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1. Introduction
Various Instabilities in Secular Timescale
r-mode instability

g-mode instability

bar-mode instability

Instability occurs due to gravitational 
radiation

• Fluid elements oscillate due to restoring force of buoyancy 
• Instability occurs in nonadiabatic evolution or in convective unstable cases 

• Instability occurs when T/W exceeds some critical value
• Dissipative effects such as gravitational radiation or viscosity plays a 

crucial role
Kelvin-Helmholtz instability
• Instability occurs when the deviation of the velocity between the different 

fluid layers exceeds some critical value
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Dynamics of r-mode instabilities

• Saturation amplitude of o(1) 
• Imposing large amplitude of radiation reaction 

potential in the system to control secular 
timescale with dynamics (Lindblom et al. 00)

1D evolution with partially included 3 wave interaction

(Schenk et al. 2001)

3D simulation

• Saturation amplitude of ~ o(0.001), which depends on interaction term
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Saturation amplitude of r-mode instability

Final fate of r-mode instability

• Evolution starting from the amplitude o(1) 
• Imposing large amplitude of radiation reaction potential
• Energy dissipation of r-mode catastrophically decays to 

differentially rotating configuration in dynamical 
timescale

3D simulation

(Gressman et al. 02, Lin & Suen 06)
3

• After reaching the saturation amplitude ~o(0.001), 
Kolmogorov-type cascade occurs

• Destruction timescale is secular

1D evolution including mode couplings network 0 20 40 60
t (ms)
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Alternative approaches
•From linear regime to nonlinear regime
•From dynamical timescale to secular timescale

are necessary!
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Timescales in Neutron Stars

E � �/(⇥�R2)
� 10�7

Ro � W/(R�)

Re � ⇥WR/�

Ch � n2GR9�6/(c7�)

Acoustic time Duration of acoustic waves travelling 
across the diameter 0.2ms

Rotation period ~2ms

Ekman # Ratio between the viscous term and the 
Coriolis term 

Rossby # Ratio between the nonlinear and the 
Coriolis force

Reynolds # Ratio between the nonlinear term and the 
viscous term

Chandra # Ratio between the radiation reaction force 
and the viscous term

Gravitational Waves

• r-mode instability ... gravitational wave source for the ground based 
detectors
         upper limit for the youngest known neutron stars ~o(0.0001)

• Frequency band 100 Hz - few kHz

• Seek for the interior structure of neutron stars through unstable modes 

(LIGO 10)
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2. Anelastic Approximation in Linearised Regime 
Basic Equations

Equation of State P = P (�, ⇥)

Continuity Equation

Energy Equation
Euler Equations

(Villain & Bonazzola 02)

⇤⇥

⇤t
= � P

�2
⇥i(�vi)

⇥�

⇥t
+�i(�vi) = 0

⇥(�vj)
⇥t

+⇥i(�vivj) = �⇥jP � �⇥j�

Perfect Fluid in Newton gravity

Linear Perturbation

+ 

=0

Killing the acoustic wave of        
in rotating frame

Same procedure is available for conformally 
flat spacetime (relativistic gravitation)

(Villain et al. 05)

Boundary condition:              
5
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3. Anelastic Approximation in Nonlinear Regime

Deviation from the equilibrium state

+ 

Same procedure is available for conformally 
flat spacetime (relativistic gravitation)Free evolution scheme

=0！
Numerically unstable！ Due to numerical fluctuation, propagation 

of         is not completely killed.term
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Control acoustic wave at each timestep

=0

Boundary Condition: P=0 at the stellar surface

1. Time update
2. Poisson equation
 
3. Anelastic condition
4. Pressure poisson equation

Boundary Condition:             at the stellar surface

Same procedure as MAC method in NS incompressible fluid
(McKee et al. 08)

Procedure
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6. Summary

• Constraint scheme seems to be stable through evolution 
(Difficult treatment goes to pressure poisson equation)                

• Anelastic approximation is a relaxation from the 
incompressible fluid approximation 
(the next relaxation stage is low Mach number approximation)

We propose a natural extension to the nonlinear regime of the 
anelastic approximation to focus on the dynamics of secular 
timescale

•Code development and tests
•Nonlinear dynamics of r-mode instability

Future Study


