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GW Astrophysics:
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Example: BH-BH inspiral
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GW Astrophysics: A two-way street
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Astrophysical
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T Detection on
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Wave Event/
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Example: Accretion Disk flare Example: BH-BH inspiral

Example: Accretion disk shocks generated by BH-BH merger.
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GW Astrophysié S::A two-way street

Astrophysical Electromagnetic
Environment Signal
l Detection on
Gravitational QI / i
T —> Wave Event/
Environment .
Signal
Example: Accretion Disk flare Example: BH-BH inspiral

Example: Accretion disk shocks generated by BH-BH merger.

Example: Accretion disk modifies the GW signal.

Part of this talk is about how we can learn about
astrophysics from gravitational wave detections.
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GW Tests of GR

v>c¢/10, rll < 100 M. Binary Pulsars are still weak-field.

The GW phase evolution is very sensitive to the theory and
>thousands of rads in phase will be observed by GW detectors.

Model Tests

e Pick a theory and test it.
Eg. Brans-Dicke Theory.
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GW Tests of GR

v>¢/10, rl2 < 100 M. Bina,ry Pulsars are still weak-field.

The GW phase evolution is very sensitive to the theory and
>thousands of rads in phase will be observed by GW detectors.

Model Tests Generic Tests
Eg. Brans-Dicke Theory:. gconstruct a “meta’-theory to

test. Eg. ppN, ppK, ppE
e But you have to create

templates for each possible
theory.
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alescence

Red/blue shows o
grav. waves .= =

ripples in space and
time, in the |

gravitational field

light cyan shows the
strength of the grav.

field

solid cyan shows (roughly) the location of (courtesy,
the event horizon (BH surface) I. Hinder)
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Will, Damour,
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Post-Newtonian Compact Binaries in GR,

Metric Perturbation

Juv — Nuv T IZ/,UJ/
g

metric flat
tensor

GW metric pert.

(Futamase,
Will, Damour,
Blanchet, etc.)
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Post-Newtonian Compact Binaries in GR,

Metric Perturbation
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Post-Newtonian Compact Binaries in GR,

Metric Perturbation
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Post-Newtonian Compact Binaries in GR,
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Post-Newtonian Compact Binaries in GR,

Metric Perturbation
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Post-Newtonian Compact Binaries in GR,

Metric Perturbation

Gpv = NMuw + My Gy =8| — o
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: instein :
metric flat Stress-Energy Flat-space, Annoying
tensor . : o
tensor tensor diff. wave op. non-linearities

GW metric pert.

Acceleration VEIlG,, k) — 0

Solve Perturbatively, assuming Density Four-Velocity Pressure

/ / it
/

Perfect Fluid T,Lw — (,0 s p)u{ﬂby e p‘g/uu

Mass\

Point Particles p=1m 53 (mZ = Y

i\ Particle
<€

Y Location
orbital velocity m § e (Futamase,
it — << 1 orbital Will, Damour,
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Wednesday, September 28, 11



1
-
foe)
N
b
@
Qo
£
3
2
Q
[0
1))
>
©
e,
®
o)
C
S
M




Intimidation Slide

Leading term: Newtonian gravity.
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and craziness ensues...

3 PN (yet more corrections ... )

174 s BT A L B

1068

1~

[Blanchet 2006, Liv Rev
Rel 9, 4, Eq. (168)]
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Compact Binaries in Effective
Alternative Theories

Glu,y _|_ C OMV e 877T,u,1/

Start with the modified field equations

(Yagi, Stein, Yunes and Tanaka, ’10)
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Compact Binaries in Effective
Alternative Theories

Glu,y _|_ C OMV e 877T,u,1/

Start with the modified field equations

nPuw = Tou[RS] £ € @ DI Expand about Minkowski

(Yagi, Stein, Yunes and Tanaka, ’10)
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Compact Binaries in Effective
Alternative Theories

G +CC,, — 6l Start with the modified field equations

nPuw = Tou[RS] £ € @ DI Expand about Minkowski

¢ Opbhy = Tu|C 0k her ] &0 Linearize Z,Zout vac GR
h,uu e h,u + C (Sh'uy

|74

(Yagi, Stein, Yunes and Tanaka, ’10)
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Compact Binaries in Effective
Alternative Theories

nPuw = Tou[RS] £ € @ DI

G +CC,, — 6l Start with the modified field equations

Expand about Minkowski

¢ O,6h,, = Tuw[C 6h har] + € ol r, 0" har) Linearize about vac GR

B W7+ (Ohy,

and now you can use the same PN tools as always to solve the above
wave equations (see eg. the DIRE approach or dim regularization).

(Yagi, Stein, Yunes and Tanaka, ’10)
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Compact Binaries in Effective
Alternative Theories

G +CC,, — 6l Start with the modified field equations

nPuw = Tou[RS] £ € @ DI Expand about Minkowski

¢ O,6h,, = Tuw[C 6h har] + € ol r, 0" har) Linearize about vac GR

B W7+ (Ohy,

|74

and now you can use the same PN tools as always to solve the above

wave equations (see eg. the D

But be careful!!

B approach or dim regularization).

The point-particle description of BHs works in GR (in part due to the
Birkhoff theorem), but this need not be so in Alternative Theories. In

fact, usually one must compensate for violations of this description.

(Yagi, Stein, Yunes and Tanaka, ’10)
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Semi-Analytical Phase Modeling

If we know that the only thing modified is the Hamiltonian and the
Radiation-Reaction force --> Modified Hamiltonian Evolution

(effective-one-body approach)

Damour & Buonanno '08,
Yunes, et al, PRL ’11,
PRD 83’11, PRL 104 ’10.
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Semi-Analytical Phase Modeling

If we know that the only thing modified is the Hamiltonian and the
Radiation-Reaction force --> Modified Hamiltonian Evolution

(effective-one-body approach)

Damour & Buonanno '08,
Yunes, et al, PRL ’11,
PRD 83’11, PRL 104 ’10.

The Hamiltonian and the RR Force drive the inspiral and
define the trajectories and waveforms.

The Hamiltonian is built from the 2-body metric, while the
RR Force can be constructed from the fluxes of (E,Lz,Q).
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Semi-Analytical Phase Modeling

If we know that the only thing modified is the Hamiltonian and the
Radiation-Reaction force --> Modified Hamiltonian Evolution

(effective-one-body approach)

Damour & Buonanno '08,
Yunes, et al, PRL ’11,
PRD 83’11, PRL 104 ’10.

The Hamiltonian and the RR Force drive the inspiral and
define the trajectories and waveforms.

The Hamiltonian is built from the 2-body metric, while the
RR Force can be constructed from the fluxes of (E,Lz,Q).

A modification to either of these components leads to a
correction that we might observe.
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PRD 83 (2010)

Thornburg,

Yunes, Miller
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EMRIs and Massive Perturbers

SMBH w/ma.ss M
\

_

Yunes, Miller, Thornburg, PRD 83 (2010)
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EMRIs and Massive Perturbers

SMBH w/ma.ss M

SCO w/mass m

Yunes, Miller, Thornburg, PRD 83 (2010)
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EMRIs and Massive Perturbers

SMBH w/ma.ss M

Secondary
SMBH w/mass
MeE and
separation d

SCOW/massm ........I..l.>

Yunes, Miller, Thornburg, PRD 83 (2010)
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EMRIs and Massive Perturbers

SMBH w/mass M i,

What must this separation and
secondary mass be before we can
see the imprint of the secondary

on the EMRI gravitational waves?

g Secondary
el .....> SMBH w/mass
MeE and
separation d

Yunes, Miller, Thornburg, PRD 83 (2010)
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Detecting a Massive Companion

Oaw = /F(t) (1 -+ Ulos) dt

e=10", Leading Order
e=10", Leading Order
e:IO_S, Leading Order
: s=10'7, First Order
: 8=10_6, First Order

: s=10'5, First Order
Observable by PTA

Yunes, Miller, Thornburg, PRD 83 (2010)



Detecting a Massive Companion

Paw = /F(t) L U ) dE
|

\

Velocity
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Detecting a Massive Companion

e=10
e=10
e=10"

©e=10
©e=10
' s=10

, Leading Order
, Leading Order
, Leading Order
, First Order
, First Order

, First Order

Observable by PTA

Oaw = /F(t) (1 -+ Ulos) dt

\

Velocity
GW Phase = Glygnc along the
d Y line of sight

M,
5q)GW e Ncycles < : t) Libs

/ 7 "Sec /.

# of Cycles Acceleration Observation
Time

Yunes, Miller, Thornburg, PRD 83 (2010)
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Detecting a Massive Companion

e=10
e=10
g=10"
"~ e=10
©e=10
©e=10"

, Leading Order
, Leading Order
, Leading Order
, First Order
, First Order

, First Order

Observable by PTA

If a sec. BH with mass
le7 Msun is at
about 1/10 pc from
EMRI (acc about le-4
m/s”"Q) we might see it.

Oaw = /F(t) (1 -+ Ulos) dt

\

Velocity
GW Phase o GJIZHC along the
d Y line of sight

M,
5q)GW e Ncycles < : t) Libs

/ 7 "Sec /.

# of Cycles Acceleration Observation
Time

Yunes, Miller, Thornburg, PRD 83 (2010)
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Detecting a Massive Companion

Oaw = /F(t) (1 -+ Ulos) dt

\

Velocity
GW Phase o GJIZHC along the
d Y line of sight

* ¢=10 ", First Order

' 8=10 , First Order S cC
: s=10'5, First Order /
Observable by PTA

# of Cycles Acceleration Observation

e=10 ', Leading Order
e=10", Leading Order 5 @ N M TOt T
¢=10 ", Leading Order GW Pt CYCleS ObS

Time
If a sec. BH with mass 3 _5/3 [ MgeceM _8/3
1le? Msun is at OPEET,GW ~ Tog (TM) { o S U ]
about 1/10 pc from - ,
EMRI (acc about 1e-4 clear spectral signature

m/s”"Q) we might see it.
Yunes, Miller, Thornburg, PRD 83 (2010)
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Accretion Disks and EMRIs

Consider Bright AGNs (SMBH + Active Accretion Disk)

SCO’s can end up inside the disk; by either:

® Capture from galactic nucleus (through friction as it
penetrates the disk, aka “the swiss cheese effect”)

® Fragmentation from disk outskirts, eventually
dragged into the “inskirts”, into GW dominated region.

We considered radiatively efficient, Seometrically thin

disks in the radiation pressure dominated (.

TMRI) zone.

otudied two viscosity prescriptions:

® Alpha (Shakura+Sunyaev): viscosity proportional to tot. pres.

Wednesday, September 28, 11



Accretion Disks and EMRIs

s
v A AR Ty
.

Consider Bright AGNs (SMBH + Active Accretion Disk)

SCO’s can end up inside the disk;by either:

® Capture from galactic nucleus (through friction as it
penetrates the disk, aka “the swiss cheese effect”)

® Fragmentation from disk outskirts, eventually
dragged into the “inskirts”, into GW dominated region.

We considered radiatively efficient, geometrically thin
disks in the radiation pressure dominated (EMRI) zone.
otudied two viscosity prescriptions:

® Alpha (Shakura+Sunyaev): viscosity proportional to tot. pres.

® Beta: viscosity proportional to gas pressure only.
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Disk BEffects Considered

Yunes, Kocsis, Haiman, Loeb (2011), Kocsis, Yunes, Loeb (2011)

® Fdd. SMBH Mass Increase; Gas fall into SMBH increases its

mass -> Changes .

il and |

Bdot [through M(t)]. §¢ ~ 10 2rads
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Disk BEffects Considered

Yunes, Kocsis, Haiman, Loeb (2011), Kocsis, Yunes, Loeb (2011)

® Edd. SMBH Mass Increase: Gas fall into SMBH increases its
mass -> Changes E and Edot [through M(t)]. §¢ ~ 10~ *rads

® Bondi-Hoyle SCO Masss Increase: 5CO sweeps up disk material
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® Fdd. SMBH Mass Increase:; Gas'»‘fall into SMBH increases its
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Disk Effects Considered
Yunes, Kocs1s,H&1maIl, Loeb (2011 ), Kocsis, Yunes, Loeb (2011)

® Fdd. SMBH Ma.ss Inorea,se»:' G'as":':fall iInto SMBH increases its
mass -> Changes E and Edot [through M(t)]. i¢ ~ 10 ?rads

® Bondi-Hoyle SCO Masss Increase: 5CO sweeps up disk material
as it inspirals -> Changes E and Edot [through m(t)].0¢ < 10 rads

® Wind: Difference in gas and SCO’s velocity pushes SCO forward
or backwards -> Changes Edot through a new term. d¢ < 1 rads

® Disk Axisym Self-Gravity: The gas itself exerts a pull on the
SCO -> Changes E, Kepler’s third law and Edot. §¢ < 107 ° rads

® \Migration: Disk Spiral arms carry L away from the SCO,
forcing it to inspiral into SMBH faster -> changes Edot. Two
types: I (no gap forms) and II (a gap forms, gas pile up).

6¢ € (1,10°) rads
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Waveforms in Alternative Theories

(1) Scalar-Tensor theories:

- 2/5_ —7/34—Dbecause of dipolar
(Will '94, Scharre & Will '02, Will & Yunes | fj = heop e BeD N7 "u

e energy emission
'’04, Berti, Buonanno & Will ’05, Yagi & // \
Tanaka ‘09) S
inversely related to the reduced GW frequency
BD coupling parameter (u=piMci)
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Waveforms in Alternative Theories

(1) Scalar-Tensor theories:

(Will ’94, Scharre & Will 02, Will & Yunes h — hGRez BBD T

'’04, Berti, Buonanno & Will ’05, Yagi &

Tanaka ‘09)

inversely related to the
BD coupling parameter

(ii) Massive Graviton Theories:

(Will ’98, Will & Yunes '04, Stavridis & Will 09,
Arun & Will ’09, Yagi & Tanaka ‘09)

o o

2/5 s 7 /| 3 «—Dbecause of dipolar

energy emission

reduced GW frequency
(u=piMci)

~ ~ o O —1
h — henet PMG 1 u
GR X

N\

related to graviton Compton wavelength
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Waveforms in Alternative Theories

(i) Scalar-Tensor theories: ,
i i : 2/5_ —7/34—Dbecause of dipolar
(Will 94, Scharre & Will ’02, Will & Yunes h e hGRez BBD 7 L enersgy emission
'’04, Berti, Buonanno & Will ’05, Yagi & // \
Tanaka ‘09) S
inversely related to the reduced GW frequency
BD coupling parameter (u=piMci)

(ii) Massive Graviton Theories:

~ ~ 5 O )
g {/ 51\/[(} N u
(Will 98, Will & Yunes 04, Stavridis & Will 09, h T hGRe
Arun & Will ’09, Yagi & Tanaka ‘09) \\

related to graviton Compton wavelength

(iii) Gravitational Parity Violation:

(Alexander, Finn & Yunes 08, Yunes, h — hGR (1 - APV 770 ul )
O’Shaughnessy, Owen, Alexander ‘10) //

related to CS coupling
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Waveforms in Alternative Theories

(1) Scalar-Tensor theories: ,
i i : 2/5_ —7/34—Dbecause of dipolar
(Will ’94, Scharre & Will 02, Will & Yunes h e h GRQZ B BD 7] L energy emission
'’04, Berti, Buonanno & Will ’05, Yagi & // \
Tanaka ‘09) S
inversely related to the reduced GW frequency
BD coupling parameter (u=piMci)

(ii) Massive Graviton Theories:

~ ~ 5 O )
g {/ 51\/[(} N u
(Will 98, Will & Yunes 04, Stavridis & Will 09, h T hGR@
Arun & Will ’09, Yagi & Tanaka ‘09) \\

related to graviton Compton wavelength

(iii) Gravitational Parity Violation:

7 7 1
(Alexander, Finn & Yunes 08, Yunes, h — hGR (1 - APV 770 U )
O’Shaughnessy, Owen, Alexander ‘10) //

related to CS coupling

(iv) G(t) theories:

(Yunes, Pretorius, fre— hGR (]_ -+ C(G 773/5 fu,_8/3 e’ Ben
Spergel ’10) Pl

3/5, —13/3

related to (5
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More Examples

(v) Quadratic Gravity

~

h — EGRei Bac oG because it’s a higher

\ curvature correction
related to theory couplings

(Yunes & Stein, ‘11)
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\ curvature correction
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(vi) Extra-Dimenionss " i 3 3/5,,—13/3
(Inoue & Tanaka ’03, Yagi, h S, hGRe e Pelated.to sizg of extra
Tanahashi & Tanaka ‘11) —> dimension
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More Examples

(v) Quadratic Gravity

(Yunes & Stein, ‘11)

o

(vi) Extra-Dimenions:

(Inoue & Tanaka ’03, Yagi,
Tanahashi & Tanaka ‘11)

(vii) Lorentz-Violation:

(Mirshekari, Yunes and Will,
in preparation)

Wednesday, September 28, 11

because it’s a higher

\ curvature correction
related to theory couplings

3/5,,—13/3

B EGRei BPEG N

related to size of extra

T dimension

h = hagettve”

related to degree of

— Lorentz violation




More Examples

(v) Quadratic Gravity

~

h — iLGRei,BQG = L because it’s a higher

\ curvature correction
related to theory couplings

(Yunes & Stein, ‘11)

(vi) Extra-Dimenions: | - - i 3 3/5,,—13/3
(Inoue & Tanaka '03, Yagi, h S ]’LGRG e related.to sizg of extra
Tanahashi & Tanaka ‘11) —  dimension

(vii) Lorentz-Violation: | -~ ~ S
(Mirshekari, Yunes and Will, h ~= hGR € related to degree of
in preparation) —> Lorentz violation

We have still not found any theories whose
predicted gravitational wave correction cannot
be mapped to such a phase and Amp corrections
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The ppE Framework

Strong-field GR remains completely untested

A modification to the Einstein Equations leads to corrections to
the waveform that we can search for.
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The ppE Framework

Strong-field GR remains completely untested

A modification to the Einstein Equations leads to corrections to
the waveform that we can search for.

Parameterized post-Einsteinian Framework: Deform the GR
waveform through model-independent parameters
Yunes & Pretorius, PRD 80 (2009)

Extremely Simple Example:

~

GR (a,a,B,b) =(0,a,0,0) h/ — iLGR (1 _I_ ?[ﬁa) e/zﬂﬁ,b
/

BD (a7a767 b) B (O7aaﬁBD7 _7/3)

PV (Oé, a, 6, b) = (aCS7 17 07 b) para?r?lgters
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The ppE Framework

Strong-field GR remains completely untested

A modification to the Einstein Equations leads to corrections to
the waveform that we can search for.

Parameterized post-Einsteinian Framework: Deform the GR
waveform through model-independent parameters
Yunes & Pretorius, PRD 80 (2009)

Extremely Simple Example:

~

GR (a,a,B,b) =(0,a,0,0) h/ — iLGR (1 _I_ ?[ﬁa) e/zﬂﬁ,b
/

BD (a7a767 b) B (OaaaﬁBDa _7/3)

PV (Oé, a, 6, b) = (aCS7 17 07 b) para?r?lgters

Search GW Data with these templates and let the
data decide what the parameters should be.
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Given a

; LN
{4 o
INCIXAd

Can we test for der oy with GR, without
explicitly bu1 able theories?

! it

r
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vith GR, without
eivable theories?
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Questions for ppE

Given a GW detection, how;stil_ir"’e are we it was a GR event?
Statistically significant anomadlies in the signal?

Can we test for deviations from/consistency with GR, without
explicitly building templates banks for all conceivable theories?

How would we mischaracterize the universe if GR was close but not
quite the correct theory of nature? (“fundamental bias”)

e oy e Tx

GR pDp:

! Quantify the likelihood of GR
! being the underlying theory
GR Business as usual ! describing the detected event,
within the class of alt. theories
captured by ppE

Templates/
Theories

&

Understand the bias that could §  Measure deviations from GR
Not GR be introduced filtering non-GR | characterized by non-GR ppE
events with GR templates parameters.

Wednesday, September 28, 11



Constraining GR Deviations

GR Signal/ppE Templates, 6-sigma, constraints, SNR = 20

e

Pulsar

LISA binary,z=1 —+—
LISA binary,z=8 —x—

~ ~ o b
(Yunes and Hughes, PRD 82 (2010)
h = hgr (1 T Oéfa) 626]0

(Cornish, Sampson, Yunes & Pretorius, 2011)
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1e-08

Constraining GR Deviations

GR Signal/ppE Templates, 6-sigma, constraints, SNR = 20

10000
) 1 100
|
V 1
0.01
<ol

/ Pulsar
LISA binary,z=1 —+—
E 7S inary, z =
’ X LISA binary, z = 3 ——
2 15 . 0. .
b

Weak Field

~ ~ ° b
(Yunes and Hughes, PRD 82 (2010)
h=hor(1+af?) e 5 .

(Cornish, Sampson, Yunes & Pretorius, 2011)
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Constraining GR Deviations

GR Signal/ppE Templates, 6-sigma, constraints, SNR = 20

10000

100

Weak Field Strong Field
~ ~ : b
o a 7 ﬁ f (Yunes and Hughes, PRD 82 (2010)
h o hGR ( 1 _|_ Oéf ) € (Cornish, Sampson, Yunes & Pretorius, 2011)
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Parameter Bias
Non-GR Signal/GR Templates, SNR = 20

Non GR injection, extracted with GR templates (blue) and ppE
templates (red). GR template extraction is “wrong” by much more

than the systemastic (statistical) error. “Fundamental Bias”

] — | ] L - ]
282 284 286 283 29 292 294 2.75
In(M)

| | | | | |
BF =322 BF = 3300
B=10 B =20

(Cornish, Sampson, Yunes & Pretorius, 2011.)
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Identifying GR Deviations

Non-GR Signal/ppE Templates, Ad.LIGO, SNR = 20

Filter an injected ppkE signal (&,alpha.b,beta)=(-0.5,4.0,1.25,10.0)
with a ppE template family. The marginalized posterior for beta
clearly shows a preference away from GR. LIGO (non-equal mass)

YOou can also
compute the Bayes
factor as a function

1.9503 1.25 -1.2497 Of (b ,beta,) X YOU

would find a strong
preference (BF >
100) for beta>2/10

022 13.3 (Cornish, Sampson, Yunes
& Pretorius, 2011.)
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Conclusions

Interesting astrophysical events will produce GWs
that will carry valuable information

/

Astrophysical

Massses, spins, sky location,
inclination angle, etc.

Wednesday, September 28, 11



Conclusions

Interesting astrophysical events will produce GWs
that will carry valuable information

/

Astrophysical

Massses, spins, sky location,
inclination angle, etc.

Cosmological Parameters
(Hubble, EOS, Potentials)

Wednesday, September 28, 11



Conclusions

Interesting astrophysical events will produce GWs
that will carry valuable information

/

Astrophysical

Massses, spins, sky location,
inclination angle, etc.

Cosmological Parameters
(Hubble, EOS, Potentials)

secondary Perturbers
(mass and distance)

Wednesday, September 28, 11



Conclusions

Interesting astrophysical events will produce GWs
that will carry valuable information

/

Astrophysical

Massses, spins, sky location,
inclination angle, etc.

Cosmological Parameters
(Hubble, EOS, Potentials)

secondary Perturbers
(mass and distance)

Accretion Disk
(learn about migration)

Wednesday, September 28, 11



Conclusions

Interesting astrophysical events will produce GWs
that will carry valuable information

P

Astrophysical

Massses, spins, sky location,
inclination angle, etc.

Cosmological Parameters
(Hubble, EOS, Potentials)

secondary Perturbers
(mass and distance)

Accretion Disk
(learn about migration)

Wednesday, September 28, 11



Conclusions

Interesting astrophysical events will produce GWs
that will carry valuable information

P

Astrophysical Fundamental Physics
Massses, spins, sky location, Measure ppE parameters
inclination angle, etc. during Inspiral

Cosmological Parameters

(Hubble, EOS, Potentials) Test the no-hair theorem

secondary Perturbers Verify the existence of
(mass and distance) event horizons
Accretion Disk Check for Gravitational
(learn about migration) symmetry Breaking
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Conclusions

Interesting astrophysical events will produce GWs
that will carry valuable information

. N

Astrophysical Fundamental Physics
Massses, spins, sky location, Measure ppE parameters
inclination angle, etc. during Inspiral

Cosmological Parameters

(Hubble, EOS, Potentials) Test the no-hair theorem

secondary Perturbers Verify the existence of
(mass and distance) event horizons
Accretion Disk Check for Gravitational
(learn about migration) symmetry Breaking

The Era of Precision GW Astrophysics is at our doorstep...



Quenching of Disk Effects

Yunes, Kocsis, Haiman, Loeb (2011), Kocsis, Yunes, Loeb (2011)

Quenching mechanisms have a huge impact on disk effects.

— *,gap,a

e *’gap’B
— d,a

o dp

—_— q,a

thin
— tidal
diff. rot.
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Quenching of Disk Effects

Yunes, Kocsis, Haiman, Loeb (2011), Kocsis, Yunes, Loeb (2011)

Quenching mechanisms have a huge impact on disk effects.

® Gap Formation: If SCO tidal torques>gas vel.,

— *,gap,a

e *’gap’B
— d,a

o dp
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- qp
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diff. rot.

Wednesday, September 28, 11



Quenching of Disk Effects

Yunes, Kocsis, Haiman, Loeb (2011), Kocsis, Yunes, Loeb (2011)

Quenching mechanisms have a huge impact on disk effects.
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Quenching of Disk Effects

Yunes, Kocsis, Haiman, Loeb (2011), Kocsis, Yunes, Loeb (2011)

Quenching mechanisms have a huge impact on disk effects.

® Gap Formation: If SCO tidal torques>gass vel.,

® Gap Decoupling: GW inspiral vel>gas vel., (close to ISCO)

®Thin Disk Geometry: Scale Height<Bondi Radius, H/rB supp.
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Quenching of Disk Effects

Yunes, Kocsis, Haiman, Loeb (2011), Kocsis, Yunes, Loeb (2011)

Quenching mechanisms have a huge impact on disk effects.

® Gap Formation: If SCO tidal torques>gass vel.,

® Gap Decoupling: GW inspiral vel>gas vel., (close to ISCO)

®Thin Disk Geometry: Scale Height<Bondi Radius, H/rB supp.

. ., — *,gap,o
: ; : '°.,.. v % oap B
eDifferential Rotation: s
Rel. vel=sound speed, Iy
rB=m/(vrel*2+cs”2) . S ~ dda

diff. rot.
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Quenching of Disk Effects

Yunes, Kocsis, Haiman, Loeb (2011), Kocsis, Yunes, Loeb (2011)

Quenching mechanisms have a huge impact on disk effects.

® Gap Formation: If SCO tidal torques>gass vel.,

® Gap Decoupling: GW inspiral vel>gas vel., (close to ISCO)

®Thin Disk Geometry: Scale Height<Bondi Radius, H/rB supp.

— *,gap,a
. *’gap’B

eDifferential Rotation: T
Rel. vel=sound speed, Iy
rB=m/(vrel*2+cs”2) . S ~ dda

diff. rot.

®
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Accretlon Disk-Induced Dephasings

Yunes, Kocsis, Haiman, Loeb (2011),
Kocsis, Yunes, Loeb (2011)

: . N Curves above the thick
—;ﬁlgvA Ace (1 Gpe) 4 magenta line can be
= =LA A “{‘” " detected by LISA. Thin
R = magenta line is the
vacuum GW phase.

Each point in the figures is the
dephasing after a 1-year
inspiral, terminating at rf.
Solid (dotted) lines are for
alpha, (beta) disks, diff. colors

are for different disk effects.
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1+ a(4n)*u® lta

peak at H=0is degeneracy between phase of
coalescence and 3 (LISA example)

peak at a=0is degeneracy between
luminosity distance and effective o
(LISA example)

bump at 6=-5/3 (PN value) is a partial
degeneracy between chirp mass and 3
(LIGO example)
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Massive Graviton
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At certain “resonant” exponents, you cannot distinguish between
GR and an alternative theory modification (spikes).

(degeneracies not sampled in the previous plot)

1 Brans Dicke

' Massive Graviton
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Odds ratio for ppE signal injection at different values of beta and
(a,alpha,b)=(0,0,-1.25). Extraction with ppE template.
suggests beta > 2/10 can easily be observed.

Bayes Factor
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A ~ Ajith, | Solar
W Keppel | System
Binary - - -
Masss
BD
Coupling X p:¢ 4
Par. (e4)
Binary 1E7: ; :
Naoa 1E6 1E7:1E6 | BE7:5E7 X
Graviton
Compton |
Wavelgth 6.9 X 4 3.1 52 0.00028
(e2l cm)
First MG | First ST i fuxié e spin + Cassini,
Details study, no | study, no of Det el o spin + prec | prec + IMR 3rd Law
spin spin s 1 ecc Solar Sys

Wednesday, September 28, 11 | |




1
-
foe)
N
b
@
Qo
£
3
2
Q
[0
1))
©
e,
®
o)
C
e,
=




What’s so special about Binaries?

e Inspiral GWs are continuous -> tons of phase information.
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What’s so special about Binaries?
¢ Inspiral GWs are continuous ->tons of phase information.

e We have analytic control of the “waveforms” (the GWs) during
the inspiral phase so we can model them accurately.

e They involve objects that are hard to observe otherwise ->
Black Holes and Neutron Stars.

e The untested GR regime is approached “slowly”, as the objects
get closer to each other.

* One samples the “Strong-Field” regime of GR -> where gravity
is strong and velocities close to c.
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Now consider Alternative Theories s

Simplifications

We will focus on stationary, vacuum solutions to modified gravity
field equations in four-dimensions.
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Now consider Alternative Theories s

Simplifications

We will focus on stationary, vacuum solutions to modified gravity
field equations in four-dimensions.

We will search for “small” deformations away from GR solutions
because we want (i) stable solutions, (ii) solutions that pass

weak-field tests and (iii) analytic solutions.

We will study theories with curvature expansions of the form:

S = Sgr + SaT + Skin

G / i B o / dia /=7 B (9.9)(0°0)

SAT v /d4$\/ —( (04129R2 5 &QﬁRabRab ot &319RabcdRade s 04419Rabcd*f‘zab6d)

Theta is a spacetime function and the alpha’s are coupling constants.



