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Stability of a Relativistic Star

A lot of oscillations are excited by many processes.
Starquakes by secular spin-down of a pulsar.
Phase transition of a neutron star. (e.g. Cheng et al. 1998)
Core collapse by a supernova explosion. (e.g.
Mönchmeyer et al. 1991)
Merging binary neutron star. (e.g. Shibata et al. 2000,
Baiotti et al. 2008)
and so on ...

These oscillation and stability give us important physical
information such as equation of state of high dense matter,
general relativistic effects, and so on.
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Stability of a Relativistic Star

non-rotating stars(TOV)
secular-instability point
quasi-radial dynamical-instability point ( neutral point )

σ2 = 0

turning point
∂M
∂ρc

= 0

where

σ : eigenvalue for F mode
M : total gravitational mass
ρc : central density
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Stability of a Relativistic Star

non-rotating stars(TOV)
secular-instability point
quasi-radial dynamical-instability point ( neutral point )

σ2 = 0

turning point
∂M
∂ρc

= 0

e.g.,

p = KρΓ

K = 100, Γ = 2

�
�

�
�

These three points are
theoretically agreement for
a barotropic star.
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Stability of a Relativistic Star

rotating stars
secular-instability point
⇒ We don’t know yet.

quasi-radial dynamical-instability point ( neutral point )
⇒ We don’t know yet, although the condition is σ2 = 0.

turning point

⇒ We know, because the condition is
∂M
∂ρc

∣∣∣∣
J=const.

= 0

Friedmann, Ipser & Sorkin(1988) proved this is a suffi-
cient condition for secular instability.

They suggested turning point coincide with secular-
instability point from the assumption that viscosity
leads to uniform rotation.
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is right side of secular-
instability point.
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For now, we are using
turning point as secular-
instability point, and to find
dynamical-instability point
in simulations.
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Stability of a Relativistic Star

That is to say, ...

secular-instability point

dynamical-instability point
is right side of secular-
instability point.

For now, we are using
turning point as secular-
instability point, and to find
dynamical-instability point
in simulations.

�
�

�
�

We study dynamical-instability point
(σ2 = 0) for a fast rotating neutron star,
including full general relativistic effects.
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Previous Works

1 non-rotating stars (TOV)
Liner perturbation theory (e.g. Misner et al. 1973)

2 rotating stars�� ��Slow rotation approximation:

Expansion of perturbation equations using ε =
Ω

ΩK
(� 1) .

⇒ We want to consider the fast rotating stars.�� ��Cowling approximation:

Ignoring the perturbation of space-time.

⇒ no good approximation for such as fundamental mode of
quasi-radial oscillation.
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Flowchart of our Method

1 Background star:
RNS code (public code developed by Nikolaos
Stergioulas.)

2 Perturbation:
Mapping the eigenfunction(mass density/pressure/energy
density) of non-rotational NS by computing linear
perturbation theory to the equilibrium model.

3 To evolve the star using a numerical relativity.

4 To decide the frequency by DFT of the central mass
density.
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Detail of our Method

Space-time Part

The code developed by AEI.

Cactus Computational Toolkit (Goodale et al. 2003)

BSSNOK formalism (Nakamura et al. 1987, Shibata et al.
1995, Baumgarte et al. 1998)

Cartesian coordinate

“cartoon” method (Alcubierre et al. 2001)

⇒
�� ��Axi-symmetry
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Detail of our Method

Fluid Part

Whisky2D code (Kellerman et al. 2008)

Cactus Computational Toolkit (Goodale et al. 2003)

Cartesian coordinate

Piecewise-Parabolic-Method (PPM) (Colella et al. 1984)

Harten-Lax-van Leer-Einfeldt (HLLE) solver

Method of Line with 3rd order Runge-Kutta

⇒
�� ��Axi-symmetry

EOS: polytropic EOS ( p = KρΓ, e = ρ+ p
Γ−1 )
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Numerical Test
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Comparison with our Results and Previous Works

= T/|W|

* uniform rotation

* Polytropic EOS
(K = 100, Γ = 2)

* ρc = 1.28× 103

Smallest difference.
Very good agreement.
Smooth results
Very small error bars.
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F-mode Frequencies for Wide Range of ρc and T/|W |
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F-mode Frequencies for Wide Range of ρc and T/|W |

<< (F )2 ≈ 0 >>
Oscillation time-scale tends to become extremely large.
Models are artificially induced to collapse by the
accumulation of the truncation error.
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smoothness allow us to com-
pute the analytic fit.

(F )2
fit(ρc , β) = (F )2

fit(ρc ,0) + β

5∑
n=0

bn(ρc)n

=
5∑

n=0

an(ρc)n + β

5∑
n=0

bn(ρc)n
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Dynamical-instability Points ( F = 0 )

dynamical-instability
point

turning point

For rotating stars,�� ��turning points

6=�
�

�
�secular-instability

points
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Dynamical-instability Points ( F = 0 )

O1-O3 : constant Ω

R1-R3 : constant ρc

Friedmann et al. expect...
O1,O2,R1,R2 : stable

Our results expect...
O1,R1 : stable
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Summary

Turning-point criterion is only a sufficient condition for
secular instability of rotating stars.

Along a J = const. sequence of stellar models, the stars
become unstable in the following order with increasing
rest-mass density:

(secular instability)=

(turning-point)>

(dynamical instability)

(secular instability)>

(dynamical instability)>

(turning-point)
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