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GW Modeling

event rates, formation 
scenarios, eccentricities

Extract weak signal 
from messy noise 

(detection & 
parameter estimation) 

Test GR

Solve the Einstein 
Equations to 

provide “templates”

no-hair theorem, horizons, 
non-linear GR, massive 

gravity, dilatons & axions.

Multi-Messenger Astrophysics
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The non-linear, dynamical, strong-field regime of 

General Relativity remains completely unexplored.
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Road Map

I. Gravitational Wave Modeling

II. Connection to Astrophysics

III.  Connection to Fundamental Theory 
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Flat-space, 
diff. wave op.

[Blanchet 2006, Liv Rev 
Rel 9, 4, Eq. (168)]

3 PN (yet more corrections ... )
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Semi-Analytical Phase Modeling
If we know that the only thing modified is the Hamiltonian and the 

Radiation-Reaction force --> Modified Hamiltonian Evolution 
(effective-one-body approach)   

Damour & Buonanno ’08,
Yunes, et al, PRL ’11, 
PRD 83 ’11, PRL 104 ’10. 
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ṗa = �@H

@qa
� Frr , q̇a =

@H

@pa

The Hamiltonian and the RR Force drive the inspiral and 
define the trajectories and waveforms. 

Damour & Buonanno ’08,
Yunes, et al, PRL ’11, 
PRD 83 ’11, PRL 104 ’10. 

Wednesday, September 28, 11



Semi-Analytical Phase Modeling
If we know that the only thing modified is the Hamiltonian and the 

Radiation-Reaction force --> Modified Hamiltonian Evolution 
(effective-one-body approach)   

ṗa = �@H

@qa
� Frr , q̇a =

@H

@pa

The Hamiltonian and the RR Force drive the inspiral and 
define the trajectories and waveforms. 

Damour & Buonanno ’08,
Yunes, et al, PRL ’11, 
PRD 83 ’11, PRL 104 ’10. 

The Hamiltonian is built from the 2-body metric, while the 
RR Force can be constructed from the fluxes of (E,Lz,Q). 

Wednesday, September 28, 11



Semi-Analytical Phase Modeling
If we know that the only thing modified is the Hamiltonian and the 

Radiation-Reaction force --> Modified Hamiltonian Evolution 
(effective-one-body approach)   
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� Frr , q̇a =
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The Hamiltonian and the RR Force drive the inspiral and 
define the trajectories and waveforms. 

Damour & Buonanno ’08,
Yunes, et al, PRL ’11, 
PRD 83 ’11, PRL 104 ’10. 

The Hamiltonian is built from the 2-body metric, while the 
RR Force can be constructed from the fluxes of (E,Lz,Q). 

A modification to either of these components leads to a 
correction that we might observe.
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EMRIs and Massive Perturbers

Yunes, Miller, Thornburg, PRD 83 (2010)

What must this separation and 
secondary mass be before we can 
see the imprint of the secondary 

on the EMRI gravitational waves?

SMBH w/mass M

SCO w/mass m

Secondary 
SMBH w/mass 

M2 and 
separation d
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Detecting a Massive Companion

�GW =

�
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Accretion Disks and EMRIs

Consider Bright AGNs (SMBH + Active Accretion Disk)

SCO’s can end up inside the disk, by either: 

 Capture from galactic nucleus (through friction as it 
penetrates the disk, aka “the swiss cheese effect”)

 Fragmentation from disk outskirts, eventually 
dragged into the “inskirts”, into GW dominated region.

We considered radiatively efficient, geometrically thin 
disks in the radiation pressure dominated (EMRI) zone. 

Studied two viscosity prescriptions: 

 Alpha (Shakura+Sunyaev): viscosity proportional to tot. pres.

 Beta: viscosity proportional to gas pressure only.
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 Edd. SMBH Mass Increase: Gas fall into SMBH increases its 
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Disk Effects Considered

 Edd. SMBH Mass Increase: Gas fall into SMBH increases its 
mass -> Changes E and Edot [through M(t)]. 

 Bondi-Hoyle SCO Mass Increase: SCO sweeps up disk material 
as it inspirals -> Changes E and Edot [through m(t)].

 Wind: Difference in gas and SCO’s velocity pushes SCO forward 
or backwards -> Changes Edot through a new term.

 Disk Axisym Self-Gravity: The gas itself exerts a pull on the 
SCO -> Changes E, Kepler’s third law and Edot. 

 Migration: Disk Spiral arms carry L away from the SCO, 
forcing it to inspiral into SMBH faster -> changes Edot.  Two 
types: I (no gap forms) and II (a gap forms, gas pile up).

�⇥ � 10�2rads

�⇥ � 10 rads

�⇥ � 1 rads

�⇥ � 10�3 rads

�⇥ � (1, 103) rads

Yunes, Kocsis, Haiman, Loeb (2011), Kocsis, Yunes, Loeb (2011)
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Part III: Connection to 
Fundamental Theory
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Waveforms in Alternative Theories
(i) Scalar-Tensor theories: 

because of dipolar 
energy emission

reduced GW frequency 
(u = pi Mc f)

inversely related to the 
BD coupling parameter

(Will ’94, Scharre & Will ’02, Will & Yunes 
’04, Berti, Buonanno & Will ’05, Yagi & 
Tanaka ‘09)

h̃ = h̃GRe
i �BD ⇥2/5u�7/3
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Waveforms in Alternative Theories
(i) Scalar-Tensor theories: 

(iii) Gravitational Parity Violation:

because of dipolar 
energy emission

reduced GW frequency 
(u = pi Mc f)

inversely related to the 
BD coupling parameter

related to CS coupling

(Alexander, Finn & Yunes ’08, Yunes, 
O’Shaughnessy, Owen, Alexander ‘10)

(Will ’94, Scharre & Will ’02, Will & Yunes 
’04, Berti, Buonanno & Will ’05, Yagi & 
Tanaka ‘09)

(ii) Massive Graviton Theories:

related to graviton Compton wavelength

(Will ’98, Will & Yunes ’04, Stavridis & Will ’09, 
Arun & Will ’09, Yagi & Tanaka ‘09)

h̃ = h̃GRe
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h̃ = h̃GR
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1 + �PV ⇥0 u1
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(i) Scalar-Tensor theories: 

(iii) Gravitational Parity Violation:

because of dipolar 
energy emission

reduced GW frequency 
(u = pi Mc f)

inversely related to the 
BD coupling parameter

related to CS coupling

(Alexander, Finn & Yunes ’08, Yunes, 
O’Shaughnessy, Owen, Alexander ‘10)

(Will ’94, Scharre & Will ’02, Will & Yunes 
’04, Berti, Buonanno & Will ’05, Yagi & 
Tanaka ‘09)

(ii) Massive Graviton Theories:

related to graviton Compton wavelength

(iv) G(t) theories:

related to

(Yunes, Pretorius, 
Spergel ’10)

Ġ

(Will ’98, Will & Yunes ’04, Stavridis & Will ’09, 
Arun & Will ’09, Yagi & Tanaka ‘09)

h̃ = h̃GRe
i �BD ⇥2/5u�7/3

h̃ = h̃GRe
i �MG ⇥0u�1

h̃ = h̃GR

�
1 + �PV ⇥0 u1

⇥
.

h̃ = h̃GR

�
1 + �Ġ ⇥3/5 u�8/3

⇥
ei �Ġ⇥3/5u�13/3
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More Examples
(v) Quadratic Gravity because it’s a higher 

curvature correction

related to theory couplings
(Yunes & Stein, ‘11) h̃ = h̃GRe

i �QG ⇥�4/5u�1/3
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More Examples
(v) Quadratic Gravity because it’s a higher 

curvature correction

related to theory couplings
(Yunes & Stein, ‘11)

(vi) Extra-Dimenions:
(Inoue & Tanaka ’03, Yagi, 
Tanahashi & Tanaka ‘11)

related to size of extra 
dimension

h̃ = h̃GRe
i �QG ⇥�4/5u�1/3
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(vii) Lorentz-Violation:
(Mirshekari, Yunes and Will, 
in preparation)

related to degree of 
Lorentz violation

h̃ = h̃GRe
i�LVu↵�1
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More Examples
(v) Quadratic Gravity because it’s a higher 

curvature correction

related to theory couplings
(Yunes & Stein, ‘11)

(vi) Extra-Dimenions:
(Inoue & Tanaka ’03, Yagi, 
Tanahashi & Tanaka ‘11)

related to size of extra 
dimension

h̃ = h̃GRe
i �QG ⇥�4/5u�1/3

h̃ = h̃GRe
i �EG ⇥3/5u�13/3

We have still not found any theories whose 
predicted gravitational wave correction cannot 
be mapped to such a phase and Amp corrections

(vii) Lorentz-Violation:
(Mirshekari, Yunes and Will, 
in preparation)

related to degree of 
Lorentz violation

h̃ = h̃GRe
i�LVu↵�1
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The ppE Framework

Yunes & Pretorius, PRD 80 (2009)

A modification to the Einstein Equations leads to corrections to 
the waveform that we can search for.

Strong-field GR remains completely untested

Parameterized post-Einsteinian Framework: Deform the GR 
waveform through model-independent parameters 

ppE 
parameters

(�, a, ⇥, b) = (0, a,⇥BD,�7/3)

(�, a, ⇥, b) = (�CS , 1, 0, b)

h̃ = h̃GR (1 + �fa) ei�fb
(�, a, ⇥, b) = (0, a, 0, b)

Extremely Simple Example:

GR

BD

PV

Wednesday, September 28, 11



The ppE Framework

Yunes & Pretorius, PRD 80 (2009)

A modification to the Einstein Equations leads to corrections to 
the waveform that we can search for.

Strong-field GR remains completely untested

Parameterized post-Einsteinian Framework: Deform the GR 
waveform through model-independent parameters 

ppE 
parameters

(�, a, ⇥, b) = (0, a,⇥BD,�7/3)

(�, a, ⇥, b) = (�CS , 1, 0, b)

h̃ = h̃GR (1 + �fa) ei�fb
(�, a, ⇥, b) = (0, a, 0, b)

Extremely Simple Example:

Search GW Data with these templates and let the 
data decide what the parameters should be.

GR

BD

PV
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Questions for ppE
Given a GW detection, how sure are we it was a GR event? 

Statistically significant anomalies in the signal?

Can we test for deviations from/consistency with GR, without 
explicitly building templates banks for all conceivable theories?

How would we mischaracterize the universe if GR was close but not 
quite the correct theory of nature? (“fundamental bias”)

Templates/
Theories GR ppE

GR

Not GR

Business as usual

Quantify the likelihood of GR 
being the underlying theory 

describing the detected  event, 
within the class of alt. theories 

captured by ppE 

Understand the bias that could 
be introduced filtering non-GR 

events with GR templates

Measure deviations from GR 
characterized by non-GR ppE 

parameters.
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Constraining GR Deviations

(Cornish, Sampson, Yunes & Pretorius, 2011)h̃ = h̃GR (1 + �fa) ei�fb

GR Signal/ppE Templates, 3-sigma constraints, SNR = 20

(Yunes and Hughes, PRD 82 (2010)

8

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0
a

-30 -20 -10  0  10  20  30
α

 0.1  5000  10000  15000  20000
DL (Mpc)

-0.002 -0.001  0  0.001  0.002
α’/DL

FIG. 3: The first two histograms show marginalized poste-
rior distributions for the ppE a and α parameters recovered
from a search using all 6 ppE parameters. The third shows
the recovered luminosity distance, and the fourth shows α

′

DL
,

where α′ = α(4η)A. In this case the ppE amplitude term
completely dominates the GR amplitude, and so the combi-
nation α

′

DL
represents the amplitude of the signal. Because

DL is so poorly constrained, in this case we cannot constrain
α′ very well either. The injected parameters in this signal
were the same as Figure 1.

lation of the Bayes factor. At first sight this result might
seem strange since we would naively expect the simpler
model to be preferred, but this is not always the case.
To understand why it is helpful to look at the Laplace
approximation to the evidence, which assumes that the
region surrounding the maximum of the posterior distri-
bution is well approximated by a multivariate Gaussian.
With this assumption, the evidence is given by

p(d|H) ≈ p(d|!x,H)|MAP

(

∆VH

VH

)

. (20)

The first term is the likelihood evaluated at the maxi-
mum of the posterior, and the second term is the ratio
of the posterior volume ∆V to the prior volume V . The
posterior volume can be estimated from the volume of
the error ellipsoid containing 95% of the posterior prob-
ability. The ratio ∆V/V is termed the “Occam factor”,
and the quantity I = log2(V/∆V ) provides a measure
of how much information has been gained about the pa-
rameters from the data. Now consider a situation where
we have nested hypotheses H0 and H1, with the second
hypothesis involving an additional parameter y. If the
likelihood is insensitive to y then the first factor in the
evidence stays the same, and since y is unconstrained,
∆Vy = Vy and the Occam factor is also unchanged. Thus,
both models have the same evidence, even though one has
more parameters than the other.

With multiple detections of systems with different
mass ratios η, the combined likelihood will depend on
A and B, and it will be possible to resolve all six ppE
parameters. We defer the analysis of how well the A,B
parameters can be constrained to a future study.

B. Comparison with Pulsar Bounds

Having confirmed that only four of the six ppE pa-
rameters can be independently constrained with a single
detection, we now turn our attention to how well these
four parameters can be determined. The first approach
for answering this question is to examine how a search us-
ing ppE templates would look when used to characterize
a signal that is described by GR. That is, if nature really
is described by GR, what values for the ppE parameters
will be recovered from a search with ppE templates? Be-
cause we know that in GR the values of α and β should
be 0 for all values of a and b, what we want to determine
is the typical spread in the recovered value of α or β. We
would then consider a detection with parameter values
outside of this range as indicating a departure from GR.
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 10000
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β

b

Pulsar
aLIGO binary, mass ratio 2:1
aLIGO binary, mass ratio 3:1

FIG. 4: Bounds on β for different values of b for a single
SNR = 20 aLIGO/aVirgo detection. Plotted here is 3σ, where
σ is the standard deviation of the β parameter derived from
the Markov chains. The two sources had different mass ratios,
total masses, and sky locations. Also included is the bound
on β derived from the golden pulsar data.
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FIG. 5: Bounds on β for different values of b found using two
LISA sources at redshift z = 1 and z = 3. The pulsar bound
is shown for comparison.

Figures 4−7 show these ‘cheap’ constraints on the ppE
amplitude parameters as a function of the exponents a
and b for a variety of aLIGO/aVirgo and LISA detections.
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approximation to the evidence, which assumes that the
region surrounding the maximum of the posterior distri-
bution is well approximated by a multivariate Gaussian.
With this assumption, the evidence is given by

p(d|H) ≈ p(d|!x,H)|MAP

(

∆VH

VH

)

. (20)

The first term is the likelihood evaluated at the maxi-
mum of the posterior, and the second term is the ratio
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posterior volume can be estimated from the volume of
the error ellipsoid containing 95% of the posterior prob-
ability. The ratio ∆V/V is termed the “Occam factor”,
and the quantity I = log2(V/∆V ) provides a measure
of how much information has been gained about the pa-
rameters from the data. Now consider a situation where
we have nested hypotheses H0 and H1, with the second
hypothesis involving an additional parameter y. If the
likelihood is insensitive to y then the first factor in the
evidence stays the same, and since y is unconstrained,
∆Vy = Vy and the Occam factor is also unchanged. Thus,
both models have the same evidence, even though one has
more parameters than the other.

With multiple detections of systems with different
mass ratios η, the combined likelihood will depend on
A and B, and it will be possible to resolve all six ppE
parameters. We defer the analysis of how well the A,B
parameters can be constrained to a future study.

B. Comparison with Pulsar Bounds

Having confirmed that only four of the six ppE pa-
rameters can be independently constrained with a single
detection, we now turn our attention to how well these
four parameters can be determined. The first approach
for answering this question is to examine how a search us-
ing ppE templates would look when used to characterize
a signal that is described by GR. That is, if nature really
is described by GR, what values for the ppE parameters
will be recovered from a search with ppE templates? Be-
cause we know that in GR the values of α and β should
be 0 for all values of a and b, what we want to determine
is the typical spread in the recovered value of α or β. We
would then consider a detection with parameter values
outside of this range as indicating a departure from GR.
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mass ratios η, the combined likelihood will depend on
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parameters. We defer the analysis of how well the A,B
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rameters can be independently constrained with a single
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B. Comparison with Pulsar Bounds

Having confirmed that only four of the six ppE pa-
rameters can be independently constrained with a single
detection, we now turn our attention to how well these
four parameters can be determined. The first approach
for answering this question is to examine how a search us-
ing ppE templates would look when used to characterize
a signal that is described by GR. That is, if nature really
is described by GR, what values for the ppE parameters
will be recovered from a search with ppE templates? Be-
cause we know that in GR the values of α and β should
be 0 for all values of a and b, what we want to determine
is the typical spread in the recovered value of α or β. We
would then consider a detection with parameter values
outside of this range as indicating a departure from GR.

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

-3.5 -3 -2.5 -2 -1.5 -1 -0.5  0  0.5

β

b

Pulsar
aLIGO binary, mass ratio 2:1
aLIGO binary, mass ratio 3:1

FIG. 4: Bounds on β for different values of b for a single
SNR = 20 aLIGO/aVirgo detection. Plotted here is 3σ, where
σ is the standard deviation of the β parameter derived from
the Markov chains. The two sources had different mass ratios,
total masses, and sky locations. Also included is the bound
on β derived from the golden pulsar data.

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5  1

β

b

Pulsar
LISA binary, z = 1
LISA binary, z = 3

FIG. 5: Bounds on β for different values of b found using two
LISA sources at redshift z = 1 and z = 3. The pulsar bound
is shown for comparison.

Figures 4−7 show these ‘cheap’ constraints on the ppE
amplitude parameters as a function of the exponents a
and b for a variety of aLIGO/aVirgo and LISA detections.

8

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0
a

-30 -20 -10  0  10  20  30
α

 0.1  5000  10000  15000  20000
DL (Mpc)

-0.002 -0.001  0  0.001  0.002
α’/DL

FIG. 3: The first two histograms show marginalized poste-
rior distributions for the ppE a and α parameters recovered
from a search using all 6 ppE parameters. The third shows
the recovered luminosity distance, and the fourth shows α

′

DL
,

where α′ = α(4η)A. In this case the ppE amplitude term
completely dominates the GR amplitude, and so the combi-
nation α

′

DL
represents the amplitude of the signal. Because

DL is so poorly constrained, in this case we cannot constrain
α′ very well either. The injected parameters in this signal
were the same as Figure 1.

lation of the Bayes factor. At first sight this result might
seem strange since we would naively expect the simpler
model to be preferred, but this is not always the case.
To understand why it is helpful to look at the Laplace
approximation to the evidence, which assumes that the
region surrounding the maximum of the posterior distri-
bution is well approximated by a multivariate Gaussian.
With this assumption, the evidence is given by

p(d|H) ≈ p(d|!x,H)|MAP

(

∆VH

VH

)

. (20)

The first term is the likelihood evaluated at the maxi-
mum of the posterior, and the second term is the ratio
of the posterior volume ∆V to the prior volume V . The
posterior volume can be estimated from the volume of
the error ellipsoid containing 95% of the posterior prob-
ability. The ratio ∆V/V is termed the “Occam factor”,
and the quantity I = log2(V/∆V ) provides a measure
of how much information has been gained about the pa-
rameters from the data. Now consider a situation where
we have nested hypotheses H0 and H1, with the second
hypothesis involving an additional parameter y. If the
likelihood is insensitive to y then the first factor in the
evidence stays the same, and since y is unconstrained,
∆Vy = Vy and the Occam factor is also unchanged. Thus,
both models have the same evidence, even though one has
more parameters than the other.

With multiple detections of systems with different
mass ratios η, the combined likelihood will depend on
A and B, and it will be possible to resolve all six ppE
parameters. We defer the analysis of how well the A,B
parameters can be constrained to a future study.

B. Comparison with Pulsar Bounds

Having confirmed that only four of the six ppE pa-
rameters can be independently constrained with a single
detection, we now turn our attention to how well these
four parameters can be determined. The first approach
for answering this question is to examine how a search us-
ing ppE templates would look when used to characterize
a signal that is described by GR. That is, if nature really
is described by GR, what values for the ppE parameters
will be recovered from a search with ppE templates? Be-
cause we know that in GR the values of α and β should
be 0 for all values of a and b, what we want to determine
is the typical spread in the recovered value of α or β. We
would then consider a detection with parameter values
outside of this range as indicating a departure from GR.

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

-3.5 -3 -2.5 -2 -1.5 -1 -0.5  0  0.5

β

b

Pulsar
aLIGO binary, mass ratio 2:1
aLIGO binary, mass ratio 3:1

FIG. 4: Bounds on β for different values of b for a single
SNR = 20 aLIGO/aVirgo detection. Plotted here is 3σ, where
σ is the standard deviation of the β parameter derived from
the Markov chains. The two sources had different mass ratios,
total masses, and sky locations. Also included is the bound
on β derived from the golden pulsar data.

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5  1

β

b

Pulsar
LISA binary, z = 1
LISA binary, z = 3

FIG. 5: Bounds on β for different values of b found using two
LISA sources at redshift z = 1 and z = 3. The pulsar bound
is shown for comparison.

Figures 4−7 show these ‘cheap’ constraints on the ppE
amplitude parameters as a function of the exponents a
and b for a variety of aLIGO/aVirgo and LISA detections.

Wednesday, September 28, 11



Parameter Bias

Non GR injection, extracted with GR templates (blue) and ppE 
templates (red). GR template extraction is “wrong” by much more 

than the systematic (statistical) error. “Fundamental Bias” 

Non-GR Signal/GR Templates, SNR = 20

(Cornish, Sampson, Yunes & Pretorius, 2011.)
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the ppE parameter β for an aLIGO simulation with ppE pa-
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the log Bayes factor is equal to

logB = χ2
min/2 + ∆ logO

= (1− FF2)
SNR2

2
+ ∆ logO . (25)

Thus, up to the difference in the log Occam factors,
∆ logO, the log Bayes factor should scale as 1−FF when
FF ∼ 1. This link is confirmed in Figure 15.

E. Parameter Biases

If we assume that nature is described by GR, but in
truth another theory is correct, this will result in the
recovery of the wrong parameters for the systems we are
studying. For instance, when looking at a signal that
has non-zero ppE phase parameters, a search using GR
templates will return the incorrect mass parameters, as
illustrated below.
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FIG. 16: Histograms showing the recovered log total mass
for GR and ppE searches on ppE signals. As the source gets
further from GR, the value for total mass recovered by the
GR search moves away from the actual value.

Perhaps the most interesting point to be made with
this study is that the GR templates return values of the
total mass that are completely outside the error range
of the (correct) parameters returned by the ppE search,
even before the signal is clearly discernible from GR. We
refer to this parameter biasing as ‘stealth bias’, as it is
not an effect that would be easy to detect, even if one
were looking for it.

This ‘stealth bias’ is also apparent when the ppE α
parameter is non-zero. As one would expect, when a GR
template is used to search on a ppE signal that has non-
zero amplitude corrections, the parameter that is most
affected is the luminosity distance. We again see the bias
of the recovered parameter becoming more apparent as
the signal differs more from GR. In this study, because
we held the injected luminosity distance constant instead
of the injected SNR, the uncertainty in the recovered lu-
minosity distance changes considerably between the dif-
ferent systems. In both cases shown, however, the re-
covered posterior distribution from the search using GR
templates has zero weight at the correct value of lumi-
nosity distance, even though the Bayes factor does not
favor the ppE model over GR.

V. CONCLUSION

The two main results of this study are that the ppE
waveforms can constrain higher order deviations from GR
(terms involving higher powers of the orbital velocity)
much more tightly than pulsar observations, and that
the parameters recovered from using GR templates to
recover the signals from an alternative theory of gravity
can be significantly biased, even in cases where it is not
obvious that GR is not the correct theory of gravity. We
also see that the detection efficiency of GR templates can
be seriously compromised if they are used to characterize
data that is not described by GR.
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FIG. 17: Histograms showing the recovered values for lumi-
nosity distance from GR and ppE searches on a LISA binary
at redshift z = 7. Both signals have a = 0.5, and were in-
jected with a luminosity distance of 70.5 Gpc. The top plot
has α = 3.0 and the bottom has α = 2.5. As the Bayes factor
favors the ppE model more strongly, the bias in the recov-
ered luminosity distance from the GR search becomes more
pronounced.

The current study makes several simplifying assump-
tions about the waveforms: we consider only the inspi-
ral stage for non-spinning black holes on circular orbits,
and include just the leading order ppE corrections to the
waveforms. In future work we plan to include a marginal-
ization over these higher order corrections. Including this
marginalization will be more realistic, as the ppE for-
malism allows for many higher order corrections to the
waveform. Marginalizing over the higher order terms will
weaken the bounds on the leading order ppE parame-
ters, though probably not by that much since they are
sub-dominant terms.

Another subject that we will examine in the future
is the affect on our analysis of multiple detections. Si-
multaneously characterizing several systems with differ-
ent mass ratios should allow us to constrain all six ppE
parameters and not just the four we used in this study.
Looking at several systems simultaneously should also al-
low us to detect deviations from GR that are smaller than

those we could confidently infer with a single detection,
as the evidence for the ppE hypothesis will accumulate
with the additional data.

We also plan to perform a study similar to that done
by Arun et al. [24–26], in which the exponents ai, bi are
fixed at the values found in the PN expansion of GR, and
compare their Fisher matrix based bounds to those from
Bayesian inference.

Finally, we will look at LISA observations of galactic
white-dwarf binaries to see if the brighter systems, which
may have SNRs in the hundreds, may allow us to beat
the pulsar bounds across the entire ppE parameter space.
The brightest white-dwarf systems will have u ∼ 10−8 →
10−7 (for comparison the ‘golden’ double pulsar system,
PSR J0737-3039A has u = 3.94× 10−9), and these small
values for u make the ppE effects, which scale as ua and
ub, much larger than for black hole inspirals when a, b <
0.

The chance to test the validity of Einstein’s theory
of gravity is one of the most exciting opportunities that
gravitational wave astronomy will afford to the scientific
community. Without the appropriate tools, however, our
ability to perform these tests is sharply curtailed. This
analysis has shown that the ppE template family could
be an effective means of detecting and characterizing de-
viations from GR, and also that assuming that our GR
waveforms are correct could lead to lessened detection
efficiency and biased parameter estimates if gravity is
described by and alternative theory. We have identified
several areas of future investigation, and will continue to
study this area in depth.
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with SNR = 20 and masses m1 = 6M!, m2 = 18M!.
The strong degeneracy between β and B is shown in Fig-
ure 2. There is a similar effect when α is replaced with
α′ = α(4η)A.
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FIG. 1: The first two histograms show maginalized poste-
rior distributions for the ppE b and β parameters recovered
from a search using all 6 ppE parameters. The third shows
the recovered symmetric mass ratio, η, and the fourth shows
β′ = β(4η)B . Although β is very poorly constrained, β′ is
recovered with good accuracy. The injected ppE parameters
were (a,α, A, b,β, B) = (−0.5, 4.0,−1.5,−1.25, 10.0,−1.5).
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FIG. 2: Two dimensional marginalized posterior distribution
showing the strong correlation between the B and β ppE pa-
rameters. This correlation illustrates why the B parameter is
impossible to constrain using only one detection.

While in principle the same effect exists in the A vs.
α parameter space, it is much more difficult to resolve
due to the strong correlation with the luminosity dis-
tance, DL, which is poorly constrained. Figure 3 shows
marginalized posterior distributions for the α, a, DL, and
α′/DL parameters. The combination α′/DL is better
constrained than α, but not nearly to the extent that β′

is better constrained than β. We know analytically, how-
ever, that the same sort of degeneracy exists between the
α and A parameters as between β and B.
Of course, to actually determine which ppE model to

use, four or six parameters, the proper Bayesian course
of action is to calculate the evidence for each model
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FIG. 3: The first two histograms show marginalized poste-
rior distributions for the ppE a and α parameters recovered
from a search using all 6 ppE parameters. The third shows
the recovered luminosity distance, and the fourth shows α

′

DL
,

where α′ = α(4η)A. In this case the ppE amplitude term
completely dominates the GR amplitude, and so the combi-
nation α

′

DL
represents the amplitude of the signal. Because

DL is so poorly constrained, in this case we cannot constrain
α′ very well either. The injected parameters in this signal
were the same as Figure 1.

and compute a Bayes factor. We did this for a sig-
nal with injected ppE parameters (a,α, A, b,β, B) =
(−0.5, 4.0,−1.5,−1.25, 10.0,−1.5), by searching on this
signal using both a four parameter and a six parameter
ppE template, and found a Bayes factor of 1.3 in favor
of the four parameter model, but easily consistent with
an odds ratio of unity given accuracy of the VTA calcu-
lation of the Bayes factor. At first sight this result might
seem strange since we would naively expect the simpler
model to be preferred, but this is not always the case.
To understand why it is helpful to look at the Laplace
approximation to the evidence, which assumes that the
region surrounding the maximum of the posterior distri-
bution is well approximated by a multivariate Gaussian.
With this assumption, the evidence is given by

p(d|H) ≈ p(d|$x,H)|MAP

(

∆VH

VH

)

. (20)

The first term is the likelihood evaluated at the maxi-
mum of the posterior, and the second term is the ratio
of the posterior volume ∆V to the prior volume V . The
posterior volume can be estimated from the volume of
the error ellipsoid containing 95% of the posterior prob-
ability. The ratio ∆V/V is termed the “Occam factor”,
and the quantity I = log2(V/∆V ) provides a measure
of how much information has been gained about the pa-
rameters from the data. Now consider a situation where
we have nested hypotheses H0 and H1, with the second
hypothesis involving an additional parameter y. If the
likelihood is insensitive to y then the first factor in the
evidence stays the same, and since y is unconstrained,
∆Vy = Vy and the Occam factor is also unchanged. Thus,
both models have the same evidence, even though one has
more parameters than the other.
With multiple detections of systems with different
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the Bondi radius is equal to the mean disk density near
the location of the CO, ρ!(r′B) ≡ ρ(r!) in Eq. (36). For
BHL accretion, the density increases toward the CO as
ρ!(r′) = ρ!(r′B)r̃

′−3/2 [29–31]. Thus, Eq. (66) simplifies
to

tdiff = κρ(r!)r
′2
B

(

1− r̃′1/2
)

=
κ

π

ṁB
!

√

v2rel + c2s

(

1− r̃′1/2
)

, (67)

where in the second line we have used Eq. (54) to relate
tdiff to the BHL accretion rate. Comparing Eqs. (65)
and (67), we find that the diffusion time is larger than
the infall time, precisely if ṁB

! ≥ ṁcrit
! where

ṁcrit
!

m!
≡

π

κ

r′
B

m!

(

1 + r̃′1/2
)

=
2π

κ

1 + r̃′1/2

v2rel + c2s
(68)

≈ 5.6× 10−7 yr−1 ṁ−2
•1 r̄

3
10

(

1 + r̃′1/2
)

.

The second line corresponds to vrel & cs, but in the
numerical calculations we substitute vrel from Eq. (58).
Interestingly, radiation pressure does not have any im-

pact if the BHL accretion rate exceeds the limit, ṁcrit
! .

For the nominal parameter values for a β-disk, Eqs. (54)
and (68) show that ṁB

! ≥ ṁcrit
! is satisfied for all 0 ≤ r̃′ ≤

1. Therefore, we are reassured that radiation is trapped
and advected inward in this case. However, α-disks are
much less dense, and this condition is violated interior to

20α1/3
1 ṁ•1M

1/3
•5 m−1/3

!1 .
More generally, BHL accretion may be quenched by the

various other effects discussed above, modifying r′B and
decreasing the gas density, and thereby the diffusion and
infall times. In this case, radiation pressure may further
suppress the accretion rate onto the CO if ṁ! ≤ ṁcrit

! .
This criterion can be fulfilled by both α and β-disks. The
accretion rate then becomes

ṁ′′′
! =

{

ṁ′′
! if ṁ′′

! ≥ ṁcrit
! ,

ṁEdd
! otherwise .

(69)

where ṁ′′
! is given by Eq. (61) and we model the

radiation-pressure quenched accretion as Eddington lim-
ited, replacing M• with m! in Eq. (51). We here choose
r̃′ = 1, as this gives the most conservative (smallest) es-
timate for ṁ′′′

! .

5. Quenching by gap formation

If the tidal torques of the CO are sufficiently strong to
dominate over the viscous inflow, an annular gap forms
around the CO, where the gas density is significantly re-
duced (see Sec. III B). Gap formation requires m! and r!
to be sufficiently large, [Eqs. (45–47)]. These conditions
can be satisfied for β-disks during the final year of the
inspiral, but not for typical α-disks. If a gap forms, the
accretion onto the CO ceases.

1
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FIG. 4. Critical CO mass as a function of CO orbital radius
for various mechanisms to quench BHL accretion onto the
CO. The accretion rate is reduced for larger m! or larger
r!. Top and bottom panels correspond to M• = 105 and
106M!, respectively. Gap-decoupling occurs interior to the
green curves.

For large CO masses m! ! 15M# or α " 0.05, the
inspiral rate becomes faster than the viscous inflow rate
of gas outside the annular gap if rgap < r! < rd (see
Eq. 48). In this case, the CO may “catch up” with the
gas interior to the orbit [49]. The inner disk may be filled
by non-axisymmetric or three dimensional overflow [102].
In fact, in turbulent MHD disks, the region interior to
the annular gap may have an over-density (“anti-gap”)
relative to the case without an EMRI [113]. In this case,
ṁ! may be restarted interior to rd, and may exceed the
BHL rate of the original unperturbed surface density of
the disk [Eq (54)]. However, it is also possible that the
inner disk drains away before rd is reached, implying no
accretion. We conservatively assume no accretion onto
the CO if a gap is present,

ṁ! =

{

ṁ′′′
! if r ≤ rgap ,

0 otherwise .
(70)

6. Summary of quenching processes

The mass increase of the CO is very sensitive to the
complicated details of accretion disk astrophysics. Most
of these processes act to decrease the accretion rate from
ṁB

! . We summarize the EMRI parameters where various
quenching mechanisms are in play in Figure 4. This fig-
ure depicts the minimum CO mass m! and orbital radii
where particular processes become significant to quench
the BHL accretion rate onto the CO for α1 = ṁ•1 = 1
for different M• = 105M# (top panel) and 106M# (bot-
tom panel). For these parameters, accretion is first
completely quenched by gap formation for β-disks, but
gaps do not form for α-disks for EMRIs in the LISA
range. Then the gap refills, and accretion is limited by
the amount of inflowing gas, radiation pressure, differen-

Wednesday, September 28, 11



Quenching of Disk Effects

 Gap Formation: If SCO tidal torques>gas vel.,  

Yunes, Kocsis, Haiman, Loeb (2011), Kocsis, Yunes, Loeb (2011)

Quenching mechanisms have a huge impact on disk effects.

17

the Bondi radius is equal to the mean disk density near
the location of the CO, ρ!(r′B) ≡ ρ(r!) in Eq. (36). For
BHL accretion, the density increases toward the CO as
ρ!(r′) = ρ!(r′B)r̃

′−3/2 [29–31]. Thus, Eq. (66) simplifies
to
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where in the second line we have used Eq. (54) to relate
tdiff to the BHL accretion rate. Comparing Eqs. (65)
and (67), we find that the diffusion time is larger than
the infall time, precisely if ṁB
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! where
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The second line corresponds to vrel & cs, but in the
numerical calculations we substitute vrel from Eq. (58).
Interestingly, radiation pressure does not have any im-

pact if the BHL accretion rate exceeds the limit, ṁcrit
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For the nominal parameter values for a β-disk, Eqs. (54)
and (68) show that ṁB
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! is satisfied for all 0 ≤ r̃′ ≤

1. Therefore, we are reassured that radiation is trapped
and advected inward in this case. However, α-disks are
much less dense, and this condition is violated interior to
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various other effects discussed above, modifying r′B and
decreasing the gas density, and thereby the diffusion and
infall times. In this case, radiation pressure may further
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This criterion can be fulfilled by both α and β-disks. The
accretion rate then becomes
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! =

{
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! if ṁ′′
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! ,
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! otherwise .

(69)

where ṁ′′
! is given by Eq. (61) and we model the

radiation-pressure quenched accretion as Eddington lim-
ited, replacing M• with m! in Eq. (51). We here choose
r̃′ = 1, as this gives the most conservative (smallest) es-
timate for ṁ′′′

! .

5. Quenching by gap formation

If the tidal torques of the CO are sufficiently strong to
dominate over the viscous inflow, an annular gap forms
around the CO, where the gas density is significantly re-
duced (see Sec. III B). Gap formation requires m! and r!
to be sufficiently large, [Eqs. (45–47)]. These conditions
can be satisfied for β-disks during the final year of the
inspiral, but not for typical α-disks. If a gap forms, the
accretion onto the CO ceases.
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For large CO masses m! ! 15M# or α " 0.05, the
inspiral rate becomes faster than the viscous inflow rate
of gas outside the annular gap if rgap < r! < rd (see
Eq. 48). In this case, the CO may “catch up” with the
gas interior to the orbit [49]. The inner disk may be filled
by non-axisymmetric or three dimensional overflow [102].
In fact, in turbulent MHD disks, the region interior to
the annular gap may have an over-density (“anti-gap”)
relative to the case without an EMRI [113]. In this case,
ṁ! may be restarted interior to rd, and may exceed the
BHL rate of the original unperturbed surface density of
the disk [Eq (54)]. However, it is also possible that the
inner disk drains away before rd is reached, implying no
accretion. We conservatively assume no accretion onto
the CO if a gap is present,

ṁ! =

{

ṁ′′′
! if r ≤ rgap ,

0 otherwise .
(70)

6. Summary of quenching processes

The mass increase of the CO is very sensitive to the
complicated details of accretion disk astrophysics. Most
of these processes act to decrease the accretion rate from
ṁB

! . We summarize the EMRI parameters where various
quenching mechanisms are in play in Figure 4. This fig-
ure depicts the minimum CO mass m! and orbital radii
where particular processes become significant to quench
the BHL accretion rate onto the CO for α1 = ṁ•1 = 1
for different M• = 105M# (top panel) and 106M# (bot-
tom panel). For these parameters, accretion is first
completely quenched by gap formation for β-disks, but
gaps do not form for α-disks for EMRIs in the LISA
range. Then the gap refills, and accretion is limited by
the amount of inflowing gas, radiation pressure, differen-
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the Bondi radius is equal to the mean disk density near
the location of the CO, ρ!(r′B) ≡ ρ(r!) in Eq. (36). For
BHL accretion, the density increases toward the CO as
ρ!(r′) = ρ!(r′B)r̃

′−3/2 [29–31]. Thus, Eq. (66) simplifies
to

tdiff = κρ(r!)r
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1− r̃′1/2
)

=
κ

π

ṁB
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where in the second line we have used Eq. (54) to relate
tdiff to the BHL accretion rate. Comparing Eqs. (65)
and (67), we find that the diffusion time is larger than
the infall time, precisely if ṁB
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! where
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The second line corresponds to vrel & cs, but in the
numerical calculations we substitute vrel from Eq. (58).
Interestingly, radiation pressure does not have any im-

pact if the BHL accretion rate exceeds the limit, ṁcrit
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For the nominal parameter values for a β-disk, Eqs. (54)
and (68) show that ṁB

! ≥ ṁcrit
! is satisfied for all 0 ≤ r̃′ ≤

1. Therefore, we are reassured that radiation is trapped
and advected inward in this case. However, α-disks are
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This criterion can be fulfilled by both α and β-disks. The
accretion rate then becomes
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! =
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! ,
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! otherwise .
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where ṁ′′
! is given by Eq. (61) and we model the

radiation-pressure quenched accretion as Eddington lim-
ited, replacing M• with m! in Eq. (51). We here choose
r̃′ = 1, as this gives the most conservative (smallest) es-
timate for ṁ′′′

! .

5. Quenching by gap formation

If the tidal torques of the CO are sufficiently strong to
dominate over the viscous inflow, an annular gap forms
around the CO, where the gas density is significantly re-
duced (see Sec. III B). Gap formation requires m! and r!
to be sufficiently large, [Eqs. (45–47)]. These conditions
can be satisfied for β-disks during the final year of the
inspiral, but not for typical α-disks. If a gap forms, the
accretion onto the CO ceases.
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For large CO masses m! ! 15M# or α " 0.05, the
inspiral rate becomes faster than the viscous inflow rate
of gas outside the annular gap if rgap < r! < rd (see
Eq. 48). In this case, the CO may “catch up” with the
gas interior to the orbit [49]. The inner disk may be filled
by non-axisymmetric or three dimensional overflow [102].
In fact, in turbulent MHD disks, the region interior to
the annular gap may have an over-density (“anti-gap”)
relative to the case without an EMRI [113]. In this case,
ṁ! may be restarted interior to rd, and may exceed the
BHL rate of the original unperturbed surface density of
the disk [Eq (54)]. However, it is also possible that the
inner disk drains away before rd is reached, implying no
accretion. We conservatively assume no accretion onto
the CO if a gap is present,

ṁ! =

{

ṁ′′′
! if r ≤ rgap ,

0 otherwise .
(70)

6. Summary of quenching processes

The mass increase of the CO is very sensitive to the
complicated details of accretion disk astrophysics. Most
of these processes act to decrease the accretion rate from
ṁB

! . We summarize the EMRI parameters where various
quenching mechanisms are in play in Figure 4. This fig-
ure depicts the minimum CO mass m! and orbital radii
where particular processes become significant to quench
the BHL accretion rate onto the CO for α1 = ṁ•1 = 1
for different M• = 105M# (top panel) and 106M# (bot-
tom panel). For these parameters, accretion is first
completely quenched by gap formation for β-disks, but
gaps do not form for α-disks for EMRIs in the LISA
range. Then the gap refills, and accretion is limited by
the amount of inflowing gas, radiation pressure, differen-
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the Bondi radius is equal to the mean disk density near
the location of the CO, ρ!(r′B) ≡ ρ(r!) in Eq. (36). For
BHL accretion, the density increases toward the CO as
ρ!(r′) = ρ!(r′B)r̃

′−3/2 [29–31]. Thus, Eq. (66) simplifies
to

tdiff = κρ(r!)r
′2
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1− r̃′1/2
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where in the second line we have used Eq. (54) to relate
tdiff to the BHL accretion rate. Comparing Eqs. (65)
and (67), we find that the diffusion time is larger than
the infall time, precisely if ṁB

! ≥ ṁcrit
! where
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The second line corresponds to vrel & cs, but in the
numerical calculations we substitute vrel from Eq. (58).
Interestingly, radiation pressure does not have any im-

pact if the BHL accretion rate exceeds the limit, ṁcrit
! .

For the nominal parameter values for a β-disk, Eqs. (54)
and (68) show that ṁB

! ≥ ṁcrit
! is satisfied for all 0 ≤ r̃′ ≤

1. Therefore, we are reassured that radiation is trapped
and advected inward in this case. However, α-disks are
much less dense, and this condition is violated interior to

20α1/3
1 ṁ•1M

1/3
•5 m−1/3

!1 .
More generally, BHL accretion may be quenched by the

various other effects discussed above, modifying r′B and
decreasing the gas density, and thereby the diffusion and
infall times. In this case, radiation pressure may further
suppress the accretion rate onto the CO if ṁ! ≤ ṁcrit

! .
This criterion can be fulfilled by both α and β-disks. The
accretion rate then becomes

ṁ′′′
! =

{

ṁ′′
! if ṁ′′

! ≥ ṁcrit
! ,

ṁEdd
! otherwise .

(69)

where ṁ′′
! is given by Eq. (61) and we model the

radiation-pressure quenched accretion as Eddington lim-
ited, replacing M• with m! in Eq. (51). We here choose
r̃′ = 1, as this gives the most conservative (smallest) es-
timate for ṁ′′′

! .

5. Quenching by gap formation

If the tidal torques of the CO are sufficiently strong to
dominate over the viscous inflow, an annular gap forms
around the CO, where the gas density is significantly re-
duced (see Sec. III B). Gap formation requires m! and r!
to be sufficiently large, [Eqs. (45–47)]. These conditions
can be satisfied for β-disks during the final year of the
inspiral, but not for typical α-disks. If a gap forms, the
accretion onto the CO ceases.
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For large CO masses m! ! 15M# or α " 0.05, the
inspiral rate becomes faster than the viscous inflow rate
of gas outside the annular gap if rgap < r! < rd (see
Eq. 48). In this case, the CO may “catch up” with the
gas interior to the orbit [49]. The inner disk may be filled
by non-axisymmetric or three dimensional overflow [102].
In fact, in turbulent MHD disks, the region interior to
the annular gap may have an over-density (“anti-gap”)
relative to the case without an EMRI [113]. In this case,
ṁ! may be restarted interior to rd, and may exceed the
BHL rate of the original unperturbed surface density of
the disk [Eq (54)]. However, it is also possible that the
inner disk drains away before rd is reached, implying no
accretion. We conservatively assume no accretion onto
the CO if a gap is present,

ṁ! =

{

ṁ′′′
! if r ≤ rgap ,

0 otherwise .
(70)

6. Summary of quenching processes

The mass increase of the CO is very sensitive to the
complicated details of accretion disk astrophysics. Most
of these processes act to decrease the accretion rate from
ṁB

! . We summarize the EMRI parameters where various
quenching mechanisms are in play in Figure 4. This fig-
ure depicts the minimum CO mass m! and orbital radii
where particular processes become significant to quench
the BHL accretion rate onto the CO for α1 = ṁ•1 = 1
for different M• = 105M# (top panel) and 106M# (bot-
tom panel). For these parameters, accretion is first
completely quenched by gap formation for β-disks, but
gaps do not form for α-disks for EMRIs in the LISA
range. Then the gap refills, and accretion is limited by
the amount of inflowing gas, radiation pressure, differen-
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the Bondi radius is equal to the mean disk density near
the location of the CO, ρ!(r′B) ≡ ρ(r!) in Eq. (36). For
BHL accretion, the density increases toward the CO as
ρ!(r′) = ρ!(r′B)r̃
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where in the second line we have used Eq. (54) to relate
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! ≥ ṁcrit
! where
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The second line corresponds to vrel & cs, but in the
numerical calculations we substitute vrel from Eq. (58).
Interestingly, radiation pressure does not have any im-

pact if the BHL accretion rate exceeds the limit, ṁcrit
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For the nominal parameter values for a β-disk, Eqs. (54)
and (68) show that ṁB
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! is satisfied for all 0 ≤ r̃′ ≤
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much less dense, and this condition is violated interior to
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various other effects discussed above, modifying r′B and
decreasing the gas density, and thereby the diffusion and
infall times. In this case, radiation pressure may further
suppress the accretion rate onto the CO if ṁ! ≤ ṁcrit
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This criterion can be fulfilled by both α and β-disks. The
accretion rate then becomes
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! =
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! if ṁ′′
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! ,

ṁEdd
! otherwise .

(69)

where ṁ′′
! is given by Eq. (61) and we model the

radiation-pressure quenched accretion as Eddington lim-
ited, replacing M• with m! in Eq. (51). We here choose
r̃′ = 1, as this gives the most conservative (smallest) es-
timate for ṁ′′′

! .

5. Quenching by gap formation

If the tidal torques of the CO are sufficiently strong to
dominate over the viscous inflow, an annular gap forms
around the CO, where the gas density is significantly re-
duced (see Sec. III B). Gap formation requires m! and r!
to be sufficiently large, [Eqs. (45–47)]. These conditions
can be satisfied for β-disks during the final year of the
inspiral, but not for typical α-disks. If a gap forms, the
accretion onto the CO ceases.
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For large CO masses m! ! 15M# or α " 0.05, the
inspiral rate becomes faster than the viscous inflow rate
of gas outside the annular gap if rgap < r! < rd (see
Eq. 48). In this case, the CO may “catch up” with the
gas interior to the orbit [49]. The inner disk may be filled
by non-axisymmetric or three dimensional overflow [102].
In fact, in turbulent MHD disks, the region interior to
the annular gap may have an over-density (“anti-gap”)
relative to the case without an EMRI [113]. In this case,
ṁ! may be restarted interior to rd, and may exceed the
BHL rate of the original unperturbed surface density of
the disk [Eq (54)]. However, it is also possible that the
inner disk drains away before rd is reached, implying no
accretion. We conservatively assume no accretion onto
the CO if a gap is present,

ṁ! =

{

ṁ′′′
! if r ≤ rgap ,

0 otherwise .
(70)

6. Summary of quenching processes

The mass increase of the CO is very sensitive to the
complicated details of accretion disk astrophysics. Most
of these processes act to decrease the accretion rate from
ṁB

! . We summarize the EMRI parameters where various
quenching mechanisms are in play in Figure 4. This fig-
ure depicts the minimum CO mass m! and orbital radii
where particular processes become significant to quench
the BHL accretion rate onto the CO for α1 = ṁ•1 = 1
for different M• = 105M# (top panel) and 106M# (bot-
tom panel). For these parameters, accretion is first
completely quenched by gap formation for β-disks, but
gaps do not form for α-disks for EMRIs in the LISA
range. Then the gap refills, and accretion is limited by
the amount of inflowing gas, radiation pressure, differen-
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the Bondi radius is equal to the mean disk density near
the location of the CO, ρ!(r′B) ≡ ρ(r!) in Eq. (36). For
BHL accretion, the density increases toward the CO as
ρ!(r′) = ρ!(r′B)r̃

′−3/2 [29–31]. Thus, Eq. (66) simplifies
to
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The second line corresponds to vrel & cs, but in the
numerical calculations we substitute vrel from Eq. (58).
Interestingly, radiation pressure does not have any im-

pact if the BHL accretion rate exceeds the limit, ṁcrit
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For the nominal parameter values for a β-disk, Eqs. (54)
and (68) show that ṁB
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! is satisfied for all 0 ≤ r̃′ ≤

1. Therefore, we are reassured that radiation is trapped
and advected inward in this case. However, α-disks are
much less dense, and this condition is violated interior to
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various other effects discussed above, modifying r′B and
decreasing the gas density, and thereby the diffusion and
infall times. In this case, radiation pressure may further
suppress the accretion rate onto the CO if ṁ! ≤ ṁcrit
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This criterion can be fulfilled by both α and β-disks. The
accretion rate then becomes

ṁ′′′
! =
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ṁ′′
! if ṁ′′

! ≥ ṁcrit
! ,

ṁEdd
! otherwise .

(69)

where ṁ′′
! is given by Eq. (61) and we model the

radiation-pressure quenched accretion as Eddington lim-
ited, replacing M• with m! in Eq. (51). We here choose
r̃′ = 1, as this gives the most conservative (smallest) es-
timate for ṁ′′′

! .

5. Quenching by gap formation

If the tidal torques of the CO are sufficiently strong to
dominate over the viscous inflow, an annular gap forms
around the CO, where the gas density is significantly re-
duced (see Sec. III B). Gap formation requires m! and r!
to be sufficiently large, [Eqs. (45–47)]. These conditions
can be satisfied for β-disks during the final year of the
inspiral, but not for typical α-disks. If a gap forms, the
accretion onto the CO ceases.
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For large CO masses m! ! 15M# or α " 0.05, the
inspiral rate becomes faster than the viscous inflow rate
of gas outside the annular gap if rgap < r! < rd (see
Eq. 48). In this case, the CO may “catch up” with the
gas interior to the orbit [49]. The inner disk may be filled
by non-axisymmetric or three dimensional overflow [102].
In fact, in turbulent MHD disks, the region interior to
the annular gap may have an over-density (“anti-gap”)
relative to the case without an EMRI [113]. In this case,
ṁ! may be restarted interior to rd, and may exceed the
BHL rate of the original unperturbed surface density of
the disk [Eq (54)]. However, it is also possible that the
inner disk drains away before rd is reached, implying no
accretion. We conservatively assume no accretion onto
the CO if a gap is present,

ṁ! =

{

ṁ′′′
! if r ≤ rgap ,

0 otherwise .
(70)

6. Summary of quenching processes

The mass increase of the CO is very sensitive to the
complicated details of accretion disk astrophysics. Most
of these processes act to decrease the accretion rate from
ṁB

! . We summarize the EMRI parameters where various
quenching mechanisms are in play in Figure 4. This fig-
ure depicts the minimum CO mass m! and orbital radii
where particular processes become significant to quench
the BHL accretion rate onto the CO for α1 = ṁ•1 = 1
for different M• = 105M# (top panel) and 106M# (bot-
tom panel). For these parameters, accretion is first
completely quenched by gap formation for β-disks, but
gaps do not form for α-disks for EMRIs in the LISA
range. Then the gap refills, and accretion is limited by
the amount of inflowing gas, radiation pressure, differen-

Limited Gas Supply: If Bondi 
accretion rate>gas influx, then 
accretion limited by gas supply.
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FIG. 1. The GW phase shift as a function of final radius in units of M• (see § I D for the conventions used here) induced by
different accretion disk effects relative to vacuum waveforms. Solid (dotted) curves correspond to α (β) disks, with different
colors indicating different disk effects: black corresponds to Bondi-Hoyle-Lyttleton (BHL) accretion, green to azimuthal wind
(W) and blue to migration (M). The thin, solid magenta line is the total accumulated GW phase in vacuum. The thick, solid
(dashed) magenta line corresponds to a measure of the accuracy to which LISA can measure the GW phase for a source at
1 Gpc (10 Mpc). Observe that certain disk effects, like migration, can leave huge imprints on the GW observable, inside the
LISA accuracy bucket.

those presented in Fig. 1. After aligning the wave-
forms in time and phase (equivalent to a maximization
of the SNR over the corresponding extrinsic parameters
in white noise), we find changes in the GW phase after
a typical one-year inspiral of up to O(104) radians when
modeling migration in β-disks. Migration effects for α-
disks are much smaller, since these disks are less dense.
As the gap is typically expected to close for EMRIs in the
most sensitive LISA frequency band (r ! 25M•), Type-I
migration is the most relevant process. Supply-limited,
BHL accretion and wind effect lead to a dephasing of
O(1) rads. Other effects are less significant: O(10−3) ra-
dians for SMBH mass accretion, and O(10−4) radians for
axisymmetric self-gravity effects.

We then proceed with a more careful data analysis
study on the distinguishability of accretion disk effects by
computing a data analysis measure for two representative
systems at 1Gpc with component masses (10, 105)M"

and (10, 106)M", respectively. We calculate the SNR
in the waveform difference between signals accounting
for accretion disk perturbations and those that do not,
marginalizing over an overall time and phase shift. We
find that, for these systems, ρ(δh) > 10 after just 4
months of evolution for β-disk migration, while it takes
one full year of integration to reach the same SNR for
BHL accretion and wind effects. All other accretion disk
effects are less significant.

Finally, we examine possible degeneracies between ac-
cretion disk effects and vacuum EMRI parameters. We
analytically derive the Fourier transform of the wave-
forms in the stationary phase approximation. We find
that the disk-induced perturbation to the frequency-
domain GW phase depends on the GW frequency to

a high negative power relative to the Newtonian term,
multiplied by a function of the initial binary masses,
the α-disk parameter and the SMBH accretion rate ṁ•.
In contrast, the phase of the Fourier transform of vac-
uum waveforms is a positive power of frequency relative
to the Newtonian term, when including post-Newtonian
(PN) corrections. The difference in the frequency scaling
arises because the accretion disk effects grow with orbital
separation (lower frequency), as opposed to PN correc-
tions which grow with decreasing separation (higher fre-
quency). This suggests that accretion disk effects are
not strongly correlated with general relativistic vacuum
terms in the frequency-domain GW phase. Whether this
statement holds in a realistic data analysis implementa-
tion requires a much more detailed analysis of the likeli-
hood surface that is beyond the scope of this paper.

Our results suggest that if a GW signal is detected
from an EMRI in an accretion disk, then matched fil-
tering with accretion disk templates could allow for the
measurement of certain disk parameters to an impressive
accuracy. For example, for Type-I migration in β-disks
our results suggest that LISA could measure the quan-

tity (α12/5ṁ−11/5
• ) to a precision of ∼ 1%. Degeneracies

between parameters, however, might compromise the ac-
curacy down to no worse than ∼ 10% for parameters
associated with Type-II migration [75]. Ultimately, how-
ever, a more detailed Markov-Chain Monte-Carlo map-
ping of the likelihood surface is required to determine the
accuracy to which EMRIs could measure accretion disk
effects.

We caution, however, that the models considered here
might not provide a fully realistic description of the an-
gular momentum exchange between the binary and the
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those presented in Fig. 1. After aligning the wave-
forms in time and phase (equivalent to a maximization
of the SNR over the corresponding extrinsic parameters
in white noise), we find changes in the GW phase after
a typical one-year inspiral of up to O(104) radians when
modeling migration in β-disks. Migration effects for α-
disks are much smaller, since these disks are less dense.
As the gap is typically expected to close for EMRIs in the
most sensitive LISA frequency band (r ! 25M•), Type-I
migration is the most relevant process. Supply-limited,
BHL accretion and wind effect lead to a dephasing of
O(1) rads. Other effects are less significant: O(10−3) ra-
dians for SMBH mass accretion, and O(10−4) radians for
axisymmetric self-gravity effects.

We then proceed with a more careful data analysis
study on the distinguishability of accretion disk effects by
computing a data analysis measure for two representative
systems at 1Gpc with component masses (10, 105)M"

and (10, 106)M", respectively. We calculate the SNR
in the waveform difference between signals accounting
for accretion disk perturbations and those that do not,
marginalizing over an overall time and phase shift. We
find that, for these systems, ρ(δh) > 10 after just 4
months of evolution for β-disk migration, while it takes
one full year of integration to reach the same SNR for
BHL accretion and wind effects. All other accretion disk
effects are less significant.

Finally, we examine possible degeneracies between ac-
cretion disk effects and vacuum EMRI parameters. We
analytically derive the Fourier transform of the wave-
forms in the stationary phase approximation. We find
that the disk-induced perturbation to the frequency-
domain GW phase depends on the GW frequency to

a high negative power relative to the Newtonian term,
multiplied by a function of the initial binary masses,
the α-disk parameter and the SMBH accretion rate ṁ•.
In contrast, the phase of the Fourier transform of vac-
uum waveforms is a positive power of frequency relative
to the Newtonian term, when including post-Newtonian
(PN) corrections. The difference in the frequency scaling
arises because the accretion disk effects grow with orbital
separation (lower frequency), as opposed to PN correc-
tions which grow with decreasing separation (higher fre-
quency). This suggests that accretion disk effects are
not strongly correlated with general relativistic vacuum
terms in the frequency-domain GW phase. Whether this
statement holds in a realistic data analysis implementa-
tion requires a much more detailed analysis of the likeli-
hood surface that is beyond the scope of this paper.

Our results suggest that if a GW signal is detected
from an EMRI in an accretion disk, then matched fil-
tering with accretion disk templates could allow for the
measurement of certain disk parameters to an impressive
accuracy. For example, for Type-I migration in β-disks
our results suggest that LISA could measure the quan-

tity (α12/5ṁ−11/5
• ) to a precision of ∼ 1%. Degeneracies

between parameters, however, might compromise the ac-
curacy down to no worse than ∼ 10% for parameters
associated with Type-II migration [75]. Ultimately, how-
ever, a more detailed Markov-Chain Monte-Carlo map-
ping of the likelihood surface is required to determine the
accuracy to which EMRIs could measure accretion disk
effects.

We caution, however, that the models considered here
might not provide a fully realistic description of the an-
gular momentum exchange between the binary and the
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Kocsis, Yunes, Loeb (2011)

Each point in the figures is the 
dephasing after a 1-year 

inspiral, terminating at rf. 
Solid (dotted) lines are for 

alpha (beta) disks, diff. colors 
are for different disk effects.  

Curves above the thick 
magenta line can be 

detected by LISA. Thin 
magenta line is the 
vacuum GW phase.
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CorrelationsParameter Correlations

peak at a = 0 is degeneracy between 
luminosity distance and effective 

(LISA example)

peak at b = 0 is degeneracy between phase of 
coalescence and  (LISA example)

bump at b = -5/3 (PN value) is a partial 
degeneracy between chirp mass and 

(LIGO example)
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At certain “resonant” exponents, you cannot distinguish between 
GR and an alternative theory modification (spikes).

(degeneracies not sampled in the previous plot)
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Bayes Factor
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FIG. 8: An illustration of the two approaches for calculating
cheap bounds on the ppE amplitude parameters. The solid
(red) curve illustrates the bound that can be derived by by
looking at the spread in the amplitude α when applying the
ppE search to GR signals. In this example, values of |α| >
1.5 would be taken as indicating a departure from GR. The
dashed (blue) curve shows the bound that can be derived by
starting with ppE signals and determining how large the ppE
amplitude needs to be for the posterior distribution to have
little weight at the GR value of α = 0. In this example,
theories with α > 0.75 would be considered distinguishable
from GR.

possible to derive a connection between the alternative
form of the cheap bounds derived using ppE injections
and the more rigorous Bayesian evidence calculations us-
ing the Savage-Dicke density ratio, which states that for
nested hypotheses with separable priors, the Bayes fac-
tor is equal to the ratio of the posterior and prior den-
sities evaluated at the parameter values that correspond
to the lower dimensional model. If the posterior distri-
bution was a Gaussian with width σ centered at α = nσ,
and we were using a uniform prior with width Nσ, then
the Bayes factor would equal B = Ne−n2/2/

√
2π. For

example, with N = 100 and n = 4 we get a Bayes fac-
tor of B = 0.013, showing strong support for the higher
dimensional model. While the cheap bounds that can be
derived using ppE signal injections will be better than
the cheap bounds that can be derived from GR signal
injections, the computational cost is higher as multiple
simulations have to be run to find the transition point,
and this approach is only moderately cheaper than the
performing the full Bayesian model selection.

Examples of the full model selection procedure are
shown in Figures 9 and 10 for aLIGO/aVirgo detections
with SNR = 20. Each figure shows Bayes factors for two
types of ppE search, one with a or b held fixed at the
injected value, and one in which all four ppE values were
allowed to vary. The search in which a or b was fixed
provides the closest comparison with the cheap bounds
of the previous section. The bound on β derived by set-
ting a Bayes factor threshold of 100 are roughly 5 times
larger than the cheap bounds when b is held fixed and
roughly 3 larger than when b is free to vary. The bounds
on α match the cheap bounds when a is held fixed, and is
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FIG. 9: Bayes factors for a SNR = 20 aLIGO ppE injection
with parameters (a,α, b,β) = (0, 0,−1.25,β).
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FIG. 10: Bayes factors for a SNR = 20 aLIGO ppE injection
with parameters (a,α, b,β) = (−0.5,α, 0, 0).

slightly smaller when a is allowed to vary. We were sur-
prised to find that the bounds are tighter for the higher
dimensional models, with (a, b) free, than for the lower
dimensional models, with (a, b) fixed. To explore this
more thoroughly, we performed a study where the prior
on b was increased from a very small range to the full
prior range. Since holding a parameter fixed is equiva-
lent to using a delta-function prior, we expect the evi-
dence to interpolate between the fixed and free values as
the prior range is varied. Figure 11 confirms this expec-
tation, and also provides an explanation for the growth
in the evidence, which can be traced to the increase in
Occam factor due to the increase in the variance of β as
the prior on b is widened.

Figures 12 shows Bayes factors between the GR and
ppE hypotheses for a z = 1 LISA source. For Figure 12
the injections had a = 0, b = −1 and variable β, while for
Figure 13 the injections had a = 0.5, b = 0 and variable
α. Because the LISA sources have much higher SNR,
the ppE parameters are more tightly constrained, and
the difference between the Bayes factors when a or b are
fixed versus freely varying is less pronounced. The more
rigorous bounds on α and β are both a factor of ∼ 5
weaker than those predicted by the cheap bounds, which
is in line with what we found for the phase correction β
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Bayes Factor
Odds ratio for ppE signal injection at different values of beta and 

(a,alpha,b)=(0,0,-1.25). Extraction with ppE template.
Suggests beta > 2/10 can easily be observed. 
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of the previous section. The bound on β derived by set-
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slightly smaller when a is allowed to vary. We were sur-
prised to find that the bounds are tighter for the higher
dimensional models, with (a, b) free, than for the lower
dimensional models, with (a, b) fixed. To explore this
more thoroughly, we performed a study where the prior
on b was increased from a very small range to the full
prior range. Since holding a parameter fixed is equiva-
lent to using a delta-function prior, we expect the evi-
dence to interpolate between the fixed and free values as
the prior range is varied. Figure 11 confirms this expec-
tation, and also provides an explanation for the growth
in the evidence, which can be traced to the increase in
Occam factor due to the increase in the variance of β as
the prior on b is widened.

Figures 12 shows Bayes factors between the GR and
ppE hypotheses for a z = 1 LISA source. For Figure 12
the injections had a = 0, b = −1 and variable β, while for
Figure 13 the injections had a = 0.5, b = 0 and variable
α. Because the LISA sources have much higher SNR,
the ppE parameters are more tightly constrained, and
the difference between the Bayes factors when a or b are
fixed versus freely varying is less pronounced. The more
rigorous bounds on α and β are both a factor of ∼ 5
weaker than those predicted by the cheap bounds, which
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SNR effects
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FIG. 6. Aligned dephasing (left) and aligned fractional amplitude difference (right) as a function of time in units of months
for the dominant GW mode. Line style and color follow the same notation as in Fig. 5. The thick solid lines signal a 1 radian
dephasing. The top and bottom panels correspond to System I and II respectively. Observe that the minimized dephasing
exceeds unity in a short observation time for β-disk migration and System I, while for System II, only BHL accretion and
β-disk wind effects do so after a full-year of observation.
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exceeds the SNR threshold in four months for β disk migration and Sys. I, while it take a full year of observation for the same
to occur when modeling BHL accretion and β-disk wind effects.

tering. We restrict our study of degeneracies to a simple
analytical estimate of the Fourier transform using the
Newtonian stationary phase approximation (SPA) (see
e.g. [173, 174]). First,let us review this approximation in
vacuum GR, and then consider the modifications intro-
duced by leading-order disk effects.
The Fourier transform of the response function h(t) =

A(t)eiφGW(t) as

h̃(f) ≡
∫ ∞

−∞

h(t)e2πiftdt . (124)

This generalized Fourier integral can be solved via the
method of steepest descent, assuming the amplitude

changes slowly relative to the phase and noting that the
complex phase ψ = 2πft−φGW has a stationary point at
dψ(f, t0)/dt = 2πf − dφGW(t0)/dt = 0. In this approxi-
mation, the Fourier transform becomes (see e.g. Eq. (4.5)
in [174])

h̃(f) =
8

5

A(f)

2

√

1

2Ḟ
ei(2πft0−φ0) , (125)

where the factor of 8/5 accounts for sky-averaging
over beam pattern functions. The quantities
[t0,ψ(f, t0), ψ̈(f, t0)] for a fixed f can be found by
assuming that the phase and time of merger are fixed
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tering. We restrict our study of degeneracies to a simple
analytical estimate of the Fourier transform using the
Newtonian stationary phase approximation (SPA) (see
e.g. [173, 174]). First,let us review this approximation in
vacuum GR, and then consider the modifications intro-
duced by leading-order disk effects.
The Fourier transform of the response function h(t) =

A(t)eiφGW(t) as

h̃(f) ≡
∫ ∞

−∞

h(t)e2πiftdt . (124)

This generalized Fourier integral can be solved via the
method of steepest descent, assuming the amplitude

changes slowly relative to the phase and noting that the
complex phase ψ = 2πft−φGW has a stationary point at
dψ(f, t0)/dt = 2πf − dφGW(t0)/dt = 0. In this approxi-
mation, the Fourier transform becomes (see e.g. Eq. (4.5)
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h̃(f) =
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where the factor of 8/5 accounts for sky-averaging
over beam pattern functions. The quantities
[t0,ψ(f, t0), ψ̈(f, t0)] for a fixed f can be found by
assuming that the phase and time of merger are fixed
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FIG. 1. The GW phase shift as a function of final radius in units of M• (see § I D for the conventions used here) induced by
different accretion disk effects relative to vacuum waveforms. Solid (dotted) curves correspond to α (β) disks, with different
colors indicating different disk effects: black corresponds to Bondi-Hoyle-Lyttleton (BHL) accretion, green to azimuthal wind
(W) and blue to migration (M). The thin, solid magenta line is the total accumulated GW phase in vacuum. The thick, solid
(dashed) magenta line corresponds to a measure of the accuracy to which LISA can measure the GW phase for a source at
1 Gpc (10 Mpc). Observe that certain disk effects, like migration, can leave huge imprints on the GW observable, inside the
LISA accuracy bucket.

those presented in Fig. 1. After aligning the wave-
forms in time and phase (equivalent to a maximization
of the SNR over the corresponding extrinsic parameters
in white noise), we find changes in the GW phase after
a typical one-year inspiral of up to O(104) radians when
modeling migration in β-disks. Migration effects for α-
disks are much smaller, since these disks are less dense.
As the gap is typically expected to close for EMRIs in the
most sensitive LISA frequency band (r ! 25M•), Type-I
migration is the most relevant process. Supply-limited,
BHL accretion and wind effect lead to a dephasing of
O(1) rads. Other effects are less significant: O(10−3) ra-
dians for SMBH mass accretion, and O(10−4) radians for
axisymmetric self-gravity effects.

We then proceed with a more careful data analysis
study on the distinguishability of accretion disk effects by
computing a data analysis measure for two representative
systems at 1Gpc with component masses (10, 105)M"

and (10, 106)M", respectively. We calculate the SNR
in the waveform difference between signals accounting
for accretion disk perturbations and those that do not,
marginalizing over an overall time and phase shift. We
find that, for these systems, ρ(δh) > 10 after just 4
months of evolution for β-disk migration, while it takes
one full year of integration to reach the same SNR for
BHL accretion and wind effects. All other accretion disk
effects are less significant.

Finally, we examine possible degeneracies between ac-
cretion disk effects and vacuum EMRI parameters. We
analytically derive the Fourier transform of the wave-
forms in the stationary phase approximation. We find
that the disk-induced perturbation to the frequency-
domain GW phase depends on the GW frequency to

a high negative power relative to the Newtonian term,
multiplied by a function of the initial binary masses,
the α-disk parameter and the SMBH accretion rate ṁ•.
In contrast, the phase of the Fourier transform of vac-
uum waveforms is a positive power of frequency relative
to the Newtonian term, when including post-Newtonian
(PN) corrections. The difference in the frequency scaling
arises because the accretion disk effects grow with orbital
separation (lower frequency), as opposed to PN correc-
tions which grow with decreasing separation (higher fre-
quency). This suggests that accretion disk effects are
not strongly correlated with general relativistic vacuum
terms in the frequency-domain GW phase. Whether this
statement holds in a realistic data analysis implementa-
tion requires a much more detailed analysis of the likeli-
hood surface that is beyond the scope of this paper.

Our results suggest that if a GW signal is detected
from an EMRI in an accretion disk, then matched fil-
tering with accretion disk templates could allow for the
measurement of certain disk parameters to an impressive
accuracy. For example, for Type-I migration in β-disks
our results suggest that LISA could measure the quan-

tity (α12/5ṁ−11/5
• ) to a precision of ∼ 1%. Degeneracies

between parameters, however, might compromise the ac-
curacy down to no worse than ∼ 10% for parameters
associated with Type-II migration [75]. Ultimately, how-
ever, a more detailed Markov-Chain Monte-Carlo map-
ping of the likelihood surface is required to determine the
accuracy to which EMRIs could measure accretion disk
effects.

We caution, however, that the models considered here
might not provide a fully realistic description of the an-
gular momentum exchange between the binary and the
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Amplitude Effects 30

Ã1 B̃1 ã1 ã2 ã3 ã4 ã5

BHα 1 (−8) 1 (−7) −1 −5 1 4 −20/3
BHβ 2 (−5) 1 (−4) −4/5 −17/5 6/5 79/25 −79/15
Wα 2 (−17) 1 (−16) −1 −3 1 16/5 −16/3
Wβ 9 (−12) 3 (−11) −4/5 −7/5 6/5 59/25 −59/15
MIα 7 (−10) 4 (−9) −1 0 −2 1/5 −16/3
MIβ 7 (−7) 3 (−6) −4/5 0 −1/5 24/25 −59/15
MIIaα 8 (−6) 2 (−5) 0 1 1 −2/5 −8/3
MIIaβ 8 (−3) 2 (−2) 1/2 5/8 1/4 −1/8 −25/12
MIIbβ 7 (−4) 2 (−3) 2/7 11/14 4/7 −17/70 −7/3

TABLE II. Columns are parameters in Eq. (121) and rows are
migration effects. As in Table I, the notation of n (m) in the
Ã1 column stands for n× 10m.

by the magnitude of Ã1. Second, notice that all the cor-
rections induced by migration depend on negative powers
of frequency (or reduced frequency u in this case). This
is because such accretion disk corrections are largest for
large radii, equivalent to weak-field GR effects. In fact,
they are dominant over the leading-order vacuum term
(the factor of u−5/3) at low frequency. This then directly
implies that migration effects are weakly correlated to GR
vacuum terms in the PN approximation, as these depend
on positive powers of u relative to u−5/3.
One might wonder how the accretion disk effects mod-

ify the Fourier phase and amplitude when they are
not necessary a small perturbation away from the vac-
uum evolution. In general, the accretion disk correction
changes the functional form of the phase or amplitude as
follows:

yvac →
yvac

1 +∆ αā1
1 ṁã2

•1M
ã3
•5 q

ã4
0 uã5

0

(123)

where y = ψ or |h̃|, while ∆ = Ã1 or B̃1. This means
that, unlike what Eqs. (121) and (122) suggest, the ac-
cretion disk effects always suppress the vacuum evolution
as ∆ > 0. Figure 9 shows the absolute value squared of
the Fourier amplitudes as a function of frequency for an
EMRI with M• = 105M" and m! = 10M" and dif-
ferent accretion disk effects (neglecting all quenching).
For comparison, we also plot the vacuum amplitude and
the spectral noise density curve. Observe that below
f ! 10−3 Hz, the accretion disk correction to the ampli-
tude becomes dominant over the vacuum one. These fre-
quencies correspond to an orbital separation larger than
75M•, where most of these effects (including the poles of
Bondi-Hoyle accretion, but not including Type II migra-
tion) are simply absent, as a gap would open.

D. Simple Parameter Estimation

Let us very roughly approximate the accuracy to which
accretion disk parameters could be extracted via matched
filtering with accretion disk EOB templates, given a GW
detection. We will make several approximations here,
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FIG. 9. Absolute value squared of the Fourier amplitudes
with different accretion disk effects (see label) as a function
of frequency in units of Hertz. We also plot this amplitude in
vacuum and LISA’s spectral noise density.

as we are only interested in a rough order of magni-
tude. First, we approximate the Fourier transform of
accretion-disk waveforms via h̃ = |h̃| exp(iψvac + iδψ),
where the amplitude |h̃| is given in Eq. (116) and the
vacuum Fourier phase is given before Table II. We pa-
rameterize the accretion disk phase correction δψ as in
Eq. (121), except that we define the composite parameter
b ≡ αã1ṁã2

•1, as this is the quantity that can be measured
(with different ã1,2 exponents for different accretion disk
effects.
Next, we will assume that there are no correlations

between parameters, such that the inverse of the so-called
Fisher matrix can be approximated as the reciprocal of
the diagonal components. This matrix is defined as

Γµν ≡ 4#
∫

df

Sn(f)

∂h̃∗

∂λµ

∂h̃

∂λν
, (124)

where λµ is a list of all the parameters h̃ depends on. The
accuracy to which the λµ̂ parameter can be measured
cannot exceed

(∆λµ̂) ≤
√
Σµ̂µ̂ ≈

1
√

Γµ̂µ̂
, (125)

where summation is here not implied.
With this approximations at hand, we can parameter-

ize the accuracy to which parameter b can be measured
via

(∆b) !
δ

ρ10

mb1
!1M

b2
•

√

J0(b3)
, (126)

where ρ10 ≡ ρ/10 is the normalized SNR and we have
defined the mass-normalized moments of the distribution

J(p) ≡

∫

M•

Sn(y/M•)
y−pdy

∫

M•

Sn(y/M•)
y−7/3dy

, (127)
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Mass Scales

 Beta disk: smaller viscosity since pgas << ptot

◦ Smaller radial inward gas velocity for same accretion rate

◦ larger surface density  larger effectWednesday, September 28, 11



But What Theory Do We Pick?

A Minimal (?) Set of Criteria: 

1. Weak-Field Consistency (existence and stability of physical 
solutions, satisfaction of precision tests).
2. Strong-Field Inconsistency (deviations only where experiments 
cannot currently rule out modifications)

Other Nice Criteria: 
3. Well motivated from fundamental physics. 
4. Well-posed theory ?? This is hard to do...
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4. Well-posed theory ?? This is hard to do...
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Top-Down Accuracy Studies

Will Scharre, 
Will

Will, 
Yunes

Berti, 
Buonanno

, Will
Arun, 
Will

Stravridis, 
Will

Yagi, 
Tanaka

Ajith, 
Keppel

Solar 
System

Binary 
Mass x 1.4:1E3 1.4:1E3 1.4:1E3 x x 1.4:1E3 x x

BD 
Coupling 
Par. (e4)

x 24 20 10 x x 0.7 x 4

Binary 
Mass

1E7:
1E6 x 1E6:1E6 1E6:1E6 2E6:1E7 1E6:1E6 1E7:1E6 5E7:5E7 x

Graviton 
Compton 
Wavelgth 
(e21 cm)

6.9 x 3.1 1.33 5 4 3.1 52 0.00028

Details
First MG 
study, no 

spin

First ST 
study, no 

spin

As a func. 
of Det.

non-prec., 
spinning

amp. 
corr. spin + prec

spin + 
prec + 

ecc
IMR

Cassini, 
3rd Law 

Solar Sys
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What’s so special about Binaries?

•Inspiral GWs are continuous -> tons of phase information.  

•They involve objects that are hard to observe otherwise -> 
Black Holes and Neutron Stars.  

•One samples the “Strong-Field” regime of GR -> where gravity 
is strong and velocities close to c.

•We have analytic control of the “waveforms” (the GWs) during 
the inspiral phase so we can model them accurately.

•The untested GR regime is approached “slowly”, as the objects 
get closer to each other.  
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