Violation of the

Rotational Invariance in the CMB bispectrum

Maresuke Shiraishi (Nagoya Univ.)

with Shuichiro Yokoyama (Nagoya Univ.)
based on ar Xiv:1107.0682 (accepted in PT'P)

CMB Bispectrum

$$
\begin{aligned}
\text { power spectrum: } & <\Delta T\left(n_{1}\right) \Delta T\left(n_{2}\right)> \\
\text { bispectrum: } & <\Delta T\left(n_{1}\right) \Delta T\left(n_{2}\right) \Delta T\left(n_{3}\right)> \\
& \propto<\xi\left(k_{1}\right) \xi\left(k_{2}\right) \xi\left(k_{3}\right)> \\
& \neq 0 \text { if } \xi \text { is non-Gaussian }
\end{aligned}
$$

$$
\left\langle\Phi_{\mathbf{k}_{1}} \Phi_{\mathbf{k}_{2}} \Phi_{\mathbf{k}_{3}}\right\rangle=(2 \pi)^{3} \delta^{D}\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) F\left(k_{1}, k_{2}, k_{3}\right)
$$

```
Flocal}(\mp@subsup{k}{1}{},\mp@subsup{k}{2}{},\mp@subsup{k}{3}{}
=2f_NL
    + +P\Phi}(\mp@subsup{k}{3}{})\mp@subsup{P}{\Phi}{}(\mp@subsup{k}{1}{})
=2\mp@subsup{A}{}{2}\mp@subsup{f}{NL}{\mathrm{ local }}[\frac{1}{\mp@subsup{k}{1}{4-\mp@subsup{n}{s}{}}\mp@subsup{k}{2}{4-\mp@subsup{n}{s}{\prime}}}+(2\mathrm{ perm. )}],
```

$-10<f_{N L}^{\text {local }}<74$

Komatsu $+[1001.4538]$

In the previous work, the rotational invariance is assumed

What is the Rotational invariance?

power spectrum

bispectrum

k-space:

absence of the angular dependence

CMB fluctuation is expanded with spherical harmonics

$$
\frac{\Delta X(\hat{\boldsymbol{n}})}{X}=\sum_{\ell m} a_{X, \ell m} Y_{\ell m}(\hat{\boldsymbol{n}})
$$

$$
\text { l-space: }\left\langle\left\langle\prod_{i=1}^{2} a_{t} a_{m_{1}}\right\rangle \equiv C_{\ell_{1}(-1)^{m_{1}} \delta_{\delta_{1}, 2_{2}} \delta_{m_{1}}-m_{2}}\right.
$$

If the rotational invariance violates, three azimuthal quantum numbers is not confined in this Wigner-3j symbol!!

An Inflation model with a preferred direction

S.Yokoyama \& J. Soda [astro-ph: 0805.4265]

System like the hybrid inflation that there are inflaton φ, waterfall field X, and a vector field A_{μ} coupled with a waterfall field

$$
\begin{aligned}
S=\int d x^{4} \sqrt{-g} & {\left[\frac{1}{2} R-\frac{1}{2} g^{\mu \nu}\left(\partial_{\mu} \phi \partial_{\nu} \phi+\partial_{\mu} \chi \partial_{\nu} \chi\right)-V\left(\phi, \chi, A_{\nu}\right)\right.} \\
& \left.-\frac{1}{4} g^{\mu \nu} g^{\rho \sigma} f^{2}(\phi) F_{\mu \rho} F_{\nu \sigma}\right]
\end{aligned}
$$

Using the $\delta \mathrm{N}$ formalism, the total curvature

 perturbation of superhorizon limit on uniform energy density hypersurface is given byAt the end of inflation,

$$
\zeta\left(t_{\mathrm{e}}\right)=\delta N\left(t_{\mathrm{e}}, t_{*}\right)
$$

$$
\begin{aligned}
= & \frac{\partial N}{\partial \phi_{*}} \delta \phi_{*}+\frac{1}{2} \frac{\partial^{2} N}{\partial \phi_{*}^{2}} \delta \phi_{*}^{2}+\frac{\partial N}{\partial \phi_{\mathrm{e}}} \frac{d \phi_{\mathrm{e}}(A)}{d A^{\mu}} \delta A_{\mathrm{e}}^{\mu} \\
& +\frac{1}{2}\left[\frac{\partial N}{\partial \phi_{\mathrm{e}}} \frac{d^{2} \phi_{\mathrm{e}}(A)}{d A^{\mu} d A^{\nu}}+\frac{\partial^{2} N}{\partial \phi_{\mathrm{e}}^{2}} \frac{d \phi_{\mathrm{e}}(A)}{d A^{\mu}} \frac{d \phi_{\mathrm{e}}(A)}{d A^{\nu}}\right] \delta A_{\mathrm{e}}^{\mu} \delta A_{\mathrm{e}}^{\nu}
\end{aligned}
$$

An Inflation model with a preferred direction

S.Yokoyama \& J. Soda [astro-ph: 0805.4265]

Power spectrum of primordial curvature perturbations:

$$
\begin{aligned}
\left\langle\prod_{n=1}^{2} \zeta\left(\boldsymbol{k}_{\boldsymbol{n}}\right)\right\rangle= & (2 \pi)^{3} N_{*}^{2} P_{\phi}\left(k_{1}\right) \delta\left(\sum_{n=1}^{2} \boldsymbol{k}_{\boldsymbol{n}}\right) \\
& +N_{\mathrm{e}}^{2} \frac{d \phi_{\mathrm{e}}(A)}{d A^{\mu}} \frac{d \phi_{\mathrm{e}}(A)}{d A^{\nu}}\left\langle\delta A_{\mathrm{e}}^{\mu}\left(\boldsymbol{k}_{\mathbf{1}}\right) \delta A_{\mathrm{e}}^{\nu}\left(\boldsymbol{k}_{\mathbf{2}}\right)\right\rangle
\end{aligned}
$$

Set the Coulomb gauge and solve the evolution equation of

$$
\mathcal{A}_{i}^{\prime \prime}-\frac{f^{\prime \prime}}{f} \mathcal{A}_{i}-a^{2} \partial_{j} \partial^{j} \mathcal{A}_{i}=0
$$ the vector field for $f \propto a, a^{-2}$:

$$
\left\langle\delta A_{\mathrm{e}}^{i}\left(\boldsymbol{k}_{\mathbf{1}}\right) \delta A_{\mathrm{e}}^{j}\left(\boldsymbol{k}_{\mathbf{2}}\right)\right\rangle=(2 \pi)^{3} P_{\phi}(k) f_{\mathrm{e}}^{-2} P^{i j}\left(\hat{\boldsymbol{k}_{1}}\right) \delta\left(\sum_{n=1}^{2} \boldsymbol{k}_{\boldsymbol{n}}\right)
$$

scale-invariant spectrum

$$
\begin{aligned}
\left\langle\prod_{n=1}^{2} \zeta\left(\boldsymbol{k}_{\boldsymbol{n}}\right)\right\rangle & \equiv(2 \pi)^{3} P_{\zeta}\left(\boldsymbol{k}_{\boldsymbol{1}}\right) \delta\left(\sum_{n=1}^{2} \boldsymbol{k}_{\boldsymbol{n}}\right) \\
P_{\zeta}(\boldsymbol{k}) & \equiv P_{\zeta}^{\mathrm{iso}}(k)\left[1+\overparen{O B}(\hat{\boldsymbol{q}} \cdot \hat{\boldsymbol{k}})^{2}\right]
\end{aligned}
$$

$$
P_{\zeta}^{\text {iso }}(k)=N_{*}^{2} P_{\phi}(k)(1+\beta)
$$

g_{β} : the magnitude of anisotropy

An Inflation model with a preferred direction

S.Yokoyama \& J. Soda [astro-ph: 0805.4265]

Bispectrum of primordial curvature perturbations:

$$
\begin{aligned}
\left\langle\prod_{n=1}^{3} \zeta\left(\boldsymbol{k}_{\boldsymbol{n}}\right)\right\rangle= & (2 \pi)^{3} N_{*}^{2} N_{* *}\left[P_{\phi}\left(k_{1}\right) P_{\phi}\left(k_{2}\right)+2 \text { perms. }\right] \delta\left(\sum_{n=1}^{3} \boldsymbol{k}_{\boldsymbol{n}}\right) \\
& +N_{\mathrm{e}}^{3} \frac{d \phi_{\mathrm{e}}(A)}{d A^{\mu}} \frac{d \phi_{\mathrm{e}}(A)}{d A^{\nu}} \frac{d \phi_{\mathrm{e}}(A)}{d A^{\rho}}\left\langle\delta A_{\mathrm{e}}^{\mu}\left(\boldsymbol{k}_{\mathbf{1}}\right) \delta A_{\mathrm{e}}^{\nu}\left(\boldsymbol{k}_{\boldsymbol{2}}\right) \delta A_{\mathrm{e}}^{\rho}\left(\boldsymbol{k}_{\mathbf{3}}\right)\right\rangle \\
& +N_{\mathrm{e}}^{4} \frac{d \phi_{\mathrm{e}}(A)}{d A^{\mu}} \frac{d \phi_{\mathrm{e}}(A)}{d A^{\nu}}\left(\frac{1}{N_{\mathrm{e}}} \frac{d^{2} \phi_{\mathrm{e}}(A)}{d A^{\rho} d A^{\sigma}}+\frac{N_{\mathrm{ee}}}{N_{\mathrm{e}}^{2}} \frac{d \phi_{\mathrm{e}}(A)}{d A^{\rho}} \frac{d \phi_{\mathrm{e}}(A)}{d A^{\sigma}}\right) \\
& \times\left[\left\langle\delta A_{\mathrm{e}}^{\mu}\left(\boldsymbol{k}_{\mathbf{1}}\right) \delta A_{\mathrm{e}}^{\nu}\left(\boldsymbol{k}_{\mathbf{2}}\right)\left(\delta A^{\rho} \star \delta A^{\sigma}\right)_{\mathrm{e}}\left(\boldsymbol{k}_{\mathbf{3}}\right)\right\rangle+2 \text { perms. }\right],
\end{aligned}
$$

assume δA almost obeys Gaussian statistics, hence neglect the cubic term of δA

$$
\begin{aligned}
& \left\langle\prod_{n=1}^{3} \zeta\left(\boldsymbol{k}_{\boldsymbol{n}}\right)\right\rangle \equiv(2 \pi)^{3} F_{\zeta}\left(\boldsymbol{k}_{\mathbf{1}}, \boldsymbol{k}_{\mathbf{2}}, \boldsymbol{k}_{\mathbf{3}}\right) \delta\left(\sum_{n=1}^{3} \boldsymbol{k}_{\boldsymbol{n}}\right) \quad=\text { slow roll parameter } \sim \mathrm{O}(0.0 \text { I }) \text {, so negligible } \\
& F_{\zeta}\left(\boldsymbol{k}_{\mathbf{1}}, \boldsymbol{k}_{\mathbf{2}}, \boldsymbol{k}_{3}\right)=\left(\frac{g_{\beta}}{\beta}\right)^{2} P_{\zeta}^{\text {iso }}\left(k_{1}\right) P_{\zeta}^{\mathrm{iso}}\left(k_{2}\right)\left[\frac{N_{* *}}{N_{*}^{2}}+\beta^{2} \hat{q}^{a} \hat{q}^{b}\left(\frac{1}{N_{\mathrm{e}}} \hat{q}^{\text {cd }}+\left(\frac{N_{\mathrm{ee}}}{N_{\mathrm{e}}^{2}} \hat{q}^{\hat{q}} \hat{q}^{d}\right) P_{a c}\left(\hat{\boldsymbol{k}_{1}}\right) P_{b d}\left(\hat{\boldsymbol{k}_{2}}\right)\right]+2\right. \text { perms. }
\end{aligned}
$$

This term generates a direction-depending non-Gaussianity!!

An Inflation model with a preferred direction

S.Yokoyama \& J. Soda [astro-ph: 0805.4265]

Set the potential looks like an Abelian Higgs model in unitary gauge:

$$
V\left(\phi, \chi, A^{i}\right)=\frac{\lambda}{4}\left(\chi^{2}-v^{2}\right)^{2}+\frac{1}{2} g^{2} \phi^{2} \chi^{2}+\frac{1}{2} m^{2} \phi^{2}+\frac{1}{2} h^{2} A^{\mu} A_{\mu} \chi^{2}
$$

At the end of inflation $t=t_{e}$, effective mass squared of the waterfall field vanishes as
$m_{\chi}^{2} \equiv \frac{\partial^{2} V}{\partial \chi^{2}}=-\lambda v^{2}+g^{2} \phi_{\mathbf{e}}^{2}+h^{2} A^{i} A_{i}=0$

From this, obtain the relations:

$$
\hat{q}^{i}=-\hat{A}^{i}, \quad \hat{q}^{i j}=-\frac{1}{\phi_{\mathrm{e}}}\left[\left(\frac{g \phi_{\mathrm{e}}}{h A}\right)^{2} \delta^{i j}+\hat{A}^{i} \hat{A}^{j}\right]
$$

©Liddle \& Lyth 2009

An Inflation model with a preferred direction

S.Yokoyama \& J. Soda [astro-ph: 0805.4265]

Neglecting the terms suppressed by the slow-roll parameters, the primordial bispectrum of curvature perturbations is given by

$$
\begin{aligned}
F_{\zeta}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) & =C P_{\zeta}^{\text {iso }}\left(k_{1}\right) P_{\zeta}^{\text {iso }}\left(k_{2}\right) \hat{A}^{a} \hat{A}^{b} \delta^{c d} P_{a c}\left(\hat{\boldsymbol{k}_{1}}\right) P_{b d}\left(\hat{\boldsymbol{k}_{2}}\right)+2 \text { perms. } \\
C & \equiv-g_{\beta}^{2} \frac{\phi_{\mathrm{e}}}{N_{\mathrm{e}}}\left(\frac{g}{h A}\right)^{2}
\end{aligned}
$$

\&Observational bound:

```
-g\beta}< O(0.I
-N Ne-1 ~ \sqrt{}{\mathrm{ slow-roll}}\
parameter ~O(0.I)
```

Choosing g, h, A, λ, v and reaching $(g / h A)^{2} \varphi_{\mathrm{e}} \gg \mathrm{I}$, $\mathrm{C}>\mathrm{O}(\mathrm{I})$

CMB bispectrum, in which the rotational invariance is violated, may be observed!

CMB Bispectrum from curvature perturbations

$$
\begin{array}{r}
\left\langle\prod_{n=1}^{3} a_{X_{n}, \ell_{n} m_{n}}\right\rangle=\left[\prod_{n=1}^{3} 4 \pi(-i)^{\ell_{n}} \int_{0}^{\infty} \frac{k_{n}^{2} d k_{n}}{(2 \pi)^{3}} \mathcal{T}_{X_{n}, \ell_{n}}\left(k_{n}\right)\right]\left\langle\prod_{n=1}^{3} \zeta_{\ell_{n} m_{n}}\left(k_{n}\right)\right\rangle \\
\left\langle\prod_{n=1}^{3} \zeta_{\ell_{n} m_{n}}\left(k_{n}\right)\right\rangle=\left[\prod_{n=1}^{3} \int d^{2} \hat{\boldsymbol{k}_{\boldsymbol{n}}} Y_{\ell_{n} m_{n}}^{*}\left(\hat{\boldsymbol{k}_{\boldsymbol{n}}}\right)\right](2 \pi)^{3} \delta\left(\sum_{n=1}^{3} \boldsymbol{k}_{\boldsymbol{n}}\right) F_{\zeta}\left(\boldsymbol{k}_{\mathbf{1}}, \boldsymbol{k}_{\mathbf{2}}, \boldsymbol{k}_{\mathbf{3}}\right)
\end{array}
$$

1. expand all angular dependencies with ${ }_{s} \mathrm{~V}_{\mathrm{Im}}$

$$
\begin{aligned}
\hat{A}^{a} \hat{A}^{b} \delta^{c d} P_{a c}\left(\hat{\boldsymbol{k}_{1}}\right) P_{b d}\left(\hat{\boldsymbol{k}_{2}}\right)= & -4\left(\frac{4 \pi}{3}\right)^{3} \sum_{L, L^{\prime}, L_{A}=0,2} I_{L 11}^{01-1} I_{L^{\prime} 11}^{01-1} I_{11 L_{A}}^{000}\left\{\begin{array}{ccc}
L & L^{\prime} & L_{A} \\
1 & 1 & 1
\end{array}\right\} \\
& \times \sum_{M M^{\prime} M_{A}} Y_{L M}^{*}\left(\hat{\boldsymbol{k}_{1}}\right) Y_{L^{\prime} M^{\prime}}^{*}\left(\hat{\boldsymbol{k}_{2}}\right) Y_{L_{A} M_{A}}^{*}(\hat{\boldsymbol{A}})\left(\begin{array}{ccc}
L & L^{\prime} & L_{A} \\
M & M^{\prime} & M_{A}
\end{array}\right)
\end{aligned}
$$

$$
\left.\delta\left(\sum_{n=1}^{3} k_{n}\right)=8 \int_{0}^{\infty} y^{2} d y\left[\prod_{n=1}^{3} \sum_{L_{n} M_{n}}(-1)^{L_{n} / 2}{ }_{L_{L_{n}}}\left(k_{n} y\right) Y_{L_{n} M_{n}}^{*}\left(\hat{\boldsymbol{k}_{\boldsymbol{n}}}\right)\right]\right]{ }_{I_{L_{1} L_{2} L_{3}}^{0} 00}\left(\begin{array}{ccc}
L_{1} & L_{2} & L_{3} \\
M_{1} & M_{2} & M_{3}
\end{array}\right)
$$

2. express their integrals with the Wigner symbols

$$
\begin{aligned}
\int d^{2} \hat{k_{1}} Y_{\ell_{1} m_{1}}^{*} Y_{L_{1} M_{1}}^{*} Y_{L M}^{*} & =I_{\ell_{1} L_{1} L}^{0} 00\left(\begin{array}{ccc}
\ell_{1} & L_{1} & L \\
m_{1} & M_{1} & M
\end{array}\right) \\
\int d^{2} \hat{k_{2}} Y_{\ell_{2} m_{2}}^{*} Y_{L_{2} M_{2}}^{*} Y_{L^{\prime} M^{\prime}}^{*} & =I_{\ell_{2} L_{2} L^{\prime}}^{0}\left(\begin{array}{ccc}
\ell_{2} & L_{2} & L^{\prime} \\
m_{2} & M_{2} & M^{\prime}
\end{array}\right) \\
\int d^{2} \hat{k}_{Y_{\ell_{3} m_{3}}^{*} Y_{L_{3} M_{3}}^{*}}^{*} & =(-1)^{m_{3} \delta_{L_{3}, \ell_{3}} \delta_{M_{3},-m_{3}} .}
\end{aligned}
$$

Then, the bispectrum of $\zeta_{l n}$ is expressed as

$$
\neq(2 \pi)^{3} \mathcal{F}_{\ell_{1} \ell_{2} \ell_{3}}\left(k_{1}, k_{2}, k_{3}\right)\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)
$$

$$
\begin{aligned}
& \left\langle\prod_{n=1}^{3} \zeta_{\ell_{n} m_{n}}\left(k_{n}\right)\right\rangle=-(2 \pi)^{3} 8 \int_{0}^{\infty} y^{2} d y \sum_{L_{1} L_{2}}(-1)^{\frac{L_{1}+L_{2}+\ell_{3}}{2}} I_{L_{1} L_{2} \ell_{3}}^{00} 0 \\
& \times P_{\zeta}^{\text {iso }}\left(k_{1}\right) j_{L_{1}}\left(k_{1} y\right) P_{\zeta}^{\text {iso }}\left(k_{2}\right) j_{L_{2}}\left(k_{2} y\right) C j_{\ell_{3}}\left(k_{3} y\right) \\
& \times 4\left(\frac{4 \pi}{3}\right)^{3}(-1)^{m_{3}} \sum_{L, L^{\prime}, L_{A}=0,2} I_{L 11}^{01-1} I_{L^{\prime} 11}^{01-1} \\
& \times I_{\ell_{1} L_{1} L}^{0} 0 I_{\ell_{2} L_{2} L^{\prime}}^{0} I_{11 L_{A}}^{0000}\left\{\begin{array}{ccc}
L & L^{\prime} & L_{A} \\
1 & 1 & 1
\end{array}\right\} \\
& \times \sum_{M_{1} M_{2} M M^{\prime} M_{A}} Y_{L_{A} M_{A}}^{*}(\hat{\boldsymbol{A}})\left(\begin{array}{ccc}
L_{1} & L_{2} & \ell_{3} \\
M_{1} & M_{2} & -m_{3}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
\ell_{1} & L_{1} & L \\
m_{1} & M_{1} & M
\end{array}\right)\left(\begin{array}{ccc}
\ell_{2} & L_{2} & L^{\prime} \\
m_{2} & M_{2} & M^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
L & L^{\prime} & L_{A} \\
M & M^{\prime} & M_{A}
\end{array}\right)+2 \text { perms. }
\end{aligned}
$$

3. Setting the coordinate as $\hat{A}=\hat{z}$
and using the relation: $\quad Y_{L_{A} M_{A}}^{*}(\hat{z})=\sqrt{\left(2 L_{A}+1\right) /(4 \pi)} \delta_{M_{A}, 0}$
the CMB bispectrum is explicitly written as

$$
\begin{align*}
\left\langle\prod_{n=1}^{3} a_{X_{n}, \ell_{n} m_{n}}\right\rangle= & -\int_{0}^{\infty} y^{2} d y\left[\prod_{n=1}^{3} \frac{2}{\pi} \int_{0}^{\infty} k_{n}^{2} d k_{n} \mathcal{T}_{X_{n}, \ell_{n}}\left(k_{n}\right)\right] \\
& \times \sum_{L_{1} L_{2}}(-1)^{\frac{\ell_{n}+\ell_{2}+L_{1}+L_{2}}{2}+\ell_{3}} I_{L_{1} L_{2} \ell_{3}}^{0} 00 \\
& \times P_{\zeta}^{\text {iso }}\left(k_{1}\right) j_{L_{1}}\left(k_{1} y\right) P_{\zeta}^{\text {iso }}\left(k_{2}\right) j_{L_{2}}\left(k_{2} y\right) C j_{\ell_{3}}\left(k_{3} y\right) \\
& \times 4\left(\frac{4 \pi}{3}\right)^{3}(-1)^{m_{3}} \sum_{L, L^{\prime}, L_{A}=0,2} I_{L 11}^{01-1} I_{L^{\prime} 11}^{01-1} \\
& \times I_{\ell_{1} L_{1} L_{1} 00}^{0} I_{\ell_{2} L_{2} L^{\prime}}^{0} I_{11 L_{A}}^{000}\left\{\begin{array}{ccc}
L & L^{\prime} & L_{A} \\
1 & 1 & 1
\end{array}\right\} \\
& \times \sqrt{\frac{2 L_{A}+1}{4 \pi}} \sum_{M=-2}^{2}\left(\begin{array}{cccc}
-L_{1} & L_{2}-M & -m_{2}+M & -m_{3}
\end{array}\right) \\
& \times\left(\begin{array}{ccccc}
\ell_{1} & L_{1} \\
m_{1} & -m_{1}-M & L
\end{array}\right)\left(\begin{array}{ccc}
\ell_{2} & L_{2} & L^{\prime} \\
m_{2} & -m_{2}+M & -M
\end{array}\right) \\
& \times\left(\begin{array}{cccc}
L & L^{\prime} & L_{A} \\
M & -M & 0
\end{array}\right)+2 \text { perms. }
\end{align*}
$$

CMB bispectrum for $l_{1}=l_{2}=l_{3}$

$\psi\left(m_{1}, m_{2}, m_{3}\right)=(0,0,0)$ $\psi\left(m_{1}, m_{2}, m_{3}\right)=(10,20,-30)$

Overall behavior seems to be in agreement with the isotropic case
-statistically-isotropic bispectrum: $\mathrm{f}_{\mathrm{NL}}{ }^{\text {local }}=5$

Special configuration

If the CMB bispectrum satisfy the rotational invariance as

$$
\left\langle\prod_{n=1}^{3} a_{\ell_{n} m_{n}}\right\rangle=\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right) B_{\ell_{1} \ell_{2} \ell_{3}}
$$

Due to the triangle inequality, CMB statistically-isotropic bispectrum is exactly zero at multipoles other than

$$
\left|\ell_{2}-\ell_{3}\right| \leq \ell_{1} \leq \ell_{2}+\ell_{3}
$$

On the other hand, Due to the triangle inequality, this bispectrum has nonzero value only for the condition:

$$
\begin{aligned}
& \sum_{n=1}^{3} \ell_{n}=\text { even }, \quad \sum_{n=1}^{3} m_{n}=0, \\
& L_{1}=\left|\ell_{1}-2\right|, \ell_{1}, \ell_{1}+2, \quad L_{2}=\left|\ell_{2}-2\right|, \ell_{2}, \ell_{2}+2 \\
& \left|L_{2}-\ell_{3}\right| \leq L_{1} \leq L_{2}+\ell_{3} .
\end{aligned}
$$

Like the off-diagonal component of the CMB power spectrum, CMB statistically-anisotropic bispectrum does not vanish also in the configuration as

$$
\ell_{1}=\ell_{2}+\ell_{3}+2,\left|\ell_{2}-\ell_{3}\right|-2
$$

$$
+2 \text { perm. of } l_{1}, l_{2}, l_{3}
$$

CMB bispectrum for different ℓ

$\phi\left(\mathrm{mal}_{1}, m_{2}, m_{z}\right)=(0.0 .0)$
$\$\left(\right.$ mul $\left., w_{2}, m_{s}\right)=(10, ~ 20,-30)$

Signals of the special configuration are comparable in magnitude to other configuration satisfying the triangle

$$
\begin{aligned}
& -\left(l_{1}, l_{2}\right)=\left(102+l_{3}, 100\right) \\
& -\left(l_{1}, l_{2}\right)=\left(\left|100-l_{3}\right|-2,100\right) \\
& -\left(l_{1}, l_{2}\right)=\left(100+l_{3}, 100\right)
\end{aligned}
$$

condition such as $l_{1}=l_{2}+l_{3}$

Summary

$\%$ Based on an inflation model which produces the large direction-depending non-Gaussianity of curvature perturbations, we formulate the CMB bispectrum and analyze its behaviors
\& There exists the non-vanishing configuration of multipoles which deviates from the triangle condition and these signals are comparable in magnitude to those of the other configuration
if $\Delta \mathrm{T}$ is invariant under the rotational transformation,

$$
\begin{aligned}
\Delta T(R \hat{\mathbf{n}}) & =\sum_{\ell m} a_{\ell m} Y_{\ell m}(R \hat{\mathbf{n}})=\sum_{\ell m} a_{\ell m} \sum_{m^{\prime}} D_{m^{\prime} m}^{(\ell)}\left(R^{-1}\right) Y_{\ell m^{\prime}}(\hat{\mathbf{n}}) \\
& =\Delta T(\hat{\mathbf{n}})=\sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle a_{l_{1} m_{1}} a_{l_{2} m_{2}} a_{l_{3} m_{3}}\right\rangle \\
& =\sum_{\text {all } m^{\prime}}\left\langle a_{l_{1} m_{1}^{\prime}} a_{l_{2} m_{2}^{\prime}} a_{l_{3} m_{3}^{\prime}}\right\rangle D_{m_{1}^{\prime} m_{1}}^{\left(l_{1}\right)} D_{m_{2}^{\prime} m_{2}}^{\left(l_{2}\right)} D_{m_{3}^{\prime} m_{3}}^{\left(l_{3}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle B_{l_{1} l_{2} l_{3}}\right\rangle \sum_{m_{3}^{\prime}} \sum_{L M M^{\prime}} \delta_{l_{3} L} \delta_{m_{3}^{\prime} M^{\prime}}\left(\begin{array}{ccc}
l_{1} & l_{2} & L \\
m_{1} & m_{2} & M
\end{array}\right) D_{M^{\prime} M}^{(L) *} D_{m_{3}^{\prime} m_{3}}^{\left(l_{3}\right)} \\
& =\left\langle B_{l_{1} l_{2} l_{3}}\right\rangle\left(\begin{array}{ccc}
l_{1} & l_{2} & l_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right) .
\end{aligned}
$$

If the rotational invariance violates, three azimuthal quantum numbers is not confined in this Wigner-3j symbol!!

Power spectrum of vector fields

\&quantization
$\mathcal{A}_{i}\left(\tau, x^{i}\right)=\int \frac{d^{3} k}{(2 \pi)^{3 / 2}} \sum_{\lambda=1}^{2} \epsilon_{i \lambda}(\mathbf{k})\left[v_{k}(\tau) \hat{a}_{\lambda \mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{x}}+v_{k}^{*}(\tau) \hat{a}_{\lambda \mathbf{k}}^{\dagger} e^{-i \mathbf{k} \cdot \mathbf{x}}\right]$
$\sum_{\lambda=1}^{2} \epsilon_{\lambda}^{i}(\mathbf{k}) \epsilon_{j \lambda}(\mathbf{k})=\delta^{i}{ }_{j}-\delta_{j \ell} \frac{k^{i} k^{\ell}}{k^{2}}$

field eq.

$$
\psi_{k}^{\prime \prime}+\left(k^{2}-\frac{\alpha(\alpha+1)}{\tau^{2}}\right) \psi_{k}=0
$$

\% power spectrum:

$$
\left\langle\delta A_{i}(\mathbf{k}) \delta A_{j}\left(\mathbf{k}^{\prime}\right)\right\rangle=\frac{\left|\psi_{k}\right|^{2}}{a^{2} f^{2}}\left(\delta_{i j}-\frac{k_{i} k_{j}}{k^{2}}\right) \delta^{(3)}\left(\mathbf{k}+\mathbf{k}^{\prime}\right)
$$

solution:

$$
\psi_{k}=\left(\frac{\pi}{4 k}\right)^{\frac{1}{2}} \exp \left[i(\alpha+1) \frac{\pi}{2}\right](-k \tau)^{1 / 2} H_{\alpha+1 / 2}^{(1)}(-k \tau)
$$

superhorizon limit:

$$
\rightarrow \frac{(-i k \tau)^{-1}}{\sqrt{2 k}}\left[1+O\left((-k \tau)^{2}\right)\right]
$$

$$
(\alpha=1,-2)
$$

$(\delta \mathrm{A})^{2} \propto \mathrm{k}^{-3}$

$$
\rightarrow \frac{1}{\sqrt{2 k}} e^{-i k \tau}
$$

$(\alpha=0,-I)$
$(\delta A)^{2} \propto \mathrm{k}^{-1}$

