (0, 0, 1), p_2 = (0, 0, -1)$ in \mathbb{R}^3 .

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

- The total mass is $m = 2\mu$.
- The total asymptotic area of Σ is $A = 8\pi\mu^2$.
- The total charge is $Q = 2\mu$.

An Almost Counter-Example

$$m-\frac{1}{2}\left(R+\frac{Q^2}{R}\right)=\mu\left(2-\frac{3}{\sqrt{2}}\right)<0$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ④□ ◆ ○ ◆

An Almost Counter-Example

$$m-\frac{1}{2}\left(R+\frac{Q^2}{R}\right)=\mu\left(2-\frac{3}{\sqrt{2}}\right)<0$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

MP is not asymptotically flat.

An Almost Counter-Example

$$m-\frac{1}{2}\left(R+\frac{Q^2}{R}\right)=\mu\left(2-\frac{3}{\sqrt{2}}\right)<0$$

- MP is not asymptotically flat.
- MP has no horizon.

An Almost Counter-Example

$$m-\frac{1}{2}\left(R+\frac{Q^2}{R}\right)=\mu\left(2-\frac{3}{\sqrt{2}}\right)<0$$

- MP is not asymptotically flat.
- MP has no horizon.
- In Weinstein-Y.(2004), two copies of Majumdar-Papapetrouare truncated at their necks, and glued to rectify the features.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Variational Formulations of Mass Inequalities PMT and Riemannian Penrose Inequality Generalizations Answers to the Questions

One-Black-Hole Argument for the Charged Case I Jang/Huisken-Ilmanen argument

A Two-Black-Hole Counterexample to the Charged Case I The Majumdar-Papapetrou Metric Relation to Cosmic Censorhip

A Two-Black-Hole Counterexample to the Charged Case II Brill-Lindquist initial data Property of Stable Minimal Surface

Schwarzschild/Reissner-Nordström spacelike slice as Solitons Evolving Metrics by Isometries

Summary

► Jang (1979):

$$m \geq \frac{1}{2} \left(R + \frac{Q^2}{R} \right)$$

► Jang (1979):

$$m-\sqrt{m^2-Q^2} \le R \le m+\sqrt{m^2-Q^2}$$

► Jang (1979):

$$m-\sqrt{m^2-Q^2} \le R \le m+\sqrt{m^2-Q^2}$$

Only the upper bound on R follows from Cosmic Censorship using Penrose's heuristic argument.

Jang (1979):

$$m-\sqrt{m^2-Q^2} \le R \le m+\sqrt{m^2-Q^2}$$

- Only the upper bound on *R* follows from Cosmic Censorship using Penrose's heuristic argument.
- Our counter-example violates the lower bound.

Variational Formulations of Mass Inequalities PMT and Riemannian Penrose Inequality Generalizations Answers to the Questions

One-Black-Hole Argument for the Charged Case I Jang/Huisken-Ilmanen argument

A Two-Black-Hole Counterexample to the Charged Case I The Majumdar-Papapetrou Metric Relation to Cosmic Censorhip

A Two-Black-Hole Counterexample to the Charged Case II Brill-Lindquist initial data

Property of Stable Minimal Surface

Schwarzschild/Reissner-Nordström spacelike slice as Solitons Evolving Metrics by Isometries

Summary

►
$$g_{ij} = u^4 \delta_{ij}$$
,

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

•
$$g_{ij} = u^4 \delta_{ij}, \quad u = \left(1 + \frac{\mu}{2r_1} + \frac{\mu}{2r_2}\right)$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ④□ ◆ ○ ◆

$$\bullet \ g_{ij} = u^4 \delta_{ij}, \qquad u = \left(1 + \frac{\mu}{2r_1} + \frac{\mu}{2r_2}\right)$$

 r_1, r_2 are the distances to $p_1 = (0, 0, 1), p_2 = (0, 0, -1)$ in \mathbb{R}^3 .

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

$$\blacktriangleright g_{ij} = u^4 \delta_{ij}, \qquad u = \left(1 + \frac{\mu}{2r_1} + \frac{\mu}{2r_2}\right)$$

 r_1, r_2 are the distances to $p_1 = (0, 0, 1), p_2 = (0, 0, -1)$ in \mathbb{R}^3 .

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

• The total mass is $m = 2\mu$.

•
$$g_{ij} = u^4 \delta_{ij}, \quad u = \left(1 + \frac{\mu}{2r_1} + \frac{\mu}{2r_2}\right)$$

 r_1, r_2 are the distances to $p_1 = (0, 0, 1), p_2 = (0, 0, -1)$ in \mathbb{R}^3 .

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

- The total mass is $m = 2\mu$.
- The area radii are $R_1 = R_2 > 2\mu$ (Gibbons '72)

•
$$g_{ij} = u^4 \delta_{ij}, \quad u = \left(1 + \frac{\mu}{2r_1} + \frac{\mu}{2r_2}\right)$$

 r_1, r_2 are the distances to $p_1 = (0, 0, 1), p_2 = (0, 0, -1)$ in \mathbb{R}^3 .

- The total mass is $m = 2\mu$.
- The area radii are $R_1 = R_2 > 2\mu$ (Gibbons '72)
- The outermost horizon is not connected for µ sufficiently small.

•
$$g_{ij} = u^4 \delta_{ij}, \quad u = \left(1 + \frac{\mu}{2r_1} + \frac{\mu}{2r_2}\right)$$

 r_1, r_2 are the distances to $p_1 = (0, 0, 1), p_2 = (0, 0, -1)$ in \mathbb{R}^3 .

- The total mass is $m = 2\mu$.
- The area radii are $R_1 = R_2 > 2\mu$ (Gibbons '72)
- The outermost horizon is not connected for µ sufficiently small.

A Counter-Example (Dain-Weinstein-Y. 2010)

$$m-\frac{1}{2}\sum_{i}R_{i}<0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Variational Formulations of Mass Inequalities PMT and Riemannian Penrose Inequality Generalizations Answers to the Questions

One-Black-Hole Argument for the Charged Case I Jang/Huisken-Ilmanen argument

A Two-Black-Hole Counterexample to the Charged Case I The Majumdar-Papapetrou Metric Relation to Cosmic Censorhip

A Two-Black-Hole Counterexample to the Charged Case II Brill-Lindquist initial data Property of Stable Minimal Surface

Schwarzschild/Reissner-Nordström spacelike slice as Solitons Evolving Metrics by Isometries

Summary

Multiple Components

Stability of $\Sigma \Rightarrow$ multiple components

 If the outermost horizon is connected, then there exists x ∈ Σ ∩ {z = 0}. Then an estimate by Schoen says there exists ε > 0 such that

$$\sup_{\Sigma_1 \cap B(x,\varepsilon)} |A| \le C \int_{\Sigma_1 \cap B(x,2\varepsilon)} |A|^2 dx$$

where the RHS is $o(\mu)$ as $\mu \to 0$ and $\Sigma_1 = \Sigma \cap B(x, r)$ with r < 1. This says $|\Sigma_1| > C$, with *C* independent of μ

Multiple Components

Stability of $\Sigma \Rightarrow$ multiple components

 If the outermost horizon is connected, then there exists x ∈ Σ ∩ {z = 0}. Then an estimate by Schoen says there exists ε > 0 such that

$$\sup_{\Sigma_1 \cap B(x,\varepsilon)} |A| \le C \int_{\Sigma_1 \cap B(x,2\varepsilon)} |A|^2 dx$$

where the RHS is $o(\mu)$ as $\mu \to 0$ and $\Sigma_1 = \Sigma \cap B(x, r)$ with r < 1. This says $|\Sigma_1| > C$, with *C* independent of μ

Bray's Penrose inequality

$$2\mu \ge \sqrt{rac{|\Sigma|}{16\pi}}$$

says $|\Sigma| \rightarrow 0$ as $\mu \rightarrow 0$.

Variational Formulations of Mass Inequalities PMT and Riemannian Penrose Inequality Generalizations Answers to the Questions

One-Black-Hole Argument for the Charged Case I Jang/Huisken-Ilmanen argument

- A Two-Black-Hole Counterexample to the Charged Case I The Majumdar-Papapetrou Metric Relation to Cosmic Censorhip
- A Two-Black-Hole Counterexample to the Charged Case II Brill-Lindquist initial data Property of Stable Minimal Surface

Schwarzschild/Reissner-Nordström spacelike slice as Solitons Evolving Metrics by Isometries

Summary

Conformal Flows via Linear Elliptic Equations

Consider the one-parameter familes of metric on $\mathbf{R}^3 \setminus \{0\}$

$$g(t) = \mathcal{U}(t)^4 (dr^2 + r^2 d\omega^2)$$

where

$$\mathcal{U}(t) = e^{-t} + \frac{m}{2re^{-t}}$$

are Schwarzschild metrics, while

$$\mathcal{U}(t) = \left(e^{-t} + \frac{m+Q}{2re^{-t}}\right)^{1/2} \left(e^{-t} + \frac{m-Q}{2re^{-t}}\right)^{1/2}$$

are Reissner-Nordström metrics.

Conformal Flows via Linear Elliptic Equations

Set u(t) = U(t)/U(0), then a function v(t) defined by $u(t) = \exp \int_0^t v(\tau) d\tau$ satisfy, for all t,

$$L_{g(t)}v(t) = 0, \ \ L_{g(t)}v(t) = \frac{3}{4}|E|_{g}^{2}v(t)|$$

for Schwarzschild and Reissner-Nordström metrics respectively, where $L_g = \triangle_g - \frac{1}{8}S_g$. This is crucial to Bray's proof of RPI.

Question:

Any physical meaning to this gauge invariance?

Partial Answer:

Ohashi-Shiromizu-Yamada (2009)

Results For Solutions of the Einstein-Maxwell Constraints:

Results For Solutions of the Einstein-Maxwell Constraints: $1 (O^2)$

•
$$\Sigma$$
 connected $\Rightarrow m \ge \frac{1}{2}\left(R + \frac{\alpha}{R}\right)$.

Results For Solutions of the Einstein-Maxwell Constraints:

Results For Solutions of the Einstein-Maxwell Constraints:

•
$$\Sigma$$
 connected $\Rightarrow m \geq \frac{1}{2}\left(R + \frac{Q^2}{R}\right).$

► Σ not connected $\Rightarrow m - \frac{1}{2}\left(R + \frac{Q^2}{R}\right) < 0$ is possible (glued and perturbed Majumdar-Papapetroudata).

►
$$\Sigma$$
 not connected $\Rightarrow m - \frac{1}{2} \sum_{i} \left(R_{i} + \frac{Q_{i}^{2}}{R_{i}} \right) < 0$ is possible (Brill-Lindquist initial data.)

◆□▶
◆□▶
●>
●>

Open Problems:

Open Problems:

► The Charged Case

Open Problems:

► The Charged Case

•
$$R \leq m + \sqrt{m^2 - Q^2}$$

Open Problems:

- The Charged Case
 - $R \leq m + \sqrt{m^2 Q^2}$

The Rotating Case

Open Problems:

- The Charged Case
 - $R \leq m + \sqrt{m^2 Q^2}$

The Rotating Case

•
$$m \ge \frac{1}{2} \left(R^2 + \frac{4J^2}{R^2} \right)^{1/2}$$
 for Σ connected

Open Problems:

- The Charged Case
 - $R \leq m + \sqrt{m^2 Q^2}$
- The Rotating Case

•
$$m \ge \frac{1}{2} \left(R^2 + \frac{4J^2}{R^2} \right)^{1/2}$$
 for Σ connected
• $\frac{R^2}{2} \le m^2 + \sqrt{m^4 - J^2}$

S. Ohashi, T. Shiromizu, and S. Yamada. Riemannian Penrose inequality and a virtual gravitational collapse. Physical Review D 80 (2009) 047501.

- S. Dain, G. Weinstein and S. Yamada. A counterexample to a Penrose inequality conjectured by Gibbons. Classical and Quantum Gravity. 28 (2010) 085015.
- S. Yamada and G. Weinstein
 On a Penrose Inequality with Charge. Commun. Math.
 Phys. 257 (2004), 703–723.