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Introduction

@ Inspired by Lifshitz scalars in condensed matter physics, Hofava
introduced a power-counting renormalizable gravity
theory.

Hofava 2009
@ High (spatial) curvature terms = UV improvement.
@ Only two time derivatives are allowed, avoiding ghosts.

@ The anisotropic scaling implies violation of Lorentz invariance.
The theory should recover Lorentzian symmetry in IR.

HL gravity has many interesting cosmological applications

@ Bouncing/Oscillating universe — singularity avoidance 1y 1o

Calcagni’09; Brandenberger’09; Wang, Wu’09; Misonoh, Maeda, Kobayashi’10/711; ...
@ Solution to the horizon problem without inflation muxonyama 0

@ Milder flatness problem xiricsis, xofinas’o9

@ Circular polarized primordial GW raxanashi, soda’o09

@ Generation of primordial magnetic fields waeaa, mukonyana, sniromizuros
o ..

However, there are a few issues related to an extra degree of freedom. In this
talk, | will concentrate in one of these issues, the “strong coupling problem”.
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Construction of the action for z = 3

@ Introducing an anisotropic scaling

x — b 'x d + 1 dimensional QFT with Btz, Bizz
t — b%t power — counting renormalizable for z > d

@ Symmetry: foliation-preserving diffeomorphism
t—=t(@) X—X(t,X)
@ ADM decomposition provides a natural parametrization of the field content.
ds? = —N2af? + g; (ax' + N'at) (! + Nct)

@ The allowed ingredients: N dt,/gd®x, K, g;, D, Rj,

where Kj = 5% [0r gy — DiN; — D;N;].
@ Projectability condition: N = N(t), consistent with the F-P diffeomorphism.
@ The most general action for z = 3 scaling can be written as

M2 )
S= %/th@d%?(wmj_xﬂ ~oA R+ L),

with 22 L.+ = (o1 DRk D'R¥ + c; iR DR + oo RIRKR, + oy R AL + osF° )
+ (csﬂfﬁ; + C7R2>.
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IR limit?

@ If theory is renormalizable, coupling constants run under
RG flow. At low energies, GR can be recovered only if
A= 1.

Mg 32 ( 1il 2
8:2/th\@dx<K Kj— AK? —27+ R).

@ Caution: Renormalizability of Horava-Lifshitz gravity is not
yet proven. We do not yet know how RG flow proceeds.

@ Even if A = 1, resulting theory still not GR! Due to
projectability = S > [ dt N(t) ([ d®x,/gH), i.e. no local
Hamiltonian constraint,

/ d*x/gH =0
= GR + “Dark matter as an integration constant”: mukonyama 2009.
M2 GS) = T + pepmrnun,
@ Degrees of freedom: 2 tensor graviton + 1 scalar graviton.
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Issues with scalar graviton

© 1/3 <X < 1= Ghost
Q A< 1/3,2>1= ¢ =—3=% < 0= Instability.

© ) — 1 = Strong coupling

Ghost A GR
| \N

0 1/3 1 e

@ Instability may be hidden by: expansion, Jeans instability of ordinary
matter or geometric “dark matter”. wmukonyama 2010.

@ Phenomenologicaly viable range: 1 < )\ < co.

Possible weak coupling at A — oo aec, mukohyama 2011.

@ Strong coupling — breakdown of perturbations
— Loss of predictability? : All coefficients of infinite number of
interactions can be expressed in terms of the finite parameters in the
full action, if the theory is renormalizable.

@ For an accurate analysis: need nonperturbative methods.
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Breakdown of perturbative expansion?

@ Perturbing flat FRW in vacuum:
N=1, N=0B+n, gj=a e (e"),;[oh; = hy=0]
@ Momentum constraint, at first order in perturbations:
0; [82(BA — 1)0i¢r — (A= 1)AB] + }An; =0
solved by:
AB = aZa,gT, n=0
@ After eliminating B in the actlon,

SkinB/dtdsan [)(\ )CT+()\( ))2<TCT

@ Perturbative treatment gives a convergent action if
[[¢r < min(1,A—1)]
@ But, is the solution of mom. cons. valid outside this range?
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Momentum constraint: Second branch of solution

AEG, Mukohyama, Wang ‘11
@ Consider small metric perturbations for ¢ = O(q), h; = O(q)
@ But keep the shift vector nonlinear B = O(q°), n; = O(q°)
@ Momentum constraint, at leading order

1
Hi = — (83X —1)99¢T + O(¢°) — 52 [B+o@)n

+% {(/\ —1) [5{.’A + O(q)] + (% AW+ 08¢t + 8l AT + O(qZ)) } 9;B.

Two branches of solutions

Q ’forq<<min(1, )\71)‘=>AB: RA Rt +0(q7),  m=O0(q?)

Q ’ for A -1k gk ‘:> O(q) terms are larger than O(g°) terms

o . . . —1
B=22 [} A+ 0'0,r + 8¢ +2(9/¢r) 8] pacr+0 (251) +0(a)

@ Branch 2 is nonlinear regime =- but still consistent with ¢, h; < 1.
@ Forthe A — 1 limit, Branch 2 is relevant.
@ Nonlinear dynamics take over = Vainshtein mechanism  vainshtein 1972
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Examples of Vainshtein effect analogues

@ Static, spherically symmetric vacuum configurations
continuous to GR at A — 1 wukonyana 2010

© Approximation:
Gradient Expansion, H' < L Lyeh, Halin, Saseki 2005

e Small parameter: e ~ 1/HL = 9; ~ O(e).

e Amplitude of perturbations does not have to be small.
= At a given order in ¢, all terms from perturbative
expansion contribute.

Gradient expansion around flat FRW:

@ HL in vacuum — continuous to GR+“DM” 1zuni, Mukohyama 2011
o EXteﬂd tO InC|Ude Scalar f|e|d AEG, Mukohyama, Wang 2011
= No pathologies as A\ — 1, recovers GR+“DM”+Scalar.

These studies are consistent with our argument that nonlinear
effects removes the divergences.
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@ Fully nonperturbative study of superhorizon perturbations in HL
gravity+Scalar field, shows no pathological behavior in the limit A\ — 1.
Theory is reduced to GR + “DM” + Scalar = another analogue of
Vainshtein effect.

@ In contrast, naive application of perturbative expansion gives rise to
divergences. We found that these solutions are not validas A — 1. A
new branch of nonlinear solutions found. Regular as A — 1, still
consistent with small metric perturbations.

@ Gradient expansion: Classical analysis. Quantum analogue?
Integrating out nonlinear B, can we get a healthy perturbative action?

@ Similar analyses of the extended versions of the theory?

@ Renormalizability beyond power-counting not proven yet. RG flow of
coupling constant has not been investigated. The conjecture that A — 1
to be IR fixed point is based on our hope to recover GR at low energies.

@ How to avoid LV leaking to matter sector?
Supersymmetrization Of SM'? Groot Nibbelink, Pospelov ‘05
Leak may be under control if M < M,? Pospelov, Shang ’10
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Extra Slides
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Details: Power-counting renormalizability

Example:

@ The action for a free Lifshitz scalar in 3 + 1, with dynamical
critical exponent z:

S= /dtd3x [d)? YN
@ Rescaling the momentum by k — b k, we have

b~1x
b %t

) @?

~~N ~= 33—z
}—z -3+2z2+28 =0=s=
N~

X —
t —
6 — 2

bS¢ at  d8x

@ For Lorentz-invariant case (z=1), ¢ — b¢.
@ For z =3, ¢ is dimensionless.
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Details: Power-counting renormalizability - Interactions

@ With up to 2z spatial derivatives
@ Including interactions

S = / dt d®x gno"

@ Momentum dimension of the coupling constant
¢n
—

(B-2)

3 n
23 el + =
dt  d8x

@ For Lorentz-invariantcase (z=1) = [ga] =4 —n
Renormalizable if n < 4.

@ For z = 3, the operators are dimensionless, so [gn] = 6 for
any n.

@ Gravitational interactions (which are highly nonlinear),
exhibit a power counting renormalizability for z > 3.

@ We will set z = 3 from now on = include up to 6 spatial
derivatives.

n(3 — z)

= 0= [gn] =8+2 - =
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Details: “Dark matter” as an integration constant

Assuming A — 1 in the IR,

Dynamical equations: Gf].4) + Ag,(j“) - Mls T; =0,

Momentum constraint: (G,(i) + /\gf:) — Mig T,»u) n* =0, (nudx* = Ndt)

Hamiltonian constraint: fd3xf( I = /\g(4) L T,W) ntn” =0.
7—/,/{'DM' -0

Defining T,,2M" = M2 (Gﬁw) +Agl) - i TW> = T,0Mpr=0
= THV = p«pm NuNu

The extra piece in the equations then looks like pressureless dust with energy
density and rest frame synchronized with the foliation. mukohyama 2009

Hamiltonian constraint: d3x\/§anMv- = 0 = total energy of the dust vanishes.
When our horizon is approximated by FRW, the super horizon inhomogeneities
in p«py should cancel the homogeneous and positive contribution in our patch.

Generically, p«pp is generated away from A = 1

MY upeom + K popwr = 1V Ty + O(X = 1) + O(R?)
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Details: Issues with scalar graviton

Gravitational action, scalar sector

2) 2 3 3)\—1)-2_ (é HsA2_ AS ) :|
% _Mp/dthKAq ¢ 2 N DM ¢

174 = 723 cq +28 [
Ms My

@ For 1/3 < X < 1, wrong sign kinetic term = Scalar mode is a ghost.
@ Instability: Dispersion relation:
5 A—1 ( K ks k4 k2)
w? = + =
3x—1\aM  a*MZ &
For k/a < Ms, scalar graviton is unstable, with time scale t; ~ g ‘

A—1
However, as in CDM scenario, the dust-like component exhibits Jeans instability,
with time scale t; = —1—. The linear instability does not show up if t; > t; or

3)\—1‘

VGp
> H.
A— H? &2 k 1
0 — . |® H< = in ( M,
<3>\_1<max(k2 N |>7 <a<mm( S’.O1mm)

This is a phenomenological constraint on RG flow. A should approach to 1 (from
above) as the energy scale is lowered.
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Details: Gradient expansion around flat FRW

(summary)

Summary of gradient expansion around flat FRW + scalar field calculation

2 -
@ Gravitational action:  Sg = Y2 [ Nat \/g d®% (KjKi — \K? — 2A+ R+ L,~+)

@ Matter action: S, = [ Ndt,/gd®x [;(am)Z — Vo(8) — Vos1(4, D,,g,,-)]
@ Synchronous gauge: N=1, N;=0, 9, — o
ds? = —df? + a(1)2 2 <) (1, X)dx'dd,  (dety = 1)

Assumption: Locally FRW =- 9y; ~ O(e).

Additional assumption: 8;¢ ~ O(e?).

Equations of motion can be solved order by order.
Momentum constraint satisfied at any order.

Just like in the vacuum result, no pathologies at A — 1.
Recovers GR+“DM”+Scalar field.

@ These studies are consistent with our argument that nonlinear effects removes
the divergences.
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Details: Gradient expansion around flat FRW

(equations)

@ In the synchronous gauge (N = 1, N; = 0), equations of motion are

1 o 3, . 3 2
A —1)K = ——Brx—1K —AA - (o -z,
( )0 o ) AR = 5(0re)
QA = —KA. +Z — 1260
oy = ITEiT 3e%)
0 = 0f¢o+Ko+Ey, A=K - oK
ar¢ 8[a+1K
t = I AN
a 3 k=3 (arc + %2)
k
ovj = 27ikAj,

@ Momentum constraint

. . 1 . 1k 1
A, +3A,9;¢ — 5A/,w )iy — 3 (BX — 1) 8K = 8;¢ 8 .

@ Expansion:
¢ = OF+ecM,2)+ PR+ oS,
o= @+ R+ EvP 0 + o),
K = 3HW) + ek, %)+ kO (1, %) + 0,
Ay = AR + EZA(z)/‘f(z, %) + O,
¢ = O+t %)+ 6P, %)+ 0(S),
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Details: First order momentum con

@ Full kinetic action, quadratic and cubic:

1 .
s@ = /dtd3>733 (a*28,<TAB+ ga,h‘fa,h,-j) ,
. 1 . 1 . ]
s® - / dia®xa [3(T (a*za,gTABJr ga,h’fa,h,,) 4 Eaf“gra’(a,.13ma+ 30/B5;0;B)

1 . . 1 "
+§(a*28kh’faks — 39;h¢r)a=20,0,B — Zafza,h’fakh,,a“s .

@ Atfirstorder: 9; [2(38) — 1)9:¢7 — (A — 1)AB| + }An =0
solved by:

3x -1 23C 0
a , nj=
N1 teT i

Relation between synchronous gauge and transverse gauge

2 1 (Br—1) . (32
(:777{477ﬁ(8iC7—)(8A 1(T)+()\7 /df 9CT)(5A BNCT)

AB =

_BA-1) ] _
A71)/ o' 7" [2(0'n¢r)@8 ™ By cr)

o 1 n
+(99cr + 2 ) 01980y ¢r) + (cr)(Oy cr)]

. 1 . .
+- / dt’ AT [ (8i0y hy k)(@'hjk)JrE(B,zh”)(Ah,-j)—3(8,8](7—)(6,,#])} +O(§)}

4
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