No Dark Energy is required if we accept a slightly inhomogeneous viewpoint

Hirosaki University Masaru Adachi

Dark Energy is required to explain the SNe m-z relation.

Does we need Dark Energy, really?

We re-analyze the m-z relation of the observed SNe Ia and examine an alternative possibility without Dark Energy.

We find that no Dark Energy is required if we accept the following slightly inhomogeneous universe:

1) the expansion rate in the nearby ($z \leq 0.1$) region is slightly $\sim 10\%$ faster than that in the distant (z > 0.1) region.

2) the clumpiness parameter α in the Dyer & Roeder distance is also slightly inhomogeneous; $lpha \sim 0$ in the nearby region while $\alpha \sim 0.2$ in the distant region.

If we assume that the universe is homogeneous, we need Dark Energy.

What happens if we accept the inhomogeneous universe?

Purpose

- Based on the observational SNe la data, we consider the large-scale inhomogeneity and local emptiness of the universe.
- Can we reproduce the observational data without Dark Energy?

Preceding works

- K. Tomita (2001, 2002)
- M. Kasai (2007)

This works

- We improved the following as compared with M. Kasai (2007).
- We used the gold set data by Riess et al. (2004). \rightarrow The number of data is 157. And these data contain SNe of z>1.0 .
- We used the luminosity distance without Ω_Λ , and also the Dyer & Roeder distance as a fitting formula.

Riess et al. (2004) gold set data

$$\begin{split} m &= \mathcal{Z} \text{ relation} \\ m &= M_{abs} - 5 + 5 \log_{10} D_L(z, \Omega_m, \Omega_\Lambda) \\ \therefore M(H_0) &\equiv M_{abs} - 5 + 5 \log_{10} \frac{c}{H_0} \\ m \text{ : apparent magnitude} \\ M_{abs} \text{ : absolute magnitude} \\ C \text{ : light speed} \\ H_0 \text{ : Hubble constant} \quad \mathcal{Z} \text{ : red shift} \\ \Omega_\Lambda \text{ : Dark Energy} \quad \Omega_m \text{ : density of universe} \end{split}$$

]

Luminosity distance

$$D_L(z) = \frac{c(1+z)}{H_0\sqrt{1-\Omega_m - \Omega_A}}$$

$$\times \sinh\left(\sqrt{1-\Omega_m-\Omega_A}\int_0^z \frac{dz'}{\sqrt{(1+\Omega_m z')(1+z')^2-z'(2+z')\Omega_A}}\right)$$

Analytical solution ($\Omega_{\Lambda} = 0$)

$$D_L(z) = \frac{c}{H_0} d_L(z)$$

$$d_L(z) = \frac{2}{\Omega_m} \{ (2 - \Omega_m + \Omega_m z) - (2 - \Omega_m) \sqrt{1 + \Omega_m z} \}$$

Necessity of Dark Energy

Look at this figure •

The effect of cosmological parameter is more remarkable in distant region. e.g. z > 0.1.

Then, we consider only distant data, and fit them.

Result of fitting (z > 0.1)

We compare our result with that of gold set data.

Compare to gold set data

No Dark Energy is necessary to fit the distant data only.

χ^2 comparison

the best fit model for
$$z > 0.1$$
 χ^2 Riess et al. $(M = 43.34, \Omega_m = 0.29, \Omega_A = 0.71)$ 110.97open $(M = 43.59, \Omega_m = 0.38, \Omega_A = 0)$ 108.40

Our model gives slightly better fitting.

χ^2 comparison

the model for
$$z < 0.1$$
 χ^2
 $M = 43.34, \Omega_m = 0.29, \Omega_\Lambda = 0.71$ 65.30
 $M = 43.35, \Omega_m = 0.1, \Omega_\Lambda = 0$ 65.75

Again, no Ω_{Λ} is required to fit the nearby data.

Summary

- We can fit each region without Ω_{Λ} .
- Each best fit parameter is the following:

the best fit model	M	Ω_m	Ω_{Λ}
Riess et al	43.34	0.29	0.71
Our model (high- z)	43.59	0.38	0
Our model (low- z)	43.35	0.1	0

• If we permit that M of the nearby region and distant region is different, we can fit the observational SNe Ia data without Ω_{Λ} .

the best fit model	M	Ω_m	Ω_{Λ}
Riess et al	43.34	0.29	0.71
Our model (high- z)	43.59	0.38	0
Our model (low- z)	43.35	0.1	0

Difference of M is \cdot

$\therefore M(H_0) \equiv M_{abs} - 5 + 5\log_{10}\frac{c}{H_0}$

i.e., difference of H_0 .

2011年9月28日水曜日

How much is the difference of H_0 ?

difference of
$$H_0$$
 by
inhomogeneity
$$\frac{H_0(\text{low})}{H_0\text{high}} = 10^{\frac{M_{\text{high}} - M_{\text{low}}}{5}}$$
$$H_0(\text{low}) = 1.1H_0(\text{high})$$

Therefore, if we allow that H_0 is larger than 10% in the distant region, we don't need Dark Energy.

Next, we use Dyer & Roeder distance ($\Omega_m = 1, \Omega_\Lambda = 0$).

What's Dyer & Roeder distance?

- The density of inter-galactic space is lower than the average density. Light travels through the low-density space. Dyer & Roeder distance takes such effect into account.
- lpha
 ho : density of inter-galactic space
- ho : average density of the universe
- α : $0 \le \alpha \le 1$

$$D_{DR}(\alpha, z) \equiv \frac{c}{H_0} d_{DR}(\alpha, z) = \frac{c}{H_0} (1+z)^2 \frac{2}{\beta} (1+z)^{\frac{\beta-5}{4}} \{1 - (1+z)^{-\frac{\beta}{2}}\}$$

$$\beta \equiv \sqrt{25 - 24\alpha}$$

lpha : clumpiness parameter

- Same as the large-scale inhomogeneity, if we permit that M, α are different in the nearby region and the distant region, we can fit each region without Ω_{Λ} .
- Each best fit parameter is the following:

th best fit model	M	Ω_m	Ω_{Λ}	lpha	χ^2
Riess et al.	43.34	0.29	0.71	-	176.27
our DR model (high+low)	43.68/43.36	1	0	0.19/0	175.81

Conclusion (1)

- No Ω_{Λ} is required, if we allow the inhomogeneous universe such that:
 - Scale of inhomogeneity is z = 0.1.
 - Difference of H_0 is 10%.

Conclusion (2)

- Clumpiness parameter $\boldsymbol{\alpha}$ is also inhomogeneous.
- This trace temporal evolution of the structure formation in the universe.

In the end...

If you stick to the homogeneity,

you also need the Dark Side of Energy.

Vader was seduced by the dark side of the Force...

2011年9月28日水曜日

Don't be seduced by the Dark Side of Energy!

That's all, thank you.