<u>Effect of Pasta Phase on</u> <u>Oscillations in Neutron Stars</u>

Hajime SOTANI (National Astronomical Observatory of Japan) arXiv:1106.2621 (accepted in MNRAS Letter)

26-29/Sep./2011

JGRG21 @ Tohoku Univ.

Introduction ~SGRs & QPOs~

- Soft gamma Repeaters (SGRs) : objects that arise the gamma-ray flare activity. - Source...Magnetar ?? (neutron stars with strong magnetic fields > 10^{14} G)
 - Scenario for outbreak of gamma-ray burst (Duncan & Thompson (1992))
 - \rightarrow During the evolution of magnetars, the magnetic stress accumulates in the crust.
 - \rightarrow When this stress is released, the gamma-ray could emit !
- Giant Flare from SGRs (10^{44} - 10^{46} ergs/s)
 - SGR 0526-66 in March.5.1979
 - SGR 1900+14 in August.27.1998
 - SGR 1806-20 in December.27.2004
- In the decaying tail after the flare, QPOs are found !!
 - \rightarrow Barat et.al. (1983); Israel et.al. 2005;

- SGR 0526-66 : 23ms (43Hz), $B \sim 4 \times 10^{14}$ G, $L \sim 10^{44}$ ergs/s
- SGR 1900+14 : $B > 4 \times 10^{14}$ G, 28, 54, 84, and 155 Hz
- SGR 1806–20 : $B \sim 8 \times 10^{14}$ G, $L \sim 10^{46}$ ergs/s 18, 26, 30, 92.5, 150, 626.5, and 1837 Hz (also 720Hz ?? and 2384 Hz ??)

Time (s)

100

QPOs exist !!

10⁵ F.....

Crustal Oscillations vs QPO frequencies

• SGR 1900+14

<i>f</i> [Hz]	28	54	84	155
torsional	$_{3}t_{0}$	$_{6}t_{0}$	$_{9}t_{0}$	$_{17}t_{0}$

• SGR 1806-20

<i>f</i> [Hz]	18	26	30	92.5	150	626.5	1837
torsional	$_{2}t_{0}$???	$_{3}t_{0}$	$_{9}t_{0}$	$_{15}t_0$	$_{l}t_{1}$	$_{l}t_{4}$

- Missing frequencies exist
 - Difficulty to explain two QPO frequencies 26 and 30 Hz with a stellar model
 - Due to the magnetic oscillations in fluid core region ??

Alfven Oscillations

- There exist two types of oscillations
 - upper QPO and lower QPO
- Ratio between upper and lower QPO frequencies ~ 0.6
- Frequencies of overtones are nearly integer multiplies of the fundamental one;
- Frequencies are proportional to the magnetic strength.

$$f_{L_n}/f_{U_n} \sim 0.6$$

 $f_{L_n} \simeq (n+1)f_{L_0}, \ f_{U_n} \simeq (n+1)f_{U_0}$

Alfven Oscillations vs QPO frequencies

• SGR 1900+14

<i>f</i> [Hz]	28	54	84	155
Alfven	U_0	U_1	U_2	???
		×2	×3	

• SGR 1806-20

<i>f</i> [Hz]	18	26	30	92.5	150	626.5	1837
Alfven	L_0	???	U_0	U_2	U_4	???	???
	L	0.6		×3	×5		

- Still, missing frequencies exist
 - Crust torsional oscillations ??
 - Dependence of magnetic field structure ??

Crust coupling

Shear modulus in crust region

- isotropic shear modulus : μ
- Body center cubic (bcc) is assumed

Shear modulus in Pasta phase 1

- Nonuniform structure "pasta" exists
 shear modulus in pasta could be different from that with bcc structure.
- Pethick & Potekhin (1998)
 - behavior like "liquid crystal"
 - smaller shear modulus
- Density that pasta structure appears $- \sim 10^{13}$ g/cc (ex. Lorenz et al. (1993))
- Realistic shear modulus in pasta phase is still unknown...

©Dany P. Page

Shear modulus in Pasta phase 2

- We assume toy model for the shear modulus in pasta phase
 - $-\varrho_{\rm p}$: density that non-uniform nuclear structure appears

$$-\varrho_{\rm p} = 10^{13} - 10^{14} \,{\rm g/cm^3}$$

- $-\varrho_{\rm c}$: density between the crust and core region ($\varrho_{\rm c} = 1.24 \times 10^{14} \text{ g/cm}^3$)
- $-\varrho < \varrho_{\rm p}$: nuclear structure forms bcc lattice

 $-\varrho_{\rm p} < \varrho < \varrho_{\rm c}$: non-uniform nuclear structure (pasta phase)

Dependence of pasta pahse

• Decreasing the shear modulus

 $\rightarrow v_s = (\mu/\varrho)^{1/2}$ also decrease \rightarrow frequencies become smaller

Comparison with QPO frequencies

- For $\rho_{\rm p} = 1 \times 10^{14} \, {\rm g/cm^3}$
 - some of QPOs are impossible to explain
 - similar difficulty to the previous study without pasta structure

 M/M_{\odot}

- For $\rho_p = 2 \times 10^{13} \text{ g/cm}^3$
 - possible to explain the all QPO frequencies

• Do more systematic analysis

26-29/Sep./2011

Summary

- In the giant flares, the QPO frequencies are discovered.
- It is impossible to explain theoretically by using only crustal oscillations or only Alfven oscillations
- In realistic stellar oscillations, there exists either crustal or Alfven oscillations
- We show the possibility to explain the all observed QPO frequencies with considering the pasta structure.

Future works

- Effect of magnetic field
- Consideration of realistic shear modulus μ
- Mechanism of gamma-ray burst
- Explain the time variability of QPO frequencies
- Possibility to detect gravitational waves from magnetars