There are no stationary axisymmetric star solutions in Hořava-Lifshitz gravity

Naoki Tsukamoto (Rikkyo University) Collaboration with Tomohiro Harada

JGRG21 9/26/2011 @Tohoku University

Introduction

- Recently, Hořava proposed a power-counting renormalizable theory. This theory is expected to be a renormalizable and ghost-free theory.
- Our goal is to constrain Hořava gravity from astrophysical observations.
- There are no spherically symmetric and static star solutions with perfect fluid in Hořava gravity.
 K. Izumi and S. Mukohyama, Phys. Rev. D 81, 044008(2010)

 \implies How about rotating star with perfect fluid?

Hořava-Lifshitz gravity

P. Hořava, Phys. Rev. D79, 084008 (2009).P. Hořava, JHEP 0903, 020 (2009).

- In the ultraviolet, the theory exhibits the Lifshitz-type anisotropic scaling $t \to b^z t$, $x^i \to bx^i$. (z is the dynamical critical exponent.)
- For z = 3 (z > 3), the theory is power-counting (super-)renormalizable.
- This theory has no general covariance.

- foliation-preserving diffeomorphism $t
ightarrow ilde{t}(t), \; x^i
ightarrow ilde{x}^i(t,x)$

⇒Quantities on the constant-time hypersurfaces have to be regular.

• Arnowitt-Deser-Misner (ADM) form

 $ds^{2} = -N^{2}dt^{2} + g_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$

 g_{ij} : spatial metric tensor, N: lapse function, Nⁱ: shift vector

• Action

The action is constrained strongly from the view point of renormalization. (detailed balance condition)

$$I_g = \int dt d^3x \sqrt{g} N[\alpha (K^{ij} K_{ij} - \lambda K^2) + \beta C_{ij} C^{ij} + \gamma \varepsilon^{ijk} R_{il} D_j R_k^l + \zeta R_{ij} R^{ij} + \eta R^2 + \xi R + \sigma]$$

where $\alpha, \beta, \gamma, \lambda, \zeta, \eta, \xi, \sigma$ are constant parameters,

 R_{ij} is the Ricci tensor of g_{ij} ,

 D_i is the covariant derivative compatible with g_{ij} ,

 K_{ij} is the extrinsic curvature of constant-time hypersurfaces and C_{ij} is the Cotton tensor.

• In the infrared, we can get the same action as GR.

Projectability condition and Hamiltonian constraint

- **Projectability condition** N = N(t)
- The variation of the action with respect to N(t), we get the Hamiltonian constraint.
- Projectable theory \implies global Hamiltonian constraint.

$$\int dx^3 \sqrt{g} \left[(\alpha K^{ij} K_{ij} - \lambda K^2) - \beta C_{ij} C^{ij} - \gamma \varepsilon^{ijk} R_{il} D_j R_k^l - \zeta R_{ij} R^{ij} - \eta R^2 - \xi R - \sigma \right] + \int dx^3 \sqrt{g} T_{\mu\nu} n^{\mu} n^{\nu} = 0.$$

(Non-projectable theory \implies local Hamiltonian constraint.)

There are no spherically symmetric and static star solutions with perfect fluid.

K. Izumi and S. Mukohyama, Phys. Rev. D 81, 044008(2010).

\implies But stars rotate more or less.

⇒ So we will investigate stationary axisym-

metric stars.

Stationary Axisymmetric Stars

Assumptions

- Stationary and axisymmetric spacetime $t^{\mu}\partial_{\mu} = \partial_t, \phi^{\mu}\partial_{\mu} = \partial_{\phi}$
- Perfect fluid

$$T_{\mu\nu} = (\rho + P)u_{\mu}u_{\nu} + Pg_{\mu\nu}$$

• The four-velocity

$$u^{\mu}\partial_{\mu} = \frac{1}{D}(t^{\mu} + \omega\phi^{\mu})\partial_{\mu}.$$
$$D \equiv (N^2 - N_i N^i - 2\omega N_{\phi} - \omega^2 g_{\phi\phi})^{\frac{1}{2}},$$

- $\rho(P) \geq 0.$
- ρ is a piecewise-continuous function.
- $P_c \equiv P(r=0) > 0.$
- Reflection symmetry about the equatorial plane

Spatial Line Element

• As a part of gauge conditions, we take

$$g_{r\theta} = g_{r\phi} = 0.$$

 Under this gauge condition, we can take the spatial line element generally,

$$dl^{2} = \psi^{4} [A^{2} dr^{2} + \frac{r^{2}}{B^{2}} d\theta^{2} + r^{2} B^{2} (\sin \theta d\phi + \xi d\theta)^{2}],$$

 ψ, A, B , and ξ are functions of r and θ for the stationary and the axisymmetric spacetime.

Momentum conservation

By the invariance of the matter action I_m under the infinitesimal transformation $\delta x^i = \zeta^i(t, x)$, we get the r component of the momentum conservation

$$0 = -\frac{1}{N}N^{j}D_{j}(T_{r\mu}n^{\mu}) + KT_{r\mu}n^{\mu} - \frac{1}{N}T_{j\mu}n^{\mu}D_{r}N^{j} - D^{j}T_{rj}.$$

After some calculation, we obtain

$$0 = -P_{,r} + \frac{\rho + P}{D^2} \left\{ \frac{1}{2} (N_i N^i)_{,r} + \omega N_{\phi,r} + \frac{1}{2} \omega^2 g_{\phi\phi,r} + \frac{N_{,r}}{N} N^r N_r + \frac{N_{,\theta}}{N} N^{\theta} N_r \right\}$$

= $-P_{,r} + \frac{\rho + P}{D^2} \left\{ \frac{1}{2} (-N^2 + N_i N^i)_{,r} + \omega N_{\phi,r} + \frac{1}{2} \omega^2 g_{\phi\phi,r} \right\},$

In the second line, we used the projectability condition N = N(t). Here, we concentrate on the rotation axis $\theta = 0$.

 $g_{\phi\phi} = \psi^4 r^2 B^2 \sin^2 \theta$ and the regularity of the triad component of the shift vector $N_{(3)} = \frac{N_{\phi}}{\psi^2 r B \sin \theta}$. implies $N_{\phi,r} = g_{\phi\phi,r} = 0$.

$$\left\{\log\left(N^2 - N_i N^i\right)\right\}_{,r} = -2\frac{P_{,r}}{\rho + P}.$$

P+P Under the assumption $\rho = \rho(P)$, we can transform e. + P. $-2\frac{P_{,r}}{\rho+P} = -2\left(\int \frac{dP}{\rho+P}\right)_{r}.$ Integrating over $0 \leq r < r_s$, 0 $\log \left(N^2 - N_i N^i \right) \Big|_{r=r_s} - \log \left(N^2 - N_i N^i \right) \Big|_{r=0} = -2 \int_{P_s}^{P_s} \frac{dP}{\rho + P},$ The regularity of $N_{(i)}$ and $\overline{K_{(i)(j)}}$ implies P(r)

is continuous.

From $\rho(P) \geq 0$, P(r) and r_s , we obtain $P_s < 0 \Longrightarrow P_s \leq 0 < P_c$. This implies that

the right-hand side of momentum conservation is positive.

The left-hand side of momentum conservation

We use locally Cartesian coordinates near the origin. From Axisymmetry, we obtain

$$N^{i}_{,j}\phi^{j} - \phi^{i}_{,j}N^{j} = 0.$$

The general regular solution of these equations is

$$\frac{N^r}{r} = \sin^2 \theta F_1 + \frac{1}{r} \cos \theta F_3, \qquad \frac{N^\theta}{\sin \theta} = \cos \theta F_1 - \frac{F_3}{r}, \qquad N^\phi = F_2.$$

where each F_n is an independent and regular function.

• Reflection symmetry about the equatorial plane implies F_1, F_2 are even functions of z, and F_3 is an odd function of z.

$$\implies N^r|_{r=0} = N^{\theta}\Big|_{r=0} = 0,$$

Thus

$$N_i N^i \Big|_{r=0} = 0,$$

The left-hand side of momentum conservation is non-positive.

$$\left. \log \left(N^2 - N_i N^i \right) \right|_{r=r_s} - \log \left(N^2 - N_i N^i \right) \right|_{r=0} \le 0.$$

Contradiction of momentum conservation

The r component of the momentum conservation on $\theta = 0$ is

$$\log \left(N^2 - N_i N^i \right) \Big|_{r=r_s} - \log \left(N^2 - N_i N^i \right) \Big|_{r=0} = -2 \int_{P_c}^{P_s} \frac{dP}{\rho + P}.$$

Its left-hand side is **non-positive**, while the right-hand side is **positive**.

⇒ There are no stationary axisymmetric star solutions in Hořava-Lifshitz gravity.

