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Introduction

• Recently, Hǒrava proposed a power-counting renormalizable

theory. This theory is expected to be a renormalizable and

ghost-free theory.

• Our goal is to constrain Hǒrava gravity from astrophysical

observations.

• There are no spherically symmetric and static star solutions

with perfect fluid in Hǒrava gravity.

K. Izumi and S. Mukohyama, Phys. Rev. D 81, 044008(2010)

=⇒ How about rotating star with perfect fluid?
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Hǒrava-Lifshitz gravity
P. Hǒrava, Phys. Rev. D79, 084008 (2009).

P. Hǒrava, JHEP 0903, 020 (2009).

• In the ultraviolet, the theory exhibits the Lifshitz-type anisotropic

scaling t→ bzt, xi → bxi. (z is the dynamical critical exponent.)

• For z = 3 (z > 3), the theory is power-counting (super-)renormalizable.

• This theory has no general covariance.

foliation-preserving diffeomorphism� �
t→ t̃(t), xi → x̃i(t, x)� �

=⇒Quantities on the constant-time hypersurfaces

have to be regular.
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• Arnowitt-Deser-Misner (ADM) form

ds2 = −N2dt2 + gij(dx
i+N idt)(dxj +Njdt)

gij: spatial metric tensor, N : lapse function, N i: shift vector

• Action
The action is constrained strongly from the view point of renor-
malization. (detailed balance condition)

Ig =
∫
dtd3x

√
gN [α(KijKij − λK2) + βCijC

ij + γεijkRilDjR
l
k

+ζRijR
ij + ηR2 + ξR+ σ]

where α, β, γ, λ, ζ, η, ξ, σ are constant parameters,

Rij is the Ricci tensor of gij,

Di is the covariant derivative compatible with gij,

Kij is the extrinsic curvature of constant-time hypersurfaces and

Cij is the Cotton tensor.

• In the infrared, we can get the same action as GR.
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Projectability condition and Hamiltonian constraint

• Projectability condition N = N(t)

• The variation of the action with respect to N(t), we get the

Hamiltonian constraint.

- Projectable theory =⇒ global Hamiltonian constraint.∫
dx3

√
g
[
(αKijKij − λK2)− βCijC

ij − γεijkRilDjR
l
k

−ζRijRij − ηR2 − ξR− σ
]
+
∫
dx3

√
gTµνn

µnν = 0.

(Non-projectable theory =⇒ local Hamiltonian constraint. )
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There are no spherically symmetric and static

star solutions with perfect fluid.

K. Izumi and S. Mukohyama, Phys. Rev. D 81, 044008(2010).

=⇒ But stars rotate more or less.

=⇒ So we will investigate stationary axisym-

metric stars.
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Stationary Axisymmetric Stars
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Assumptions

• Stationary and axisymmetric spacetime

tµ∂µ = ∂t, ϕ
µ∂µ = ∂ϕ

• Perfect fluid

Tµν = (ρ+ P )uµuν + Pgµν

• The four-velocity

uµ∂µ =
1

D
(tµ+ ωϕµ)∂µ.

D ≡ (N2 −NiN
i − 2ωNϕ − ω2gϕϕ)

1
2,

• ρ(P ) = 0.

• ρ is a piecewise-continuous function.

• Pc ≡ P (r = 0) > 0.

• Reflection symmetry about the equatorial plane
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Spatial Line Element

• As a part of gauge conditions, we take

grθ = grϕ = 0.

• Under this gauge condition, we can take the spatial line element

generally,

dl2 = ψ4[A2dr2 +
r2

B2
dθ2 + r2B2(sin θdϕ+ ξdθ)2],

ψ,A,B, and ξ are functions of r and θ for the stationary and the

axisymmetric spacetime.
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Momentum conservation

By the invariance of the matter action Im under the infinitesimal trans-

formation δxi = ζi(t, x), we get the r component of the momentum

conservation

0 = −
1

N
NjDj(Trµn

µ) +KTrµn
µ −

1

N
Tjµn

µDrN
j −DjTrj.

After some calculation, we obtain

0 = −P,r +
ρ+ P

D2

{
1

2
(NiN

i),r + ωNϕ,r +
1

2
ω2gϕϕ,r +

N,r

N
NrNr +

N,θ

N
NθNr

}

= −P,r +
ρ+ P

D2

{
1

2
(−N2 +NiN

i),r + ωNϕ,r +
1

2
ω2gϕϕ,r

}
,

In the second line, we used the projectability condition N = N(t).

Here, we concentrate on the rotation axis θ = 0.

gϕϕ = ψ4r2B2 sin2 θ and the regularity of the triad component of the

shift vector N(3) =
Nϕ

ψ2rB sin θ
. implies Nϕ,r = gϕϕ,r = 0.
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{
log

(
N2 −NiN

i
)}
,r
= −2

P,r

ρ+ P
.

Under the assumption ρ = ρ(P ), we can trans-

form

−2
P,r

ρ+ P
= −2

(∫
dP

ρ+ P

)
,r

.

Integrating over 0 ≤ r < rs,

log
(
N2 −NiN

i
)∣∣∣
r=rs

− log
(
N2 −NiN

i
)∣∣∣
r=0

= −2
∫ Ps
Pc

dP

ρ+ P
,

The regularity of N(i) and K(i)(j) implies P (r)

is continuous.

From ρ(P ) = 0, P (r) and rs, we obtain Ps < 0=⇒Ps ≤ 0 < Pc .

This implies that

the right-hand side of momentum conservation is positive.
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The left-hand side of momentum conservation
We use locally Cartesian coordinates near the origin. From Axisym-
metry, we obtain

N i
,jϕ

j − ϕi,jN
j = 0.

The general regular solution of these equations is

Nr

r
= sin2 θF1 +

1

r
cos θF3,

Nθ

sin θ
= cos θF1 −

F3
r
, Nϕ = F2.

where each Fn is an independent and regular function.

• Reflection symmetry about the equatorial plane implies F1, F2 are
even functions of z, and F3 is an odd function of z.
=⇒ Nr|r=0 = Nθ

∣∣∣
r=0

= 0,

Thus

NiN
i
∣∣∣
r=0

= 0,

The left-hand side of momentum conservation is non-positive.

log
(
N2 −NiN

i
)∣∣∣
r=rs

− log
(
N2 −NiN

i
)∣∣∣
r=0

≤ 0.
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Contradiction of momentum conservation

The r component of the momentum conservation on θ = 0 is

log
(
N2 −NiN

i
)∣∣∣
r=rs

− log
(
N2 −NiN

i
)∣∣∣
r=0

= −2
∫ Ps
Pc

dP

ρ+ P
.

Its left-hand side is non-positive, while the right-hand side is posi-

tive.

=⇒ There are no stationary axisymmetric
star solutions in Hǒrava-Lifshitz gravity.
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Summary

In Hǒrava-Lifshitz gravity� �

Projectability condition N = N(t)

+

Regularity of N i,K(i)(j)

due to foliation-preserving diffeomorphism

↓
No stationary axisymmetric star solutions� �
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