There are no stationary axisymmetric star solutions in Hořava-Lifshitz gravity

Naoki Tsukamoto (Rikkyo University)
Collaboration with Tomohiro Harada

JGRG21 9/26/2011 @Tohoku University

Introduction

- Recently, Hořava proposed a power-counting renormalizable theory. This theory is expected to be a renormalizable and ghost-free theory.
- Our goal is to constrain Hořava gravity from astrophysical observations.
- There are no spherically symmetric and static star solutions with perfect fluid in Hořava gravity. K. Izumi and S. Mukohyama, Phys. Rev. D 81, 044008(2010)
\Longrightarrow How about rotating star with perfect fluid?

Hořava-Lífshītz gravity

P. Hořava, Phys. Rev. D79, 084008 (2009).
P. Hořava, JHEP 0903, 020 (2009).

- In the ultraviolet, the theory exhibits the Lifshitz-type anisotropic scaling $t \rightarrow b^{z} t, x^{i} \rightarrow b x^{i}$. (z is the dynamical critical exponent.)
- For $z=3(z>3)$, the theory is power-counting (super-)renormalizable.
- This theory has no general covariance.
foliation-preserving diffeomorphism

$$
t \rightarrow \tilde{t}(t), x^{i} \rightarrow \tilde{x}^{i}(t, x)
$$

\Longrightarrow Quantities on the constant-time hypersurfaces have to be regular.

- Arnowitt-Deser-Misner (ADM) form

$$
d s^{2}=-N^{2} d t^{2}+g_{i j}\left(d x^{i}+N^{i} d t\right)\left(d x^{j}+N^{j} d t\right)
$$

$g_{i j}$: spatial metric tensor, N : lapse function, N^{i} : shift vector

- Action

The action is constrained strongly from the view point of renormalization. (detailed balance condition)

$$
\begin{array}{r}
I_{g}=\int d t d^{3} x \sqrt{g} N\left[\alpha\left(K^{i j} K_{i j}-\lambda K^{2}\right)+\beta C_{i j} C^{i j}+\gamma \varepsilon^{i j k} R_{i l} D_{j} R_{k}^{l}\right. \\
\left.+\zeta R_{i j} R^{i j}+\eta R^{2}+\xi R+\sigma\right]
\end{array}
$$

where $\alpha, \beta, \gamma, \lambda, \zeta, \eta, \xi, \sigma$ are constant parameters,
$R_{i j}$ is the Ricci tensor of $g_{i j}$,
D_{i} is the covariant derivative compatible with $g_{i j}$,
$K_{i j}$ is the extrinsic curvature of constant-time hypersurfaces and
$C_{i j}$ is the Cotton tensor.

- In the infrared, we can get the same action as GR.

Projectability condition and Hamiltonian constraint

- Projectability condition $N=N(t)$
- The variation of the action with respect to $N(t)$, we get the Hamiltonian constraint.
- Projectable theory \Longrightarrow global Hamiltonian constraint.

$$
\begin{array}{r}
\int d x^{3} \sqrt{g}\left[\left(\alpha K^{i j} K_{i j}-\lambda K^{2}\right)-\beta C_{i j} C^{i j}-\gamma \varepsilon^{i j k} R_{i l} D_{j} R_{k}^{l}\right. \\
\left.-\zeta R_{i j} R^{i j}-\eta R^{2}-\xi R-\sigma\right]+\int d x^{3} \sqrt{g} T_{\mu \nu} n^{\mu} n^{\nu}=0
\end{array}
$$

(Non-projectable theory \Longrightarrow Iocal Hamiltonian constraint.)

There are no spherically symmetric and static star solutions with perfect fluid.
K. Izumi and S. Mukohyama, Phys. Rev. D 81, 044008(2010).
\Longrightarrow But stars rotate more or less.
\Longrightarrow So we will investigate stationary axisymmetric stars.

Stationary Axisymmetric Stars

Assumptions

- Stationary and axisymmetric spacetime $t^{\mu} \partial_{\mu}=\partial_{t}, \phi^{\mu} \partial_{\mu}=\partial_{\phi}$
- Perfect fluid

$$
T_{\mu \nu}=(\rho+P) u_{\mu} u_{\nu}+P g_{\mu \nu}
$$

- The four-velocity

$$
\begin{aligned}
& u^{\mu} \partial_{\mu}=\frac{1}{D}\left(t^{\mu}+\omega \phi^{\mu}\right) \partial_{\mu} \\
& D \equiv\left(N^{2}-N_{i} N^{i}-2 \omega N_{\phi}-\omega^{2} g_{\phi \phi}\right)^{\frac{1}{2}} \\
& -\rho(P) \geqq 0 .
\end{aligned}
$$

- ρ is a piecewise-continuous function.
- $P_{c} \equiv P(r=0)>0$.
- Reflection symmetry about the equatorial plane

Spatial Line Element

- As a part of gauge conditions, we take

$$
g_{r \theta}=g_{r \phi}=0
$$

- Under this gauge condition, we can take the spatial line element generally,

$$
d l^{2}=\psi^{4}\left[A^{2} d r^{2}+\frac{r^{2}}{B^{2}} d \theta^{2}+r^{2} B^{2}(\sin \theta d \phi+\xi d \theta)^{2}\right]
$$

ψ, A, B, and ξ are functions of r and θ for the stationary and the axisymmetric spacetime.

Momentum conservation

By the invariance of the matter action I_{m} under the infinitesimal transformation $\delta x^{i}=\zeta^{i}(t, x)$, we get the r component of the momentum conservation

$$
0=-\frac{1}{N} N^{j} D_{j}\left(T_{r \mu} n^{\mu}\right)+K T_{r \mu} n^{\mu}-\frac{1}{N} T_{j \mu} n^{\mu} D_{r} N^{j}-D^{j} T_{r j} .
$$

After some calculation, we obtain

$$
\begin{aligned}
0 & =-P_{, r}+\frac{\rho+P}{D^{2}}\left\{\frac{1}{2}\left(N_{i} N^{i}\right)_{, r}+\omega N_{\phi, r}+\frac{1}{2} \omega^{2} g_{\phi \phi, r}+\frac{N_{, r}}{N} N^{r} N_{r}+\frac{N_{, \theta}}{N} N^{\theta} N_{r}\right\} \\
& =-P_{, r}+\frac{\rho+P}{D^{2}}\left\{\frac{1}{2}\left(-N^{2}+N_{i} N^{i}\right)_{, r}+\omega N_{\phi, r}+\frac{1}{2} \omega^{2} g_{\phi \phi, r}\right\}
\end{aligned}
$$

In the second line, we used the projectability condition $N=N(t)$. Here, we concentrate on the rotation axis $\theta=0$. $g_{\phi \phi}=\psi^{4} r^{2} B^{2} \sin ^{2} \theta$ and the regularity of the triad component of the shift vector $N_{(3)}=\frac{N_{\phi}}{\psi^{2} r B \sin \theta}$. implies $N_{\phi, r}=g_{\phi \phi, r}=0$.

$$
\left\{\log \left(N^{2}-N_{i} N^{i}\right)\right\}_{, r}=-2 \frac{P_{, r}}{\rho+P}
$$

Under the assumption $\rho=\rho(P)$, we can transform

$$
-2 \frac{P_{, r}}{\rho+P}=-2\left(\int \frac{d P}{\rho+P}\right)_{, r}
$$

Integrating over $0 \leq r<r_{s}$,

$$
\left.\log \left(N^{2}-N_{i} N^{i}\right)\right|_{r=r_{s}}-\left.\log \left(N^{2}-N_{i} N^{i}\right)\right|_{r=0}=-2 \int_{P_{c}}^{P_{s}} \frac{d P}{\rho+P}
$$

The regularity of $N_{(i)}$ and $K_{(i)(j)}$ implies $P(r)$
is continuous.
From $\rho(P) \geqq 0, P(r)$ and r_{s}, we obtain $P_{s}<0 \Longrightarrow P_{s} \leq 0<P_{c}$.
This implies that
the right-hand side of momentum conservation is positive.

The left-hand side of momentum conservation

We use locally Cartesian coordinates near the origin. From Axisymmetry, we obtain

$$
N_{, j}^{i} \phi^{j}-\phi_{, j}^{i} N^{j}=0
$$

The general regular solution of these equations is

$$
\frac{N^{r}}{r}=\sin ^{2} \theta F_{1}+\frac{1}{r} \cos \theta F_{3}, \quad \frac{N^{\theta}}{\sin \theta}=\cos \theta F_{1}-\frac{F_{3}}{r}, \quad N^{\phi}=F_{2}
$$

where each F_{n} is an independent and regular function.

- Reflection symmetry about the equatorial plane implies F_{1}, F_{2} are even functions of z, and F_{3} is an odd function of z.

$$
\left.\Longrightarrow N^{r}\right|_{r=0}=\left.N^{\theta}\right|_{r=0}=0
$$

Thus

$$
\left.N_{i} N^{i}\right|_{r=0}=0
$$

The left-hand side of momentum conservation is non-positive.

$$
\left.\log \left(N^{2}-N_{i} N^{i}\right)\right|_{r=r_{s}}-\left.\log \left(N^{2}-N_{i} N^{i}\right)\right|_{r=0} \leq 0
$$

Contradiction of momentum conservation

The r component of the momentum conservation on $\theta=0$ is

$$
\left.\log \left(N^{2}-N_{i} N^{i}\right)\right|_{r=r_{s}}-\left.\log \left(N^{2}-N_{i} N^{i}\right)\right|_{r=0}=-2 \int_{P_{c}}^{P_{s}} \frac{d P}{\rho+P} .
$$

Its left-hand side is non-positive, while the right-hand side is positive.

\Longrightarrow There are no stationary axisymmetric star solutions in Hořava-Lifshitz gravity.

Summary

In Hořava-Lifshitz gravity

Projectability condition $\quad N=N(t)$

$$
\begin{gathered}
+ \\
\text { Regularity of } N^{i}, K_{(i)(j)}
\end{gathered}
$$

due to foliation-preserving diffeomorphism

$$
\downarrow
$$

No stationary axisymmetric star solutions

