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Stability of a Relativistic Star

A lot of oscillations are excited by many processes.

@ Starquakes by secular spin-down of a pulsar.

@ Phase transition of a neutron star. (e.g. Cheng et al. 1998)

@ Core collapse by a supernova explosion. (e.g.
Mdnchmeyer et al. 1991)

@ Merging binary neutron star. (e.g. Shibata et al. 2000,
Baiotti et al. 2008)

@ and soon ...




Introduction

Stability of a Relativistic Star

A lot of oscillations are excited by many processes.

@ Starquakes by secular spin-down of a pulsar.
@ Phase transition of a neutron star. (e.g. Cheng et al. 1998)

@ Core collapse by a supernova explosion. (e.g.
Mdnchmeyer et al. 1991)

@ Merging binary neutron star. (e.g. Shibata et al. 2000,
Baiotti et al. 2008)

@ and soon ...

These oscillation and stability give us important physical
information such as equation of state of high dense matter,
general relativistic effects, and so on.
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Stability of a Relativistic Star

non-rotating stars(TOV)

@ secular-instability point
@ quasi-radial dynamical-instability point ( neutral point )

0?2 =0
@ turning point

oM 0

op.

where

eigenvalue for F mode

)

M . total gravitational mass
pe : central density
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non-rotating stars(TOV)
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@ quasi-radial dynamical-instability point ( neutral point )

@ turning point

These three points are
theoretically agreement for| o5}
a barotropic star.
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Stability of a Relativistic Star

rotating stars

@ secular-instability point
= We don’t know yet.
@ quasi-radial dynamical-instability point ( neutral point )
= We don’t know yet, although the condition is ¢ = 0.
@ turning point

=0

e . OM
= We know, because the condition is 3
Pe J=const.

Friedmann, Ipser & Sorkin(1988) proved this is a suffi-
cient condition for secular instability.

They suggested turning point coincide with secular-

instability point from the assumption that viscosity
leads to uniform rotation.
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Stability of a Relativistic Star

That is to say, ...
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f-instability point
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dynamical-instability point
is right side of secular-
instability point.

We study dynamical-instability point
(0% = 0) for a fast rotating neutron star,
including full general relativistic effects.
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Previous Works

@ non-rotating stars (TOV)
o Liner perturbation theory (e.g. Misner et al. 1973)

© rotating stars
° [Slow rotation approximation:]

. . . . Q
Expansion of perturbation equations using € = o («1).
K

= We want to consider the fast rotating stars.

° {Cowling approximation:j

Ignoring the perturbation of space-time.

= no good approximation for such as fundamental mode of
quasi-radial oscillation.



Method

Flowchart of our Method

© Background star:
RNS code (public code developed by Nikolaos
Stergioulas.)

© Perturbation:
Mapping the eigenfunction(mass density/pressure/energy
density) of non-rotational NS by computing linear
perturbation theory to the equilibrium model.

© To evolve the star using a numerical relativity.

© To decide the frequency by DFT of the central mass
density.
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Detail of our Method

Space-time Part

@ The code developed by AEI.

Cactus Computational Toolkit (Goodale et al. 2003)

BSSNOK formalism (Nakamura et al. 1987, Shibata et al.
1995, Baumgarte et al. 1998)

Cartesian coordinate

(]

“cartoon” method (Alcubierre et al. 2001)

= | Axi-symmetry
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Detail of our Method

@ Whisky2D code (Kellerman et al. 2008)
Cactus Computational Toolkit (Goodale et al. 2003)

Cartesian coordinate

Piecewise-Parabolic-Method (PPM) (Colella et al. 1984)
Harten-Lax-van Leer-Einfeldt (HLLE) solver

Method of Line with 3rd order Runge-Kutta

(]

(]

= [Axi-symmetry}

@ EOS: polytropic EOS ( p=Kp', e=p+ 25 )
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F-mode Frequencies for Wide Range of p. and T/|W/|

3

1.
p. % 10

<< (F?~0>>
@ Oscillation time-scale tends to become extremely large.

@ Models are artificially induced to collapse by the
accumulation of the truncation error.
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F-mode Frequencies for Wide Range of p. and T/|W/|
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accumulation of the truncation error.
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F-mode Frequencies for Wide Range of p. and T/|W/|

L& Quality of the data and the
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Dynamical-instability Points ( F =0)
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Dynamical-instability Points ( F =0)
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