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PROPERTIES OF DENSE MATTER

o Still poorly understood o Popular methods
o There may be exotic phases at high . MaS_S'RadiUS relation
densities (Pauli principle) * Maximum mass of NS

o Strong impact by PSR J1614-2230

o Existence of exotic phases
remains unconstrained

e Meson cond., Quarks, Hyperons, ...

o How to constrain equation of state
(EOS) of neutron star (NS) matter
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NUMERICAL STUDIES EXPLORING EXOTIC PHASES

o Stellar Core Collapse
e Quarks (Nakazato+ 2008,2010; Sagert+ 2009; Fischer+ 2011)
e Hyperons (Sumiyoshi+ 2009)

o Binary Neutron Star (BNS) Merger
* Not yet studied in detail
e Parametric Study (Hotokezaka+ 2011), Bauswein+ 2011

o This Study

e The first full GR simulations for BNS merger with finite temperature EOS
with A hyperons

o A hyperons are believed to appear first because they are lightest and
feel an attractive potential (e.g. Ishizuka+ 2008)

o 2 hyperons feel a repulsive potential and will not appear at lower
densities (Noumi+ 2002)

o Key Question:

 Isit possible to tell the existence of A hyperons by observations‘
of Neutrino and Gravitational-Wave (GW) signals ?




EQUATIONS OF STATE (EOS)

o H-EOS: EOS with A hyperons (Shen+ 2011: ShenHyp)

o S-EOS: ‘normal’ nucleonic matter EOS (Shen+ 1998)
e Both based on the relativistic mean field theory

o AtT =0, A hyperons appear at p ~ a few pnuc, and XA increases as
density and temperature increase

o Due to the appearance of A hyperons, the maximum mass of the cold

spherical NS is decreased
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BASIC EQUATIONS & INITIAL CONDITION

o Einstein’s equations: Shibata-Nakamura (BSSN) formalism
o 4™ order finite difference in space, 4" order Runge-Kutta time evolution

e Gauge conditions : 1+log slicing, dynamical shift

o GR Hydrodynamics with GR Leakage Scheme (Sekiguchi 2010)

e EOM of Neutrinos V.T? =—QUh v T2 steam _ oyl
e Lepton Conservations d Ye
: — == +
e Weak Interactions at e Ve
+ - el dYv,
o€ Captures’ palrannlhllatlon’ dt :7e—cap+7pair+7plasmon+78rems_7/veleak
plasmon decay, Bremsstrahlung v
. . _ Ve
[ ) A dEta||Ed neutl’lno OpaCItIes dt = 7e+cap +7pair +7plasmon +7Brems _7179|eak
» BH excision technique dYy
e High-resolution-shock-capturing scheme dt = Toair T Vplasmon ¥ Vgrems ~ ',

o Initial condition ‘
e Equal mass BNS with individual mass of 1.35, 1.5, 1.6 Msolar




MERGER DYNAMICS: HYPERON EOS CASE

o Hyper massive NS (HMNS) first forms and eventually collapses to BH

e As HMSN shrinks, density and temperature increase and consequently more
hyperons appear, making EOS more softer

o After the BH formation, a massive accretion disk (~0.08 Msolar) is formed
= short GRB ?
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NEUTRINO LUMINOSITIES

o There is no difference except for the duration until the BH formation

o Effects of hyperons are significant in the central region where neutrino
diffusion time is very long, and swallowed into BH

o Difficult to tell the existence of hyperons using the neutrino signals alone
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GRAVITATIONAL WAVEFORMS

o For the same mass models, GWs from inspiral phase agree well
o GWs damp steeply at BH formation

o Characteristic GW frequency for the hyperon model increases with time
(although GWs for H135 and S16 look similar) = see the GW spectra
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GRAVITATIONAL-WAVE SPECTRA

o Nucleonic models show prominent peak associated with GWs from HMNS

o In Hyperonic models, the peak is weakened and broadened
» Reflecting the short lifetime of HMNS and the frequency shift
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o Dynamics of HMNS formed after the merger
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FREQUENCY SHIFT DUE TO HYPERON

e Nucleonic :

in a long timescale

o Hyperonlc

EOS becomes softer = HMNS shrinks more = ....

e As aresult, the characteristic frequency of GW increases with time

HMNS shrinks by angular momentum loss due to GW emission

GW emission = HMNS shrinks = More Hyperons appear =

o Providing potential way to tell existence of hyperons (exotic particles)
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SUMMARY

o We performed the first numerical-relativity simulations of BNS
merger incorporating a finite temperature EOS with hyperons

o Existence of hyperons are imprinted in GWs
e The characteristic GW frequency increases in time
e which stems from Nucleonic-to-Hyperonic Transition

e Providing potential way to tell existence of hyperons by GW obs.

o Itis difficult to constrain EOS by neutrino signals only

o Effects of hyperons are significant in the central high density
region which is swallowed into BH




PROSPECTS

o Gravitational Waves from Hadron-Quark Transition
e Second order phase transition
o = Frequency shift (as in hyperon case)
e First order transition
o = Double peaked GW spectrum is expected:
One associated with NS and the other with Quark star
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GRAVITATIONAL WAVES FROM NEUTRON STAR MERGER

Tidal
Inspiral phase deformation Merger and oscillation
» Chirp Signals » Finite-Size effects || » Maximum mass, oscillation
» Information of orbits, » Information of » Information of dense part
neutron star mass etc. radius (EOS) of EQS
N | .
0F ] 13 (0]
E Lt ] : o
: 9@
20- ; : | _ is '_'Ev-
— 10 Density contour : It y it4{105
(«B) 0.1
3 o.05
= o
o
S -0.05
< ~0.1 ‘
~0.15 :
0.2 . . , , Typical Waveform
o > 4 6 8 10 12 14 16
Time [mMs]




DISK MASS

o Disk mass is smaller for the hyperonic EOS models
e Shorter time for angular momentum transport
e HMNS formed after the merger is more compact
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FINAL FATE AFTER THE MERGER

o Maximum NS mass : |M s mex = Mg +AM 0 + AM 2T + AM ™

rot rot

o M2 :maximum mass of spherical NSat T =0, dependson EOS

NS, max

o Recent observational lower bound : 1.97 Msolar (Demorest et al. 2010)
o AM " -effects of rigid rotation ~ O(10%)

rot

o AM 2" -effects of differential rotation typically~ O(10%)

rot

o AM™ :effects of finite temperature ~ O(10%)

o The maximum mass can be increased by 30 — 70 % compared
to the cold maximum mass




REMARK : IMPORTANCE OF GR
Van Riper (1988) ApJ 326, 235

P, = Kpol(p/po)’ — 11/9y MeV fm~?

Kolehmainen, K., Prakash, M., Lattimer, J., and Treiner, J. 1985
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