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Submanifold
For a spacelike submanifold, from the submanifold theory, one can
always decompose the metric of the spacetime into

gab = hab + qab , (1)

The second fundamental tensor K c
ab is defined as

Kab
c = q d

a q
e

b ∇dq
c

e . (2)

It can be defined without introducing any local frame of the
spacetime (B.Carter, 1992).

The second fundamental tensor can be decomposed into a
traceless part (C c

ab ) and a trace part (Kc), i.e.,

Kab
c =

1
n− 2

qabK
c + Cab

c , (3)

Kc = gabKab
c is called extrinsic curvature vector or mean

curvature vector.



Submanifold

For an arbitrary normal vector X, one can define

K
(X)
ab = −K c

ab Xc = q c
a q

d
b ∇cXd ,

This is the usual second fundamental tensor along X direction, the
expansion and the shear tensor are respectively given by

θ(X) = −KcXc ,

σ
(X)
ab = −C c

ab Xc .

After introducing the covariant derivative on the submanifold
and normal covariant derivative, we have generalized Gauss
equation, Ricci equation and Codazzi equation:



Submanifold

Gauss equation:

Rabcd = Kca
eKbde −Kcb

eKade + qa
eqb

fqc
gqd

h Refgh , (4)

Ricci equation:

Ωabcd = q e
a q

f
b h

g
c h

h
d Refgh +KaedK

e
b c −KbedK

e
a c . (5)

Codazzi equation:

D̃aKbcd − D̃bKacd = −q e
a q

f
b q

h
c h

g
d Refhg . (6)

For an arbitrary normal vector Y , it gives(
n−3
n−2

)
Daθ

(Y ) −Dbσ
(Y )b
a +KdD̃aY

d −K b
a dD̃bY

d = q e
a q

bcY dRebcd .

(7)



The deformation defined by Andersson et al
L. Andersson, M. Mars and W. Simon, Phys. Rev. Lett. 95, 111102

(2005); Adv. Theor. Math. Phys. 12, 853 (2008).
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Figure: Deformation by Andersson



Our definition of the deformation

Anderssson et. al. Claimed:
The deformation operator δX is different from usual Lie

derivative LX .
Our calculation shows: The difference of δX and the usual Lie

derivative is nothing but a constraint:

LX(q b
a ) = 0 .

So our deformation is just the usual Lie derivative with above
constraint.

With this consideration, we can get the deformation equation
without introducing any local frame.



Deformation equation with an arbitrary codimension
After some calculation, we have

LXK
(Y )
ab = q c

a q
d

b X
eY fRecdf +K(Y )

a
cK

(X)
bc − Y cD̃aD̃bXc

+Kacb

(
YdD̃

cXd
)
−Kabc

(
Xd∇dY

c
)
. (8)

and

LXθ
(Y ) = qcdXeY fRecdf −K(Y )abK

(X)
ab

−Y cD̃aD̃
aXc −Kc

(
Xd∇dY

c
)
. (9)

For a tangent vector φa, the Lie derivative of θ(Y ) along φa is
constrained by the Codazzi equations (6) and (7):(

n− 3
n− 2

)
Lφθ

(Y ) = φaDbσ
(Y )b
a −

(
n− 3
n− 2

)
φaKdD̃aY

d

+ φaC b
a dD̃bY

d + qfgφeY hRefgh . (10)



Codimension-1

We can set hab = −uaub, where ua is an unit timelike normal
vector of the hypersurface. So the extrinsic curvature is simply
given by Kabc = Kabuc. In this case, X is just the evolution vector
Xa = Nua with lapse function N . By selecting Ya = ua, then

θ(Y ) = K = −Kaua,

and we have

− 1
NLXKab = −q c

a q
d

b Rcd +Rab +KKab − 2KacK
c

b − 1
NDaDbN

and
− 1

NLXK = Rabu
aub +KabKab − 1

ND
aDaN .

These are just the evolution equations of the hypersurface in
Einstein gravity theory.



Codimension-2

From the Gauss equation (4), we find that eq.(9) becomes

LXθ
(Y ) = −

(
Gab +KcdaK

cd
b

) [
XaY b − hab (XeY

e)
]

+
1
2

(
R−KabcK

abc −KcK
c
)
· (XeY

e)

−Y eD̃cD̃
cXe −Kc (Xe∇eY

c) . (11)

Here:

• Gab is the Einstein tensor of the spacetime

• R is the scalar curvature of the codimension-2 surface

• D̃a is the normal covariant derivative



Codimension-2

By introducing two null vector fields ` and n

hab = −`anb − na`b = εIJe
I
ae

J
b , (12)

we can define two important quantities:
The first one is:

ωa = −q e
a nd∇e`

d . (13)

It is the SO(1, 1) connection of the SO(1, 1) normal bundle.
The second one is:

κX = −ncXe∇e`c , (14)

which has close relation to the “surface gravity” if horizons are
involved.



Focusing and cross focusing equations

By setting Ya = `a and Xa = A`a−Bna, then eq.(11) gives result

LXθ
(`) = κXθ

(`) −DcD
cB + 2ωcDcB

−B
[
ωcω

c −Dcω
c + Gab`

anb − 1
2
R− θ(`)θ(n)

]
−A
[
Gab`

a`b + σ
(`)
ab σ

(`)ab +
1

n− 2
θ(`)θ(`)

]
. (15)

In the case where A = 1, B = 0, eq.(15) just the so called focusing
equation.
In the case where A = 0, B = −1, this result gives the cross
focusing equation.



Y is dual to X

In this case, we have

κXθ
(X) = GabX

aY b + σ
(X)
ab σ(Y )ab +

1
n− 2

θ(X)θ(Y )

+De(ADeB −BDcA− 2ABωe) +ALXθ
(`) +BLXθ

(n) ,

(16)

and∫
κXLXεq =

∫
εq

[
GabX

aY b + σ
(X)
ab σ(Y )ab +

1
n− 2

θ(X)θ(Y )

]
+
∫
εq

[
ALXθ

(`) +BLXθ
(n)
]
, (17)

This equation has close relation to the Clausius like equation of
the thermodynamics of the quasi-local horizon.



Damour-Navier-Stokes like Equation

From the definition of ωa in eq.(13), it’s not hard to find

LXωa = K b
a cD̃b(εcdXd) +DaκX −

1
2
qa

bXdεceRdbce . (18)

By using the Codazzi equation (7), we have

LXωa = DaκX+
(
n− 3
n− 2

)
Daθ

(Y )−Dcσ
(Y )c
a +KcD̃aY

c+q b
a Y

cGbc ,

(19)
where Ya = εabX

b.
In the case where X is self-dual or anti-self-dual, i.e., X = ±Y , by
considering the Einstein equation, this equation is a kind of
Damour-Navier-Stokes equation.
Here, we have not introduce any timelike hypersurface or stretched
horizon .



Damour-Navier-Stokes like Equation

Let φa be a tangent vector which satisfies LXφ
a = 0 and

Daφ
a = 0, then we get

LX

∫
εq (φaωa) =

∫
εq

{
1
2

(
Daφb +Dbφa

)
σ

(Y )
ab + φaY bGab

+AφaDaθ
(`) +BφaDaθ

(n)

}
. (20)

The angular momentum can be defined as

Jφ =
∫
εq(φaωa) .

So, from Damour-Navier-Stokes equation, we can get the
deformation equation of angular momentum.



Trapping horizon

• The codimension-2 spacelike surface with θ(`)θ(n) = 0 is called
marginal trapped surface.

• The surface with θ(`)θ(n) > 0 is called trapped, and θ(`)θ(n) < 0
is called untrapped.

• A trapped ( untrapped) region is the union of all trapped
(untrapped) surfaces.

We can give similar definitions by using the extrinsic curvature
vector Ka from the relation

KcKc = −2θ(`)θ(n) .



Trapping horizon

• A marginal trapped surface is called future if θ(`) = 0, θ(n) < 0.

(i). if Lnθ
(`) < 0, we call the future marginal trapped surface is

outer.
(ii). if Lnθ

(`) > 0, the future marginal trapped surface is called inner.

• The past marginal trapped surface is defined by θ(n) = 0,
θ(`) > 0.

(i). The past marginal trapped surface with L`θ
(n) > 0 is called

outer.
(ii). The past marginal trapped surface with L`θ

(n) < 0 is called
inner.

The so called trapping horizon is the closure of a hypersurface
foliated by the marginal trapped surfaces[Hayward,1994].

The classification of the trapping horizon inherits from the
classification of the marginal trapped surfaces.



Evolution vector

The trapping horizon is foliated by marginal trapped surfaces
Sτ . Here τ is called the foliation parameter of the tapping horizon.
Assume X is the so called “evolution” vector, i.e., the vector
which is tangent to H and normal to Sτ and satisfies LXτ = 1.

X

τS

Figure: The evolution vector on
trapping horizon



The method with quasi-local energy: spherically
symmetric case

For generally spherically symmetric spacetime

g = βµν(y)dyµdyν + r(y)2γij(z)dzidzj , (21)

We have generalized Misner-Sharp energy:

E =
(n− 2)Ωn−2

16πG
rn−3 (1−∇ar∇ar) , (22)

By defining

ψa = Tab∇br + w∇ar , w = −1
2
habTab , (23)

we get
LXE = A ψaX

a + wLXV , (24)



The method with quasi-local energy: spherically
symmetric case

By selecting X to be the evolution vector on the trapping horizon ,
on the trapping horizon, we have

A ψaX
a =

( κ
2π

)
LXS , (25)

The surface gravity is defined as

κ

2π
=

4G
n− 2

[(
n− 3
Ωn−2

)
E

rn−2
− wr

]
. (26)

The evolution of E on the trapping horizon becomes

LXE =
( κ

2π

)
LXS + wLXV . (27)

This is a first law like equation.



The method with quasi-local energy: More general
cases

For general case gab = hab + qab the Ricci tensor of qab is trace
free, we can define a generalized energy

E = (
∫

εq)
n−3
n−2

16πG(Ωn−2)
1

n−2 (n−3)

{ ∫
εqR

(
∫

εq)
n−4
n−2

−
(

n−3
n−2

) ∫
εqKcKc

(
∫

εq)
n−4
n−2

}
. (28)

• for n = 4, this energy reduces to usual four dimension Hawking
energy (mass).

• In spherically symmetric case, this energy reduces to
Misner-Sharp energy ( n ≥ 4).

• In higher dimension, we only consider the case where qab is
Einstein.



The method with quasi-local energy: general cases

The deformation of the energy is given by

LXE =
(
n− 3
n− 2

)(
E

A

)
LXA + A

n−3
n−2LX

(
E

A
n−3
n−2

−K

)
(29)

where LXK = 0 with

K =
1

16πG (Ωn−2)
1

n−2 (n− 3)

 ∫
εqR(∫
εq
)n−4

n−2

 . (30)

On the horizon, by selecting X to be the evolution vector of the
horizon, we have

LXE =
(
n− 3
n− 2

)(
E

A

)
LXA . (31)



The method with quasi-local energy: general cases

More detailed, the deformation of the energy is given by

LXE =
1

8πG

(
L

n− 2

)∫
εq

{
−KeD̃cD̃

cXe

−
(
Gab + CcdaC

cd
b

)[
KaXb − 1

2
hab (KeX

e)
]

+
1
2

(
Gabh

ab
)
· (KeX

e)

}
, (32)

where L = A
1

n−2 / (Ωn−2)
1

n−2 ,



The method with quasi-local energy: general cases

If we introduce null frames, generally, the evolution of the energy
on the trapping horizon is given by

LXE =
∫
εq

[
α
(
Tab`

a`b + 1
8πGσ

(`)
ab σ

(`)ab
)

+ β
(
Tab`

anb + ζaζa

8πG

)]
.

(33)
where α and β are determined by the components of X, and ζ has
close relation to the SO(1,1) connection ωa.

• The contribution of the usual matter fields — Tab`
a`a and

Tab`
ana ;

• The contribution of the gravitational radiation — σ
(`)
ab σ

(`)ab and
ζaζ

a.



Method without quasi-local energy: equilibrium state

Equilibrium state: Null trapping horizon.
The evolution vector X is null. From focusing and cross

focussing equations, we find: On the null future trapping horizon,
we have

σ
(`)
ab = 0 , Gab`

a`b = 0 , (34)

and on the null past trapping horizon, we have

σ
(n)
ab = 0 , Gabn

anb = 0 . (35)

Gab`
a`b = 0 and Gabn

anb = 0 just imply that there are no matter

flux across the codimension-2 surface. σ
(`)
ab = 0 and σ

(n)
ab = 0

means that there are no gravitational radiation across the
codimension-2 surface.



Method without quasi-local energy: equilibrium state

From Damour-Navier-Stokes equation, we find

LXωa −DaκX = 0 . (36)

if one requires that ωa does not evolve, i.e., LXωa = 0, then, from
above equation, one gets DaκX = 0 on the codimension-2 surface.

Furthermore, if LXκX = 0 is required, then κX is a constant
on the null trapping horizon.

In these null cases, we have

Xa∇aX
b = ±κXX

b , (37)



Method without quasi-local energy: equilibrium state

Conclusively, on these null trapping horizons, there are no
gravitational radiation and matter flux, and κX ’s are constants.
These properties correspond to the equilibrium state of the
thermodynamics of the horizon.

Further, eqs.(17) and (20) just mean(κX

2π

)
LXS = 0 , LXJφ = 0 , (38)

where S ∼
∫
εq and Jφ ∼

∫
εq (φaωa) can be explained as the

entropy and the angular momentum associated with the null
trapping horizons.



Method without quasi-local energy: Near equilibrium
state

The near equilibrium means that X is almost a null vector.

Xa = `a − Cna , (39)

For the future trapping horizon, Booth et.el.(2003) give three
slowly expanding conditions :

(F-i). The so called evolving parameter ε� 1 with

ε2

L2 = max
[
|C|
(
‖σ(n)‖2 + (8πG)Tabn

anb + 1
n−2θ

(n)θ(n)
)]

;
(40)

(F-ii). The Ricci scalar, the SO(1, 1) normal connection and the
energy-momentum tensor satisfy

|R| , ‖ωa‖2 and (8πG)Tab`
anb � 1

L2
;



Method without quasi-local energy: Near equilibrium
state

(F-i). The derivatives of horizon fields are at most the same order
in ε as the (maximum of the) original fields. For example,

‖DaC‖ �
Cm

L
, ‖DaDbC‖ �

Cm

L2
.

Here, ‖ · ‖ is the norm of (tangent) tensor fields on the
codimension-2 Riemannian manifold, while | · | is the absolute
value of some scalar. The quantity L is some length scale of the
codimension-2 surface. For example, the radius of the closed

(n− 2) manifold: L = (A /Ωn−2)
1

n−2 which has been defined just
bellow eq.(32). Cm is the maximum value of |C| on the
codimension-2 surface. The relation E � F means E ≤ k0F for
some constant k0 of order one.



Method without quasi-local energy: Near equilibrium
state

The slowly evolving parameter ε defined in the condition (F-i) is
independent of the relabeling of the foliation and the rescaling of
the null frame.

Remembering in the case of future null trapping horizon, to
ensure that some physical quantities do not evolve, we have
required the condition LXωa = 0 and LXκX = 0. These just
mean that ωa and κX do not evolve respect to the evolution vector
Xa. Similarly, here there are also slowly evolving conditions :

(F-i’). ‖LXωa‖ and |LXκX | � ε/L2;

(F-ii’). |LXθ
(n)| � ε/L2.



Method without quasi-local energy: Near equilibrium
state

For the past trapping horizon, we can gives similar conditions to
describe the slowly expanding properties:

(P-i). The evolving parameter ε� 1 with

ε2

L2 = max
[
|C|
(
‖σ(`)‖2 + (8πG)Tab`

a`b + 1
n−2θ

(`)θ(`)
)]

;

(P-ii). The Ricci scalar, the SO(1, 1) normal connection and the
energy-momentum tensor satisfy

|R| , ‖ωa‖2 and (8πG)Tab`
anb � 1

L2
;

(P-iii). The derivatives of horizon fields are at most the same order
in ε as the (maximum of the) original fields. For example,

‖DaC‖ �
Cm

L
, ‖DaDbC‖ �

Cm

L2
.



Method without quasi-local energy: Near equilibrium
state

The slowly evolving conditions are given:

(P-i’). ‖LXωa‖ and |LXκX | � ε/L2;

(P-ii’). |LXθ
(`)| � ε/L2.

With these conditions, one can find that κX is nearly a constant
on the past trapping horizon. So it can also be expanded as

κX = κo + O(ε) .



Method without quasi-local energy: Near equilibrium
state

Clausius like equations:
For the future slowly evolving trapping horizon( κo

8πG

)
LXA =

∫
εq

[
Tab`

a`b + σ
(`)
ab σ

(`)ab
]
, (41)

Similarly, for the past slowly evolving horizon, we have

−
( κo

8πG

)
LXA =

∫
εq

[
Tabn

anb + σ
(n)
ab σ

(n)ab
]
. (42)



Geometry of FRW universe

The metric of the FLRW universe (M, g) is

g = −dt2 +
a2

1− kr2
dr2 + a2r2dΩ2

n−2 , (43)

by introducing two null vectors ` and n

`adx
a =

√
1
2

(
−dt+

a√
1− kr2

dr

)
, (44)

nadx
a =

√
1
2

(
−dt− a√

1− kr2
dr

)
. (45)

So we have hab = −`anb − na`b, while qab is just the metric for the
sphere part, i.e.,

qabdx
adxb = a2r2dΩ2

n−2.



Null trapping horizons

Null trapping horizons exist only when k = 0.
Further, only inner horizon exists in the future case, and only outer
horizon exists in the past case.
On the null trapping horizons (future and past), the Hubble
parameter H is always a constant.

We only consider the past outer case.



Slowly past evolving trapping horizons in FRW universe

The evolution vector X can be expressed as

Xa = α`a − na , (46)

where

α =
Ḣ

Ḣ + 2H2
. (47)

From the definition, the evolving parameter ε in the condition (P-i)
becomes (we only consider the four dimension case, and choose L
to be the radius r̃ = 1/|H| for k = 0.)

ε2

r̃2
= |α|

(
Gab`

a`b +
1
2
θ(`)θ(`)

)
. (48)



Straightforward calculation shows: on the trapping horizons, ε’s are
given by

ε2 = |α|

(
4− Ḣ

H2

)
. (49)

By defining

s = − Ḣ

H2
> 0 , (50)

then, from the expression of α in eq.(47), we have

α = − s

2− s
. (51)

The evolution parameter ε now has a simple form

ε2 = s

(
4 + s

2− s

)
. (52)



So, the requirement of the evolving parameter ε� 1 automatically
implies that s = −Ḣ/H2 is very small.

It’s not hard to find

LXκX =
2H2s

(2− s)3

[
2− s+ s2 +

(
Ḧ

ḢH

)]
. (53)

So the slowly evolving condition of κX requires that |Ḧ/H3| is
also a small quantity.



Thermodynamics on slowly evolving trapping horizon in
FRW

For the past horizon, from eq.(42), we have

− κo

8πG
LXA =

∫
εqTabn

anb . (54)

Up to second order of ε (or the first order of s).
The temperature of the system can be expanded as

T =
κX

2π
∼ H

2π

(
1− s

2

)
+ O(ε4) .



Temperature from the formalism with quasi-local
energy

The surface gravity κ in eq.(26) becomes

κ

2π
= −H

2π

(
1− s

2

)
, (55)

where s is defined in eq.(50). So the temperature of the past outer
trapping horizon is

T =
|κ|
2π

=
H

2π

(
1− s

2

)
The Clausius relation is

AψaX
a =

κ

2π
LXS . (56)



Conclusions and Discussions

• General deformation equations are given without introducing any
local frames.

• The Hawking energy is generalized into higher dimension.
However, this energy is only interesting when the codimension-2
surface is Einstein. Recently Bray proposed an energy form

M(S) = 1
2

(
|S|

ωn−2

)n−3
n−2

− 1
2(n−2)2

(
1

ωn−2

∫
S H

2(n−2)
n−1 dS

)n−1
n−2

(57)

• In cosmology, the condition of the slowly evolving trapping
horizon has close relation to the slow-roll condition.



Thanks for your attention!
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