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Outline of the Talk

• Review of RSII braneworlds 
• The method

• Gravitational dual to N = 4 SYM on 
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• Summary



The Randall-Sundrum 
(RSII) model

Consider the 4+1 dimensional asymptotically AdS spacetime. Cut off the 
geometry near the boundary of AdS and glue a copy of it onto this surface.

The RSII model offers a remarkable alternative to compactification: on scales 
much larger than l, 4d gravity is recovered on the brane. [Randall and Sundrum; Garriga and 
Tanaka; Giddings, Katz and Randall]

AdS

Israel junction conditions

Λ = − 6
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• The RSII model offers an alternative to compactification: in the linear regime 
and on scales much larger than l, 4d gravity is recovered. 
• The gravitational potential on the brane goes like [Garriga and Tanaka; Giddings, Katz and 
Randall]

and therefore there is no mass gap.
h̄tt ∼

1
r

+
2 �2

3 r3



The Randall-Sundrum 
(RSII) model

• The RSII model offers an alternative to compactification: in the linear regime 
and on scales much larger than l, 4d gravity is recovered. 
• The gravitational potential on the brane goes like [Garriga and Tanaka; Giddings, Katz and 
Randall]

and therefore there is no mass gap.
h̄tt ∼

1
r

+
2 �2

3 r3

• What about in the strong field regime?
• For scales much smaller than l, 5d gravity is recovered. In particular, a small 
(R4 <<	 l) black hole on the brane will look like 5d (AF) Schwarzschild. 
• Do we recover 4d gravity on the brane for large black holes?
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• Interpretation in AdS/CFT: The black hole solutions localised on the brane in 
the RSII model which are found solving the classical bulk equations in AdSD+1 
with brane boundary conditions correspond to quantum-corrected black holes in 
D-dimensions. [Tanaka ; Emparan, Fabbri and Kaloper]

• Conjecture: No large, static and non-extremal black hole on the brane should 
exist [Tanaka ; Emparan, Fabbri and Kaloper]. Counter argument by [Fitzpatrick, Randall and Wiseman]

• What about in the strong field regime?
• For scales much smaller than l, 5d gravity is recovered. In particular, a small 
(R4 <<	 l) black hole on the brane will look like 5d (AF) Schwarzschild. 
• Do we recover 4d gravity on the brane for large black holes?



The Randall-Sundrum 
(RSII) model

Summary of numerical previous work (Relativistic stars were constructed [Wiseman]):

• Kudoh, Tanaka and Nakamura (’03): only small (R4/l≤0.3)	 black holes were 
found.
• Kudoh (’06): up to intermediate size black holes (R5/l≤2.) were found in D=6.
• Yoshino (’08): no static black hole at all was found. One possible 
interpretation: no static black hole (no matter the size) on the brane exists.
• Kaus and Reall (’09): the near horizon geometry of extremal braneworld black 
holes of arbitrary size was found. (no Hawking radiation expected in this case anyway)

Analytical progress very difficult [Shiromizu, Maeda, Sasaki; Charmousis, Gregory;....]



The Method

We want to solve:

for a static black hole spacetimes (M, g) in D dimensions.
• Superficially we have D(D+1)/2 equations for the same number of metric 
components but because of the Bianchi identity there are only D(D-1)/2 non-
trivial equations. 

 
• Gauge fixing is necessary in order to have a (strongly) elliptic system of 
equations. 

• Methods for solving PDEs:
- Elliptic: boundary value problem.
- Hyperbolic/parabolic: initial value problem.

Rµν = 0



The Method

Introduced by [Headrick, Kitchen and Wiseman] for the static case and [Adam, 
Kitchen and Wiseman] for the stationary case (see also [PF, Lucietti and Wiseman]).
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RH

µν ∼ −
1
2

gαβ∂α∂βgµν

ξµ = 0 ⇒ ∆gx
µ = H

µ = −g
αβΓ̄µ

αβ

Note:

•                    is strongly elliptic: 

• Analogous to harmonic gauge:

• There are no constraints to worry about.

RH

µν = 0

Instead of considering the Einstein equations, we consider a characteristic 
version of it (the Harmonic Einstein equation) which is manifestly elliptic:

where      is the Levi-Civita connection associated to a reference metric      on the 
manifold.  

ξµ = gαβ(Γµ
αβ − Γ̄µ

αβ)RH

µν = 0 RH

µν = Rµν −∇(µξν)

Γ̄ ḡ



Comments/Remarks:

• Since the term proportional to Λ in the Einstein equations has no derivatives 
we can simply added to the Einstein Harmonic equation without affecting its 
elliptic character:

• Using the Bianchi identity, ξµ obeys

The Method
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∇2ξµ + R ν
µ ξν = 0
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 Ultimately we want to solve the original Einstein equations
• Dynamical case: choosing ξµ = 0 and ∂t ξµ = 0 on a Cauchy surface Σ ensures 
that the solutions to RHµν = 0 are Einstein!
• Elliptic case: solve RHµν = 0 subject to BCs compatible with ξµ = 0.
• A solution Rµν = 0 in the gauge ξµ = 0 certainly implies RHµν = 0 but the 
converse is not true: there can be solutions RHµν = 0 with non-trivial ξµ = 0 called 
Ricci solitons.   
• What boundary conditions should we impose on ξµ in order to find Einstein 
metrics?

∇2ξµ + R ν
µ ξν = 0



The Method

• In favourable circumstances one can in fact prove that only Einstein solutions 
exist on a given manifold:

- Bourguignon (’79) and Perelman (’02): no solitons exist on compact 
manifolds.
- For various asymptotics (AF, KK, AdS) one can prove that no Ricci 
solitons can exist. [PF, Lucietti and Wiseman]

 
• For the brane boundary conditions in the RSII model we cannot prove that no 
solitons exist.
• Since RHµν = 0 is elliptic and if the boundary conditions are compatible with 
the ellipticity of the problem, then every solution should be locally unique. 

• Therefore, an Einstein solution can always be distinguished from a Ricci 
soliton. 



Solving the equations

• Method 1: local relaxation (diffusion) ⇒ Ricci-DeTurck flow

➡ evolve the metric until one reaches a fixed point.

∂

∂λ
gµν = −2 RH

µν

Comments:

• Very easy to implement!
• It is diffeomorphic to Ricci flow, 

since                                    is a diffeomorphism.
⇒ the trajectory in the space of geometries is independent of the choice of 
reference metric!

∂

∂λ
gµν = −2 Rµν

δgµν = ∇(µξν) δλ



Solving the equations

Consider perturbations around a fixed point Ric[g0] = 0: g → g0 + δg.

Their evolution under the Ricci-DeTurck flow is given by

 Therefore, a fixed point is stable (or attractive) iff ΔL is positive.

But for many black hole spacetimes ΔL has negative modes [Gross, Perry and Yaffe], and 
hence for generic initial data Ricci flow will NOT converge to the desired fixed 
point.  

For a black hole spacetime with n negative modes, one has to tune an n 
parameter set of initial data

⇒ Ricci flow is not very useful if n > 1!

δġµν = −∆Lδgµν



Solving the equations

Method 2: Newton’s method. Iteratively replace 

where ΔH is the linearisation of RH.

gµν → gµν + hµν with hµν = −∆−1
H

RH

µν

Comments:

• Advantages:
-  Fast convergence.
- No problems with -ve modes (only zero modes cause trouble).

• Disadvantages:
- Harder to implement than Ricci Flow.
- Non-geometric in nature and the trajectory in the space of geometries 
depends on the choice of reference metric.
- The basin of attraction depends on the reference metric and in practice it 
can be rather small.



Gravity dual of N=4 SYM 
on Schwarzschild

Goal: use AdS/CFT to construct the gravitational dual of N=4 SYM on 
Schwarzschild such that far from the black hole the theory is in a vacuum state. 

Λ = − 6
�2

Schwarzschild

conformal boundary

AdS5

(extremal Poincare horizon)



Gravity dual of N=4 SYM 
on Schwarzschild

Why this AdS/CFT solution is relevant to the 
braneworld black hole problem?

1. The arguments of non-existence of Tanaka and Emparan et al. 
apply to this case.
2. This solution turns out to be much cleaner and easy to find.
3. One can prove analytically that no solitons can exist in this 
case!
4. The AdS/CFT solution corresponds to the infinite radius limit of 
a braneworld black hole. 
➡ it is more difficult to argue that it doesn’t exist!



Gravity dual of N=4 SYM 
on Schwarzschild

We can choose coordinates in order to make the isometries manifest (∂τ and axis 
of symmetry) to simplify the problem. This introduces fictitious boundaries at 
the fixed points and extra boundary conditions follow from requiring 
smoothness of the original metric.
⇒ compatible with non-existence of solitons. 



Gravity dual of N=4 SYM 
on Schwarzschild

We can choose coordinates in order to make the isometries manifest (∂τ and axis 
of symmetry) to simplify the problem. This introduces fictitious boundaries at 
the fixed points and extra boundary conditions follow from requiring 
smoothness of the original metric.
⇒ compatible with non-existence of solitons. 

General metric ansatz:

• T, S, A, B, F are functions of r and x and these are the functions we are solving 
for.
• Without loss of generality we can choose 0 ≤ r, x ≤ 1.
• Reference metric: T = S = A = B = F = 0.

ds2 =
�2

(1− x2)2

�
4r2f2eT dτ2 + x2g eS dΩ2

(2) +
4
f2

eT+r2f Adr2 +
4
g

eS+x2Bdx2 +
2 r x

f
F dr dx

�

f = 1− r2 , g = 2− x2



Gravity dual of N=4 SYM 
on Schwarzschild

Boundary conditions:

AdS5

conformal 
boundary

x=1: 
conformal boundary

 Dirichlet

r=1: 
AdS Poincare horizon.

 Dirichlet
r=0: 

non-extremal horizon 
(fictitious boundary)

 Neumann

x=0: symmetry axis 
(fictitious boundary)

 Neumann



Gravity dual of N=4 SYM 
on Schwarzschild

Important aspects of this solution:

1. With the previous BCs we can analytically show that no Ricci 
soliton can exist.
2. There are no negative modes: the boundary black hole is non-
dynamical.

 
➡ We can find the solution using Ricci Flow!



Gravity dual of N=4 SYM 
on Schwarzschild

Embedding of the hor izon 
geometry into hyperbolic space:

ds2
H

=
1
z2

(dz2 + dy2 + y2dΩ2
(2))

y = y(z)
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Gravity dual of N=4 SYM 
on Schwarzschild

Embedding of the hor izon 
geometry into hyperbolic space:

ds2
H

=
1
z2

(dz2 + dy2 + y2dΩ2
(2))

y = y(z)

Note: the geometry only looks 
string-like in a small region near 
the boundary, too small for a GL 
type mode to fit on the horizon ⇒ 
the solution is presumably stable.



Gravity dual of N=4 SYM 
on Schwarzschild
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Gravity dual of N=4 SYM 
on Schwarzschild

Main features and interpretation:

• Traceless: no conformal anomaly.
• Our solution corresponds to the gravitational dual of N=4 SYM 
on the background of Schwarzschild in the Unruh vacuum (not 
Hartle-Hawking and possibly not Boulware either).
• The dual classical geometry only captures the O(Nc2) of the full 
quantum stress tensor, and this piece is static and regular 
everywhere.
• To see the usual divergences on the past horizon in the 
Unruh vacuum one should include bulk quantum/string 
corrections.



Gravity dual of N=4 SYM 
on Schwarzschild

Physical picture:

• The black hole acts as a heat source exciting the plasma around 
it. 
• The strong interactions of the plasma are attractive and want to 
collapse back into the black hole.
• At O(Nc2) there is equilibrium between the radiation pressure and 
the attractive self-interactions of the plasma.
• The flux of radiation at infinity is an O(1) effect, which is not 
captured by the bulk gravity approximation.



Braneworld black holes
From the AdS/CFT we can construct perturbatively very large braneworld black 
holes:

z = 0 z = 0 z = ε,  ε << 1
Israel junction conditions

ds
2 =

�2

z2
(dz

2 + g̃µν(z, x) dx
µ
dx

ν)

g̃µν(z, x) = g
Schw
µν + z

4
tµν(x) dx

µ
dx

ν + O(z6)

perturb

gµν = gSchw
µν + �2 δgµν



Braneworld black holes

z = 0 z = ε,  ε << 1

Induced metric on the brane:

γµν =
�2

�2
(gSchw

µν + �2 δgµν)

⇒ the metric is approximately Schw. 
with a radius much larger than the AdS 
radius l

Israel junction conditions

The perturbation satisfies:
δGµν = 16πG4�TCFT

µν [gSchw]�



Braneworld black holes

Metric ansatz: “close” to the AdS/CFT solution but introduce a cut off near the 
boundary.

ds2 =
�2

∆2

�
4r2f2eT dτ2 + x2g eS dΩ2

(2) +
4
f2

eT+r2Adr2 +
4
g

eS+x2Bdx2 +
2 r x

f
F dr dx

�

∆ = (1− x2) + �(1− r2) , f = 1− r2 , g = 2− x2

In the limit ε → 0 we should recover the AdS/CFT solution.



x=1: 
Brane

r=1: 
AdS Poincare horizon.

 Dirichlet

r=0: 
non-extremal horizon 

(fictitious bounary)
 Neumann

x=0: symmetry axis 
(fictitious boundary)

 Neumann

Kij =
1
�

γij ,

ξx = 0 , F = 0 , ⇒ ∂xξr =
2
�

ξr

Braneworld black holes



Braneworld black holes
results

 Ricci Flow

•Since gravity on the brane is dynamical, we find that black holes on 
branesworlds have one and only one negative mode.

➡ Ricci flow does not work in a straightforward manner: We need a one 
parameter family of initial data to tune away the negative mode.

 
➡ Depending on the value of the parameter we observe two different flows.  
➡ Existence of solutions: there should exist a fixed point for one particular value 
of this parameter. 

{gtt, grr}→ k(r){gtt, grr} , k(r) = 1− α(1− r2)2
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• Using Newton’s method we can find black holes with
• Even though we cannot prove that solitons do not exist, we do NOT find any.
• Large braneworld black holes are “close” to the AdS/CFT solution.

5× 10−3 � R4/� � 100
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results



Braneworld black holes
results

10�4 0.001 0.01 0.1 1 10 100
10�9

10�6

0.001

1

1000

106

R4��

�H��3

• 5d/4d behaviour



Braneworld black holes
results
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• Embeddings of the horizon geometry into H4



Braneworld black holes
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• Einstein tensor on the brane 



Braneworld black holes
results
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Summary

• The method that we have used is based on a characteristic formulation of the 
Einstein equations:

-  Numerical stability.
- Fully covariant: allows for dependence on any number of coordinates.

•  We have found a solution in AdS/CFT which corresponds to N=4 SYM in the 
background of Schwarzschild in the Unruh vacuum.
• The AdS/CFT solution with 4d Schwarzschild boundary metric allows to 
understand the existence of large braneworld black holes.
• We have found static non-extremal braneworld black holes of any size.
• Braneworld black holes are likely to be stable.
• 4d gravity is recovered on the brane for large black holes



Thank you!!!!


