2011/9/27 JGRG21

Constraints on Particle Dark Matter Models by the Presence of Primordial Black Holes

Ryo Saito (YITP)

with S. Matsumoto, S. Shirai, T. Yanagida

Dark Matter

Non-relativistic matter in the Universe is almost non-baryonic, and dark (non-luminous).

What is dark matter?

WIMPs (as thermal relics)

WIMPs (Weakly Interacting Massive Particles)

Particles with weak-scale mass (10GeV-TeV) and cross sections.

e.g. Neutralino = neutral gaugino (wino + bino) + higgsino (in supersymmetric SM)

WIMP abundance in the thermal relic scenario

$$\Omega_{\rm WIMP} = \Omega_{\rm CDM} \left(\frac{\langle \sigma_{\rm A} v \rangle}{3 \times 10^{-26} \rm cm^3/s} \right)^{-1}$$

The abundance is determined by annihilation cross sections.

WIMPs (as thermal relics)

But some models predict smaller abundance of DM-candidate particles.

(e.g. wino-like, higgsino-like neutralino)

 $\Omega_{\rm CDM} > \Omega_{\rm WIMP}$

another scenario? or component?

WIMPs (as thermal relics) + PBHs

But some models predict smaller abundance of DM-candidate particles.

(e.g. wino-like, higgsino-like neutralino)

$$\widehat{\Omega}_{\text{CDM}} = \widehat{\Omega}_{\text{WIMP}} + \widehat{\Omega}_{\text{PBH}}$$

another scenario? or component?

+ Black Holes (Primordial black holes) ?

Primordial Black Holes

• PBHs (Primordial Black Holes)

Black holes produced in the early Universe (radiation-dominated era) by phase transitions or gravitational collapse of primordial density fluctuations.

Wide range of mass

from the Planck mass to masses much larger than the solar mass.

But: Hawking radiation \rightarrow PBH dark matter cannot be too light.

$$M_{\rm PBH} > 10^{15} {\rm g}$$

Constraints on the PBH abundance

Constraints on the PBH abundance

History of WIMPs+PBHs

JGRG21

History of WIMPs+PBHs

JGRG21

History of WIMPs+PBHs

Density Profiles of WIMPs

Density Profiles of WIMPs

Density Profiles of WIMPs

UCMHs as Gamma-ray Sources

WIMP annihilation rate is proportional to $n_{\rm WIMP}^2$

- \rightarrow The WIMP annihilation rate is much larger than that of surroundings.
- \rightarrow Gamma-ray sources

$$\begin{split} \Gamma &\equiv \int d^3 x \ n_{\rm WIMP}^2 \langle \sigma_{\rm A} v \rangle \\ &\propto ({\rm WIMP \ density})^2 \times ({\rm UCMH \ volume}) \\ &\sim 10^4 \ \Omega_{\rm PBH} \Gamma_{\rm background} \quad ({\rm galactic}) \\ &\sim 10^{11} \ \Omega_{\rm PBH} \Gamma_{\rm background} \quad ({\rm extragalactic}) \end{split}$$

Ultracompact minihalo (UCMH)

A tiny fraction of PBHs can induce a large annihilation rate.

UCMHs as Gamma-ray Sources

Signals \simeq Signals from decaying DM with mass $2m_{
m WIMP}$

It is convenient to introduce a **corresponding lifetime**

$$\tau_c \equiv \left(\frac{n_{\rm PBH}}{\rho_{\rm CDM}/2m_{\rm WIMP}}\right)^{-1} \Gamma^{-1}$$

Constraints on decaying DM \rightarrow Constraints on UCMHs PBH abundance + WIMP properties

Gamma-ray Constraints

Constraints from γ -ray observations for a model **WIMP = wino**

Summary

- WIMP accumulations by primordial black holes (Formation of UCMHs)
- \rightarrow Constraints on WIMP+PBH DM from γ -ray observations.

Presence of a tiny amount of PBHs \rightarrow Tight constraints on particle DM models

• PBHs cannot supply a deficiency of particle DM abundance in the models.

• If the existence of PBHs is shown (by using gravitational wave experiments, for example), the models are tightly constrained.