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| § 1
NTRODUCTION




GR test in the weak field regime
Solar system experiment [Will (2006)]
(Deviation from GR) < 10 (Shapiro time delay)

(Aﬂ: GR test in the strong field regime A

using binary GWs
\ Y

Quadratic curvature correction in the action
= Correction is larger when the field is stronger

Quite generic quadratic curvature theory, coupled to a
scalar field, that includes some known theories.
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Quadratic Gravity
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ABC of
Quadratic Gravity




Action: /\/_{H?RJrOélfl( )R* + az f2 (V) abRaﬂ

[Yunes & Stein (2011)]
+ a3 f3(V)R Rapea R + 054f4(79)Rabcd*Rade
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e.g.|(i) Dilatonic Einstein-Gauss-Bonnet (DEGB)
061:—%—053—CE a,=0, =1, V=0,
fi=fo=fr=e"

(i) Dynamical Chern-Simons (DCS)

(11:&2:0&320, f4:9

-expanding fi(9) around ¥ = 0. fi(9) = £:(0) + f/(0))+
fi(0) : GB & CS: Field equations unmodified.

£1(0) : Absorbed to ¢;. G = L O(G)

Brm?

:> [f’l(ﬁ) — 19} (Corrction to GR is small)




Modified Einstein Eq.
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Scalar Wave Eq. %Dﬁ . Z_‘g — o R? — auR. RO

9 — O53fga,bcalfg&bccz — CVﬁlRabcd*Rade)

- For simpilicity, we consider V' (9) = 0.

-We solve this wave equation with
the Post-Newtonian (PN) approach.



Scalar radiation

= Changes the radiated energy flux
= Changes binary’s orbital evolution
= Correction in GW
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§ 3
PN approach of
Scalar radiation




SOLVING THE SCALAR WAVE EQUATION WITH PN APPROACH

Slow motion, weak field expansion
Background metric: flat

Point particle approximation?
Proper regularization scheme? Strong field?

We are interested in
the FZ solution

[ Problems of using PN in modified gravity ]

PN near zone (NZ) solution

Taking the strong field
effect into account

(known) inner zone (IZ)
strong field solution

Matching

(isolated) BH background solution

B /8 mATA—FO(T?q) (TA:|:L._:EA|>

[Yunes & Stein (2011)]



FZ solution: [ ~ —4rq0°(x — x;) + (1 < 2)

[QA = J «— BH scalar charge

(This source reproduces the BH background solution in the NZ.)

1 o™
FZ _ m 13
I:> v Zm‘ 8tm/q15 r—x)(nx)"d’z+(1 < 2)
[Pati & Will (2002)]
1 R
((hﬁ — 92@) 7112@71 + QO ( ) U12i = U1 — U2;
T Distance to the source

n' : Unit vector to the source

Correction in energy flux: £ = lim [ r?dQ 8(0,Vs,) (0,0,)
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-1PN correction
(scalar dipole radiation)
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- onstraints with
W observations




CURRENT CONSTRAINTS FROM SOLAR SYSTEM EXPERIMENT
Amendola et al. (2007)

-Shapiro time delay measurement
by Cassini

< (DEGB)

o3| < 1.6 x 10**em® (3 =1)

MAPPING TO THE PARAMETRIZED POST-EINSTEINIAN (PPE)
Yunes & Pretorius (2009)

-ppE waveform (in Fourier domain): u =T Mf o
- - . b ) _
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Quadratic Gravity:
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Constraints using adv. LIGO

my = 6M@, mo = 12M@ SNR=20
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The constraint above cannot |
be realized by the solar
system experiment!!
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Cornish et al. (2011)



X § 5
ynamical
Chern-Simons Case

(1 = ap = ag = 0)




(1) Non-spinning BH
Pani et al. (2010): Non-spinning BH perturbation in DCS
Scalar radiation = 7PN correction

Our result shows good agreement with theirs!
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Pani, et. al.
PN result
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Metric Perturbation = 6PN [Pani et al. (2010)]
(our analysis: only PN order counting)

(1) Spinning BH 3.5PN (O(a)), 2PN (O(a?)), (only PN order counting)




§ 6 Summary




Probing Quad. Grav. in the strong field regime with BH/BH GWs.
Matching PN & BH solution = taking the strong field effect into account.
(1) Even parity sector:

Scalar dipole radiation = -1PN correction

adv. LIGO = Unique constraint on the quadratic graivty
compared to the solar system experiment.

(11) Odd parity sector:
(i) non-spinning BH:
Scalar radiation = 7PN correction, consistent with BH perturbation.

Correction in the metric = 6PN correction (PN order counting)

(i) Spinning BH:
3.5PN (O(a)), 2PN (O(a?)) (PN order counting)

(iii) Future works: (D Isolated BH solution at O(a?)

(@ BH deformation by the other BH
@ Non-dissipative corrections (e.g. binding energy),




