

Kentaro Takami¹ Luciano Rezzolla¹ Shin'ichirou Yoshida²

¹Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut ²Department of Earth Science and Astronomy, Graduate School of Arts and Sciences, University of Tokyo

The 21st workshop on General Relativity and Gravitation in Japan

(日) (日) (日) (日) (日) (日) (日)

Introduction	Method	Numerical Test	Results	Summary
Outline				

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Introduction	Method	Numerical Test	Results	Summary
Stability of a R	elativistic Star			

A lot of oscillations are excited by many processes.

- Starquakes by secular spin-down of a pulsar.
- Phase transition of a neutron star. (e.g. Cheng et al. 1998)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Core collapse by a supernova explosion. (e.g. Mönchmeyer et al. 1991)
- Merging binary neutron star. (e.g. Shibata et al. 2000, Baiotti et al. 2008)
- and so on ...

Introduction	Method	Numerical Test	Results	Summary
Stability of a R	elativistic St	ar		

A lot of oscillations are excited by many processes.

- Starquakes by secular spin-down of a pulsar.
- Phase transition of a neutron star. (e.g. Cheng et al. 1998)
- Core collapse by a supernova explosion. (e.g. Mönchmeyer et al. 1991)
- Merging binary neutron star. (e.g. Shibata et al. 2000, Baiotti et al. 2008)
- and so on ...

These oscillation and stability give us important physical information such as equation of state of high dense matter, general relativistic effects, and so on.

Introduction	Method	Numerical Test	Results	Summary
Stability of a Re	elativistic Star			

non-rotating stars(TOV)

- secular-instability point
- quasi-radial dynamical-instability point (neutral point)

$$\sigma^2 = 0$$

turning point

$$\frac{\partial M}{\partial \rho_{\rm c}} = 0$$

where

- σ : eigenvalue for F mode
- M : total gravitational mass
- $ho_{\rm c}$: central density

Introduction	Method	Numerical Test	Results	Summary
Stability of a Re	elativistic Star			

non-rotating stars(TOV)

- secular-instability point
- quasi-radial dynamical-instability point (neutral point)

These three points are theoretically agreement for a barotropic star.

Introduction	Method	Numerical Test	Results	Summary
Stability of	a Relativistic	Star		

rotating stars

- secular-instability point
 - ⇒ We don't know yet.
- quasi-radial dynamical-instability point (neutral point)
 - \Rightarrow We **don't know** yet, although the condition is $\sigma^2 = 0$.
- turning point

 \Rightarrow We **know**, because the condition is

 $\left. \frac{\partial M}{\partial \rho_{\rm c}} \right|_{J={\rm const.}} = 0$

Introduction	Method	Numerical Test	Results	Summary
Stability of	a Relativistic	Star		

rotating stars

- secular-instability point
 - ⇒ We don't know yet.
- quasi-radial dynamical-instability point (neutral point)
 - \Rightarrow We **don't know** yet, although the condition is $\sigma^2 = 0$.
- turning point
 - \Rightarrow We know, because the condition is $\frac{\partial M}{\partial a}$

$$=$$
 const.

Friedmann, Ipser & Sorkin(1988) proved this is a sufficient condition for secular instability.

Introduction	Method	Numerical Test	Results	Summary
Clobility of	- Deletivistic (
Stability of a	a Relativistic 3	Star		

rotating stars

- secular-instability point
 - ⇒ We don't know yet.
- quasi-radial dynamical-instability point (neutral point)
 - \Rightarrow We **don't know** yet, although the condition is $\sigma^2 = 0$.
- turning point
 - ⇒ We know, because the condition is $\frac{\partial M}{\partial \rho_c}$

Friedmann, Ipser & Sorkin(1988) proved this is a sufficient condition for secular instability.

They suggested turning point coincide with secularinstability point from the assumption that viscosity leads to uniform rotation.

Introduction	Method	Numerical Test	Results	Summary
Stability of	a Relativistic	Star		
That is t	o sav			

・ロト・西ト・山田・山田・山口・

Introduction	Method	Numerical Test	Results	Summary
Stability of a	Relativistic	Star		

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Introduction	Method	Numerical Test	Results	Summary
Stability of a	Relativistic	Star		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Method	Numerical Test	Results	Summary
Stability of a Re	elativistic Star			

That is to say, ...

We study dynamical-instability point $(\sigma^2 = 0)$ for a fast rotating neutron star, including full general relativistic effects.

Introduction	Method	Numerical Test	Results	Summary

Introduction	Method	Numerical Test	Results	Summary
Previous Works	;			

non-rotating stars (TOV)

• Liner perturbation theory (e.g. Misner et al. 1973)

Introduction	Method	Numerical Test	Results	Summary
Previous Works	3			

non-rotating stars (TOV)

• Liner perturbation theory (e.g. Misner et al. 1973)

ortating stars

• Slow rotation approximation:

Expansion of perturbation equations using $\epsilon = \frac{\Omega}{\Omega_{\nu}}$ (\ll 1).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 \Rightarrow We want to consider the fast rotating stars.

Introduction	Method	Numerical Test	Results	Summary
Previous Works	3			

non-rotating stars (TOV)

Liner perturbation theory (e.g. Misner et al. 1973)

2 rotating stars

• Slow rotation approximation:

Expansion of perturbation equations using $\epsilon = \frac{\Omega}{\Omega_{rr}} \quad (\ll 1)$.

(日) (日) (日) (日) (日) (日) (日)

 \Rightarrow We want to consider the fast rotating stars.

Cowling approximation:

Ignoring the perturbation of space-time.

 \Rightarrow no good approximation for such as fundamental mode of quasi-radial oscillation.

Introduction	Method	Numerical Test	Results	Summary
Flowchart of o	ur Method			

- Background star: RNS code (public code developed by Nikolaos Stergioulas.)
- Perturbation:

Mapping the eigenfunction(mass density/pressure/energy density) of non-rotational NS by computing linear perturbation theory to the equilibrium model.

- To evolve the star using a numerical relativity.
- To decide the frequency by DFT of the central mass density.

Introduction	Method	Numerical Test	Results	Summary
Detail of or	ur Method			

Space-time Part

- The code developed by AEI.
 - Cactus Computational Toolkit (Goodale et al. 2003)
 - BSSNOK formalism (Nakamura et al. 1987, Shibata et al. 1995, Baumgarte et al. 1998)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Cartesian coordinate
- "cartoon" method (Alcubierre et al. 2001)

 \Rightarrow (Axi-symmetry)

Introduction	Method	Numerical Test	Results	Summary
Detail of our	Method			

Fluid Part

- Whisky2D code (Kellerman et al. 2008)
 - Cactus Computational Toolkit (Goodale et al. 2003)
 - Cartesian coordinate
 - Piecewise-Parabolic-Method (PPM) (Colella et al. 1984)
 - Harten-Lax-van Leer-Einfeldt (HLLE) solver
 - Method of Line with 3rd order Runge-Kutta

\Rightarrow (Axi-symmetry)

• EOS: polytropic EOS ($p = K\rho^{\Gamma}$, $e = \rho + \frac{p}{\Gamma - 1}$)

Introduction	Method	Numerical Test	Results	Summary

Introduction	Method	Numerical Test	Results	Summary

Cowling

Comparison with our Results and Previous Works

GR/CFC

* uniform rotation

* Polytropic EOS
$$(K = 100, \Gamma = 2)$$

*
$$ho_{c}=1.28 imes10^{3}$$

(a)

ъ

Introduction	Method	Numerical Test	Results	Summary

- * uniform rotation
- * Polytropic EOS $(K = 100, \Gamma = 2)$

*
$$ho_{c} = 1.28 imes 10^{3}$$

Smallest difference.

イロト イポト イヨト イヨト

-

Introduction	Method	Numerical Test	Results	Summary

GR/CFC

Cowling

- * uniform rotation
- * Polytropic EOS $(K = 100, \Gamma = 2)$

*
$$ho_{c} = 1.28 imes 10^{3}$$

- Smallest difference.
- Very good agreement.

・ロット (雪) ・ (日) ・ (日)

ъ

GR/CFC

Cowling

- * uniform rotation
- * Polytropic EOS $(K = 100, \Gamma = 2)$

*
$$ho_{
m c}=$$
 1.28 $imes$ 10³

- Smallest difference.
- Very good agreement.

・ロット (雪) ・ (日) ・ (日)

ъ

Smooth results

GR/CFC

Cowling

- * uniform rotation
- * Polytropic EOS $(K = 100, \Gamma = 2)$

*
$$ho_{
m c}=$$
 1.28 $imes$ 10³

- Smallest difference.
- Very good agreement.
- Smooth results
- Very small error bars.

・ロット (雪) ・ (日) ・ (日)

ъ

Introduction	Method	Numerical Test	Results	Summary

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ◆ ○ ◆

Introduction	Method	Numerical Test	Results	Summary
F-mode Fre	quencies for \	Wide Range of $ ho_{c}$ a	and $T/ W $	

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣

Introduction	Method	Numerical Test	Results	Summary
F-mode Fre	quencies for \	Wide Range of $ ho_{c}$ a	and T/ W	
F				

- Oscillation time-scale tends to become extremely large.
- Models are artificially induced to collapse by the accumulation of the truncation error.

Introduction	Method	Numerical Test	Results	Summary

F-mode Frequencies for Wide Range of ρ_c and T/|W|

Oscillation time-scale tends to become extremely large.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

 Models are artificially induced to collapse by the accumulation of the truncation error.

Introduction	Method	Numerical Test	Results	Summary

F-mode Frequencies for Wide Range of ρ_c and T/|W|

Introduction	Method	Numerical Test	Results	Summary

F-mode Frequencies for Wide Range of ρ_c and T/|W|

・ロト・西ト・ヨト・ヨー シック

Introduction	Method	Numerical Test	Results	Summary
Dynamical-in:	stability Poi	nts (<i>F</i> = 0)		

Introduction	Method	Numerical Test	Results	Summary
Dynamical-ins	tability Poi	nts(<i>F</i> = 0)		

Introduction	Method	Numerical Test	Results	Summary
Dynamical-ir	stability Poi	nts (<i>F</i> = 0)		

O1-O3 : constant Ω R1-R3 : constant ρ_c

・ロン ・四 と ・ ヨ と ・ ヨ と

æ

Introduction	Method	Numerical Test	Results	Summary
Dynamical-i	nstability Poi	nts(<i>F</i> = 0)		
			01.03 : constant	ot O

R1-R3 : constant Ω

Friedmann et al. expect... O1,O2,R1,R2 : stable

Our results expect... O1,R1 : stable

・ロット (雪) (日) (日)

э

Introduction	Method	Numerical Test	Results	Summary
Dynamical-ins	stability Poir	nts(<i>F</i> = 0)		

Introduction	Method	Numerical Test	Results	Summary

▲ロト ▲園 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()・

Introduction	Method	Numerical Test	Results	Summary
Summary				

- Turning-point criterion is only a *sufficient* condition for secular instability of rotating stars.
- Along a J = const. sequence of stellar models, the stars become unstable in the following order with increasing rest-mass density:

Introduction	Method	Numerical Test	Results	Summary
Summary				

- Turning-point criterion is only a *sufficient* condition for secular instability of rotating stars.
- Along a J = const. sequence of stellar models, the stars become unstable in the following order with increasing rest-mass density:

```
(secular instability)
(turning-point)
(dynamical instability)
```

Introduction	Method	Numerical Test	Results	Summary
Summary				

- Turning-point criterion is only a *sufficient* condition for secular instability of rotating stars.
- Along a J = const. sequence of stellar models, the stars become unstable in the following order with increasing rest-mass density:

(secular instability) (dynamical instability) \bigvee (turning-point)

Introduction	Method	Numerical Test	Results	Summary

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆> < 豆</p>