Generation of the primordial magnetic fields from the non-adiabatic fluctuations at the pre-recombination era

Satoshi Maeda Department of Physics, Kyoto University

Collaborators: Keitaro Takahashi (Kumamoto Univ.), Kiyotomo Ichiki (Nagoya Univ.) Reference: 1109.0691[astro-ph.CO]

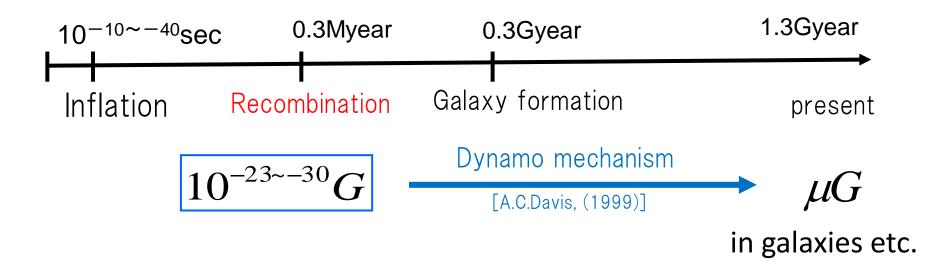
JGRG21@Sakura Hall, katahira Campus, Tohoku University

Contents

- Introduction
- Generation of primordial magnetic fields from non-adiabatic fluctuations
- Power spectrum of the generated fields
- Summary

INTRODUCTION

Evolution of magnetic fields



Scenario of the magnetic field

 \rightarrow Weak seed fields are generated in the early universe

 \rightarrow Amplified by the dynamo after galaxy formation

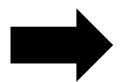
Generation mechanism of seed fields → Second-order cosmological perturbations at pre-recombination era

Comparison to previous works

• Kobayashi+(2007), Maeda+(2009)

They assume that the adiabatic perturbations only exist initially.

 \rightarrow They show that the magnetogenesis does not appear on the 1st-order tight coupling approximation.



If the initial non-adiabatic perturbations exist, we show the generation of the magnetic fields on the 1st-order tight coupling approximation and evaluate the power spectrum.

* The non-adiabatic fluctuations called here is the same as the isocurvature fluctuations called usually.

Constraints of the non-adiabatic fluctuations

Adiabatic fluctuations are main component in CMB anisotropic fluctuations. However, the non-adiabatic fluctuations can still exist as subdominant component.

The non-adiabatic fluctuations are constrained by CMB observations etc. (Komatsu+(2011), Sollom+(2009) and so on)

A: the ratio of CDM non-adiabatic fluctuations to the sum of adiabatic and non-adiabatic fluctuations.

MAGNETIC GENERATION FROM NON-ADIABATIC PERTURBATIONS

Basic equations

 $\cdot\,\text{The EoMs}$ of the photon and baryon

$$\begin{array}{l} \hline \text{Photon:} \quad \nabla_{\nu} T_{(\gamma)i}^{\quad \nu} = \kappa_{i}^{\mathcal{P}} + \kappa_{i}^{\mathcal{P}} \\ \hline \text{Proton:} \quad \nabla_{\nu} T_{(p)i}^{\quad \nu} = en_{p}E_{i} + \kappa_{i}^{pe} + \kappa_{i}^{p\gamma} \\ \hline \text{Electron:} \quad \nabla_{\nu} T_{(e)i}^{\quad \nu} = -en_{e}E_{i} - \kappa_{i}^{pe} + \kappa_{i}^{e\gamma} \\ \hline \text{Thomson scattering} \quad \begin{bmatrix} \kappa_{i}^{\mathcal{P}e} = -a\sigma_{T}n_{e}\rho_{\gamma}(v_{(\gamma)i} - v_{(e)i}) \\ \kappa_{i}^{\mathcal{P}} = -a\frac{m_{e}^{2}}{m_{p}^{2}}\sigma_{T}n_{p}\rho_{\gamma}(v_{(\gamma)i} - v_{(p)i}) \\ \hline \text{Coulomb scattering} \quad \kappa_{i}^{pe} = -ae^{2}n_{p}n_{e}\eta_{C}(v_{(p)i} - v_{(e)i}) \\ \hline \sigma_{T}: \text{Cross section of the Thomson scattering} \quad \eta_{c}: \text{electric resistivity} \end{array}$$

• Maxwell equation (induction eq.) (3 pi) iik > [(1 + i) p] iik (

$$(a^{3}B^{i})' = -\varepsilon^{ijk}\partial_{j}[a(1+\phi)E_{k}] - \varepsilon^{ijk}(av_{j}E_{k})'$$

The prime is the derivative in respect to the conformal time $~\eta_{.}$

$$\begin{split} & \left(\begin{array}{c} F_{\mu\nu} = u_{(\gamma)\mu} E_{\nu} - u_{(\gamma)\nu} E_{\mu} + \varepsilon_{\mu\nu\rho} B^{\rho}, u_{(\gamma)\mu} E^{\mu} = u_{(\gamma)\mu} B^{\mu} = 0 \\ & u_{(\gamma)\mu} \text{:Four velocities of the photon } \mathcal{E}_{\mu\nu\rho} \text{:anti symmetric tensor} \\ & \phi \text{:metric perturbations} \\ \end{split} \right. \end{split}$$

Show that the generation of the magnetic fields from fluctuations

"Ohm's law" and magnetic fields

Subtracting the equations of proton and electron leads to the equation like "Ohm's law". ($\delta v_{(pe)i} \ll \delta v_{(yb)i}$)

$$E_{i} = \frac{1 - \beta^{3}}{1 + \beta} \frac{\sigma_{T}}{e} a \rho_{\gamma} \delta v_{(\gamma b)i} \qquad \left(\beta = \frac{m_{e}}{m_{p}}\right)$$

Substituting this equation into the induction equation.

$$(a^{3}B^{i})' = -\frac{1-\beta^{3}}{1+\beta} \frac{\sigma_{T}}{e} a^{2} \varepsilon^{ijk} \left[\partial_{j} (\rho_{\gamma} \delta v_{(\gamma b)k}) + \rho_{\gamma} \partial_{j} \phi \delta v_{(\gamma b)k} + \frac{1}{a^{2}} (\rho_{\gamma} a^{2} v_{j} \delta v_{(\gamma b)k})' \right]$$

Next solve $\delta v_{(\gamma b)i}$
using tight coupling approximation.

Tight coupling approximation

 \rightarrow Interaction is strong ($T^{-1}\tau \ll 1$) dynamical timescale scattering timescale Expand physical quantities with respect to T^{-1} \rightarrow Particles are almost the same velocity. $\vec{v}_{\alpha} = \vec{v}_{\alpha}^{(0)} + \vec{v}_{\alpha}^{(I)} + \vec{v}_{\alpha}^{(II)} + \cdots \qquad (T^{-1}\tau : \text{expansion parameter})$ common velocity the differences of the common velocity $\delta \vec{v}_{\alpha\beta} = \delta \vec{v}_{\alpha\beta}^{(I)} + \delta \vec{v}_{\alpha\beta}^{(II)} + \cdots$ •Expand the electromagnetic fields also $\vec{E} = \vec{E}^{(I)} + \vec{E}^{(II)} + \cdots \qquad \vec{B} = \vec{B}^{(I)} + \vec{B}^{(II)} + \cdots$

Using this method, we calculate $\delta v_{(\mathcal{P})i}^{(I,1)}$ and $\delta v_{(\mathcal{P})i}^{(I,2)}$.

Evaluation of $\delta v_{(\gamma b)i}$

Subtracting the equations of photon and baryon leads to

$$(\delta v_{(\gamma b)i})' + 4H \delta v_{(\gamma b)i} + \frac{\rho_{\gamma}'}{\rho_{\gamma}} (v_{(\gamma)i} + \chi_i) - \frac{n'}{n} (v_{(b)i} + \chi_i) - (\phi + 2\psi) \left[\frac{\rho_{\gamma}'}{\rho_{\gamma}} v_{(\gamma)i} - \frac{n'}{n} v_{(b)i} + (\delta v_{(\gamma b)i})' + 4H \delta v_{(\gamma b)i} \right] - 5\psi' \delta v_{(\gamma b)i} + \frac{1}{4} \frac{\partial_i \rho_{\gamma}}{\rho_{\gamma}} + \partial_j (v_{(\gamma)i} v_{(\gamma)}^j) - \frac{1}{1 + \beta} \partial_j (v_{(p)i} v_{(p)}^j + \beta v_{(e)i} v_{(e)}^j) = -\alpha \delta v_{(\gamma b)i}$$

$$\left(\alpha \equiv \frac{1+\beta^2}{1+\beta}(1+R)\frac{a\sigma_T\rho_{\gamma}}{m_p} \quad R \equiv \frac{3m_p(1+\beta)n}{4\rho_{\gamma}}\right)$$

Flow of the derivation of magnetic fields

- (1) Evaluate $\delta v_{(jb)i}$ in the above equation at order by order in the TCA and cosmological perturbation
- (2) Substitute the obtained results in the equation of the magnetic fields

We obtain

$$\begin{split} \delta v_{(jb)i}^{(I,1)} &= \frac{1}{\alpha^{(0)}} \left[Hv_i^{(1)} - \frac{1}{4} \frac{\partial_i \delta \rho_{\gamma}^{(1)}}{\rho_{\gamma}^{(0)}} \right] \\ \delta v_{(jb)i}^{(I,2)} &= \frac{1}{\alpha^{(0)}} \left[H(v_i^{(2)} + \chi_i^{(2)} - \frac{\alpha^{(1)}}{\alpha^{(0)}} v_i^{(1)}) - (\psi^{(1)} - \frac{1}{3} \partial_\ell v^{(1)\ell}) v_i^{(1)} - H(\phi^{(1)} + 2\psi^{(1)}) v_i^{(1)} - \frac{1}{4} \left\{ \frac{\partial_i \delta \rho_{\gamma}^{(2)}}{\rho_{\gamma}^{(0)}} - \left(\frac{\delta \rho_{\gamma}^{(1)}}{\rho_{\gamma}^{(0)}} + \frac{\alpha^{(1)}}{\alpha^{(0)}} \right) \frac{\partial_i \delta \rho_{\gamma}^{(1)}}{\rho_{\gamma}^{(0)}} \right\} \right] \\ &- \frac{1}{\alpha^{(0)}} \frac{R^{(0)}}{1 + R^{(0)}} C \delta v_{(jb)i}^{(I,1)}}{\uparrow} \end{split}$$

New contribution from the non-adiabatic fluctuation

$$C(\vec{x}) \equiv \frac{\delta n^{(1)}}{n^{(0)}} - \frac{3\delta \rho_{\gamma}^{(1)}}{4\rho_{\gamma}^{(0)}}$$

($H = \frac{a'}{a}$, *I*: order of the TCA, 0,1,2;order of the cosmological perturbation)

Magnetic fields

• The equation of the magnetic fields

After calculations, we obtain the evolution equation of the magnetic fields.

$$(a^{3}B^{i})' = \frac{1-\beta^{3}}{1+\beta} \frac{\sigma_{T}}{e} a^{2} \rho_{\gamma}^{(0)} \left[\frac{2H}{\alpha^{(0)}} a^{2} \omega^{(2)i} + \frac{\varepsilon^{ijk}}{\alpha^{(0)}} \frac{R^{(0)}}{1+R^{(0)}} \partial_{j} C \delta v_{(\gamma b)k}^{(I,1)} \right]$$

New contribution from the non-adiabatic fluctuations and 1st order TCA!

$$\begin{aligned} \omega^{(2)i} &: \text{photon's vorticity} \qquad \alpha^{(0)} \equiv \frac{4\beta(1+\beta^2)}{3(1+\beta)}(1+R^{(0)})\frac{1}{\tau_T} \\ \beta &= m_e \,/\, m_p \qquad R^{(0)} = \rho_b^{(0)} \,/\, \rho_\gamma^{(0)} \end{aligned}$$

POWER SPECTRUM OF THE GENERATED FIELDS

Process of the evaluation

• Flow of the calculation

 \rightarrow Solve the evolution of the perturbations

→Substitute the above results into the equation of the fields

$$\rightarrow \text{Evaluate } \langle B_{i}B^{i} \rangle$$
$$\left\langle \vec{B}_{i}(\vec{k})\vec{B}^{*i}(\vec{K}) \right\rangle \equiv \frac{2\pi^{2}}{k^{3}}P_{B}(k)\delta(\vec{k}-\vec{K})$$

Power spectrum of the magnetic fields

$$\frac{2\pi^2}{k^3} P_B(k) = \left(\frac{1-\beta^3}{1+\beta} \frac{\sigma_T \rho_{\gamma 0}}{ea^3}\right)^2 (2\pi^2)^2 \int d^3p |\vec{k} \times \vec{p}|^2 P_{na}(p) P_a(|\vec{k} - \vec{p}|) \times \\ \times \int_0^{\eta} d\eta_1 \int_0^{\eta} d\eta_2 a_1^{-2} a_2^{-2} \{g(\vec{k}, \vec{p}, \eta_1)g(\vec{k}, \vec{p}, \eta_2) + f(\vec{k}, \vec{p}, \eta_1)f(\vec{k}, \vec{p}, \eta_2)\}$$

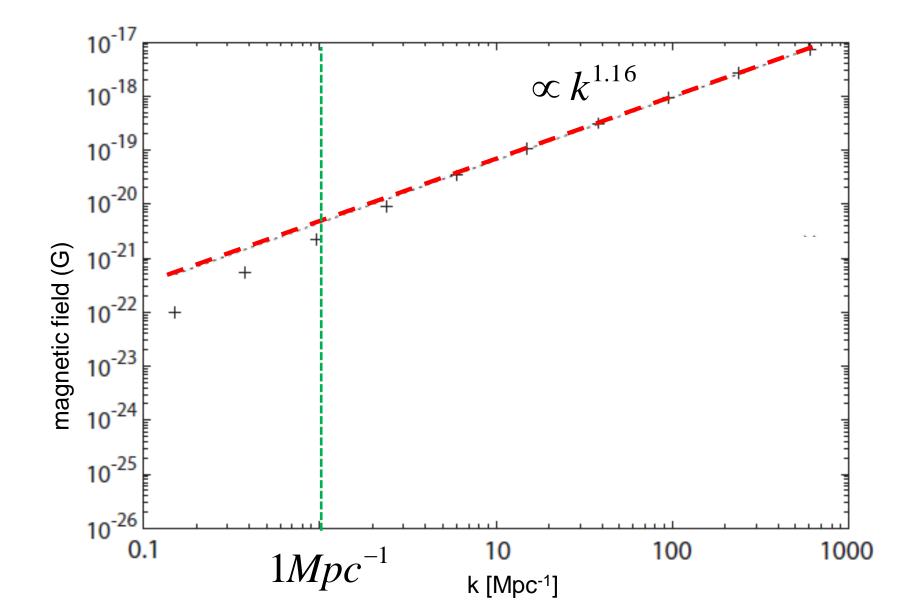
$$\begin{bmatrix} f(\vec{k}, \vec{p}, \eta) \equiv \frac{1}{(2\pi)^{3/2}} \frac{\eta^2 \bar{R}^{(0)}}{2(1 + \bar{R}^{(0)})} \frac{1}{\bar{\alpha}^{(0)}} |\vec{k} - \vec{p}|^2 \frac{j_1(y)}{y}, \\ g(\vec{k}, \vec{p}, \eta) \equiv \frac{1}{(2\pi)^{3/2}} \frac{1}{\bar{\alpha}^{(0)}} \frac{|\vec{k} - \vec{p}|^2}{2\eta(1 + \bar{R}^{(0)})} \int d\eta' \frac{(\eta')^2 \bar{R}^{(0)}}{1 + \bar{R}^{(0)}} \frac{j_1(y')}{y'} \\ \left[y = |\vec{k} - \vec{p}|\eta/\sqrt{3} \right] \end{bmatrix}$$

• Power spectrum of the non-adiabatic fluctuations of baryon

$$\frac{P_{na}}{P_a} \equiv \left(\frac{\Omega_{CDM}}{\Omega_b}\right) \frac{A}{1-A} \left(\frac{k}{k_c}\right)^{n_2-1}$$

This factor expresses conversion of non-adiabatic fluctuation of CDM to one of baryon

Results ($n_I = 4, A \approx 0.01$)



SUMMARY

Summary

- We show that the non-adiabatic fluctuations generate the magnetic fields at pre-recombination era in the 1st-order tight coupling.
- The amplitude of the generated fields is $B_{eq} \sim 10^{-21}$ G at $1Mpc^{-1}$ which is enough to be amplified to the magnetic fields in galaxies and the power spectrum is proportional to $k^{1.16}$.