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Submanifold

For a spacelike submanifold, from the submanifold theory, one can
always decompose the metric of the spacetime into

Gab = hab + Qab (1)

The second fundamental tensor K ;¢ is defined as
Ko = ¢.°0,°V4q.° - (2)

It can be defined without introducing any local frame of the
spacetime (B.Carter, 1992).

The second fundamental tensor can be decomposed into a
traceless part (C,,°) and a trace part (K°¢), i.e.,

1
Kabc = m(ﬂzb[{c + 61(117C ; (3)

K¢ = g“bKabC is called extrinsic curvature vector or mean
curvature vector.



Submanifold

For an arbitrary normal vector X, one can define

X
K(Eb ) = _KachC = qacqbdeXda

This is the usual second fundamental tensor along X direction, the
expansion and the shear tensor are respectively given by

o) = —K°X,,
O-C(l?)() = — achC .

After introducing the covariant derivative on the submanifold
and normal covariant derivative, we have generalized Gauss
equation, Ricci equation and Codazzi equation:



Submanifold

Gauss equation:
Rabed = Kea"Kige — Koy Kade + 4“0’ 994" Reggn,  (4)
Ricci equation:
Qaped = qaeqbfhcghdht@efgh + KoeaKyc — Kped K°c. (5)
Codazzi equation:
DoKvea — DyKaca = —,°a" 4" hd Begng - (6)
For an arbitrary normal vector Y, it gives

(g—:g) DoY) — DoV 1 KDY — Kp Dy = g8 Y R
(7)



The deformation defined by Andersson et al

L. Andersson, M. Mars and W. Simon, Phys. Rev. Lett. 95, 111102
(2005); Adv. Theor. Math. Phys. 12, 853 (2008).

@, :SxI - M

3.6M =9 H(Y,)‘
X ’ 7=0



Our definition of the deformation

Anderssson et. al. Claimed:

The deformation operator dx is different from usual Lie
derivative Lx.

Our calculation shows: The difference of dx and the usual Lie
derivative is nothing but a constraint:

‘CX (qab) =0.

So our deformation is just the usual Lie derivative with above
constraint.

With this consideration, we can get the deformation equation
without introducing any local frame.



Deformation equation with an arbitrary codimension
After some calculation, we have

EXKS:) = QacqbdXEYf%ecdf + KC(LY)CKZS() - YCDanXc
Koot (YaD*X) = Ko (XV0Y) . (8)

and
CXQ(Y) _ chchf%ecdf o K(Y)abK(i()

a

—Y°D,D"X, — K, (dedyﬂ) . (9)

For a tangent vector ¢%, the Lie derivative of 8(Y) along ¢ is
constrained by the Codazzi equations (6) and (7):

n—3 n—3 ~
<n — 2) L,0Y) = ¢ Dyo(Y)b — (n — 2> ¢*KyD,Y*

+ ¢°CLl DY+ qT I " Ry, (10)




Codimension-1

We can set h,, = —ugup, where u® is an unit timelike normal
vector of the hypersurface. So the extrinsic curvature is simply
given by K 5. = Kgpue. In this case, X is just the evolution vector
X, = Nu, with lapse function N. By selecting Y, = u,, then

0Y) = K = —K%,,
and we have
_%EXKab = _qaCde'%)cd + Rab + KKab - 2Kachc - %DanN

and
7%5}(’]"{ = %’abuaub + KabKab — %DGDQN.

These are just the evolution equations of the hypersurface in
Einstein gravity theory.



Codimension-2

From the Gauss equation (4), we find that eq.(9) becomes
EXG(Y) - - (%Lb + ch,aKCdb) |:Xayb - hab (Xeye)

1 , , )
5 (R = KapeK™ = KK - (X.Y)
~Y°D.DX, — K. (X°V,Y°) . (11)

Here:

e ¢, is the Einstein tensor of the spacetime
e R is the scalar curvature of the codimension-2 surface

e D, is the normal covariant derivative



Codimension-2

By introducing two null vector fields ¢ and n
hab = _eanb - nagb = E[Jeclzegv (12)

we can define two important quantities:
The first one is:
wa = —q,ngV el . (13)
It is the SO(1,1) connection of the SO(1, 1) normal bundle.
The second one is:
kx = —n‘XVl,, (14)
which has close relation to the “surface gravity” if horizons are

involved.



Focusing and cross focusing equations

By setting Y, = ¢, and X, = Al, — Bn,, then eq.(11) gives result

Lx0Y = kx0Y — D.DB + 2w°D.B
—-B [wcwc — Do + Gptn? — %R — 9(@0(”)}

1
—A [gabgagb + a((l?a(@ab + mew)e([)] . (15)

In the case where A =1, B =0, eq.(15) just the so called focusing

equation.
In the case where A = 0, B = —1, this result gives the cross

focusing equation.



Y is dual to X

In this case, we have

kx 8 = 2, X074 oD g0 g0
@ n—2
+D.(AD°B — BD°A — 2ABw®) + ALx0"Y) + BLx0™

(16)

and

/mxﬁxeq _ /Eq [%I)XaybJFUC(;)()U(Y)abJr %Q(X)Q(Y)

+ / € [ALXW) + BLxO™| | (17)

This equation has close relation to the Clausius like equation of
the thermodynamics of the quasi-local horizon.



Damour-Navier-Stokes like Equation

From the definition of w, in eq.(13), it's not hard to find
~ 1
,Cxwa = KabCDb(GCdXd) + Da/iX — iqabXdece%dbce . (18)
By using the Codazzi equation (7), we have

—3 . - .
Lxwy =D RX+< ) D0 —Do V)L K, DyY *+q,0Y %,

(19)
where Y, = e, X?°.

In the case where X is self-dual or anti-self-dual, i.e., X = +Y, by
considering the Einstein equation, this equation is a kind of
Damour-Navier-Stokes equation.

Here, we have not introduce any timelike hypersurface or stretched
horizon .



Damour-Navier-Stokes like Equation

Let ¢® be a tangent vector which satisfies £x¢® = 0 and
Dy¢* =0, then we get

1
Lx / e (P"wa) = / eq{2 (D" + D) o) + 6"V "%
+A¢%D,0Y + B¢aDa9<">} : (20)

The angular momentum can be defined as

Jo = /%((bawa)-

So, from Damour-Navier-Stokes equation, we can get the
deformation equation of angular momentum.



Trapping horizon

e The codimension-2 spacelike surface with 899" = 0 is called
marginal trapped surface.

e The surface with 809 > ( is called trapped, and #)9™ <
is called untrapped.

e A trapped ( untrapped) region is the union of all trapped
(untrapped) surfaces.

We can give similar definitions by using the extrinsic curvature
vector K from the relation

K°K,= 2009



Trapping horizon

o A marginal trapped surface is called future if 6 =0, 6" < 0.

(i). if L,00) <0, we call the future marginal trapped surface is
outer.
(ii). if £,0%) > 0, the future marginal trapped surface is called inner.

e The past marginal trapped surface is defined by (") = 0,
0 > 0.
(i). The past marginal trapped surface with £,0() > 0 is called
outer.
(ii). The past marginal trapped surface with £,0(™ < 0 is called
inner.

The so called trapping horizon is the closure of a hypersurface
foliated by the marginal trapped surfaces[Hayward,1994].

The classification of the trapping horizon inherits from the
classification of the marginal trapped surfaces.



Evolution vector

The trapping horizon is foliated by marginal trapped surfaces
Sr. Here 7 is called the foliation parameter of the tapping horizon.
Assume X is the so called “evolution” vector, i.e., the vector
which is tangent to ‘H and normal to S, and satisfies Lx7 = 1.

Figure: The evolution vector on
trapping horizon



The method with quasi-local energy: spherically
symmetric case

For generally spherically symmetric spacetime

9= B (y)dy*dy” + r(y)*vi(2)dz'd2? (21)

We have generalized Misner-Sharp energy:

& = (71_16273271_21"”_3 (1 =VqarVer), (22)
By defining
Vo= TpVlr +wVer,  w= —%h“b%b, (23)
we get

LxE = dhg X +wlxV (24)



The method with quasi-local energy: spherically
symmetric case

By selecting X to be the evolution vector on the trapping horizon ,
on the trapping horizon, we have

K

SPa X" = (27r

) LxS, (25)

The surface gravity is defined as

K 4G n—3 &
O L

The evolution of & on the trapping horizon becomes

K

Lxé = (27T

) LxS+wlxV | (27)

This is a first law like equation.



The method with quasi-local energy: More general
cases

For general case gop = hap + qap the Ricci tensor of gy is trace
free, we can define a generalized energy

@ : . <
§=—Ual'Z Lot - (23) Lk b (28)
167G (Qp—2)"—2 (n—3) (f Eq) n—2 (j eq) n—2

e for n = 4, this energy reduces to usual four dimension Hawking
energy (mass).

e In spherically symmetric case, this energy reduces to
Misner-Sharp energy ( n > 4).

e In higher dimension, we only consider the case where qq; is
Einstein.



The method with quasi-local energy: general cases

The deformation of the energy is given by

n—3 & n—3 &
Lx& = <n—2> <%) Lxa + o/ n—2Lx <W—%> (29)

where Lx . # = 0 with

H = ! 1 f Eq{i‘l : (30)
167G (2p—2) "2 (n — 3) (f eq) n2

On the horizon, by selecting X to be the evolution vector of the

horizon, we have
n—3 &
be () (Deww.




The method with quasi-local energy: general cases

More detailed, the deformation of the energy is given by

1 L e m e
‘X@“’—WQ_Q/%{‘K&D e

1
- (%b + Ccdaccdb) [K“Xb - 5h (KeXe)}

ot () - (565) } | &

where L = Mﬁ/ (Qp—2)n-2,



The method with quasi-local energy: general cases

If we introduce null frames, generally, the evolution of the energy
on the trapping horizon is given by

£x6 = [e, [a (Zutot + gigowo®@) + 5 (Zut™n *’+§;<G)]

(33)
where « and 3 are determined by the components of X, and { has
close relation to the SO(1,1) connection wy,.

e The contribution of the usual matter fields — 7,4 and
%bga a .

e The contrlbutlon of the gravitational radiation — O'( )O'(E) and

CaC®



Method without quasi-local energy: equilibrium state

Equilibrium state: Null trapping horizon.
The evolution vector X is null. From focusing and cross
focussing equations, we find: On the null future trapping horizon,

we have ,
d =0, Gt =o0, (34)

and on the null past trapping horizon, we have
O'((IZ) =0, GZynnb =0. (35)

Gp00° = 0 and Z,;n*n® = 0 just imply that there are no matter
flux across the codimension-2 surface. ag)) =0 and ag) =0
means that there are no gravitational radiation across the

codimension-2 surface.



Method without quasi-local energy: equilibrium state

From Damour-Navier-Stokes equation, we find
Lxwg, — Dakx =0. (36)

if one requires that w, does not evolve, i.e., Lxw, = 0, then, from
above equation, one gets D,xx = 0 on the codimension-2 surface.
Furthermore, if Lxkx = 0 is required, then kx is a constant
on the null trapping horizon.
In these null cases, we have

XV, X" = £rx X?, (37)



Method without quasi-local energy: equilibrium state

Conclusively, on these null trapping horizons, there are no
gravitational radiation and matter flux, and kx's are constants.
These properties correspond to the equilibrium state of the
thermodynamics of the horizon.

Further, egs.(17) and (20) just mean

(’Q—X) LxS=0, LxJy=0, (38)
27

where S ~ [¢; and J, ~ [ €, (¢"w,) can be explained as the
entropy and the angular momentum associated with the null
trapping horizons.



Method without quasi-local energy: Near equilibrium
state

The near equilibrium means that X is almost a null vector.
X*=/("—Cn", (39)

For the future trapping horizon, Booth et.el.(2003) give three
slowly expanding conditions :

(F-i). The so called evolving parameter € < 1 with
£ = max “C! (HU(")HQ + (87G) Tyn®n® + L 0o ) |,
2 apM M + n—>2 )
(40)

(F-ii). The Ricci scalar, the SO(1, 1) normal connection and the
energy-momentum tensor satisfy

1
RI, llwal® and  (87G)Zuptn® < 75



Method without quasi-local energy: Near equilibrium
state

(F-i). The derivatives of horizon fields are at most the same order
in € as the (maximum of the) original fields. For example,

Cm Cm
ID.CI = T IDDC 2 TS
Here, || - || is the norm of (tangent) tensor fields on the
codimension-2 Riemannian manifold, while | - | is the absolute

value of some scalar. The quantity L is some length scale of the
codimension-2 surface. For example, the radius of the closed

(n — 2) manifold: L = (M/Qn_g)ﬁ which has been defined just
bellow eq.(32). C,, is the maximum value of |C| on the
codimension-2 surface. The relation £ < F means E < koF' for
some constant kg of order one.



Method without quasi-local energy: Near equilibrium
state

The slowly evolving parameter € defined in the condition (F-i) is
independent of the relabeling of the foliation and the rescaling of
the null frame.

Remembering in the case of future null trapping horizon, to
ensure that some physical quantities do not evolve, we have
required the condition Lxw, = 0 and Lxxx = 0. These just
mean that w, and xkx do not evolve respect to the evolution vector
X2, Similarly, here there are also slowly evolving conditions :

(F-i"). |Lxwall and |Lxkx| = €/L?;
(F-ii"). [L£x0™)| < €/L2.



Method without quasi-local energy: Near equilibrium

state
For the past trapping horizon, we can gives similar conditions to

describe the slowly expanding properties:
(P-i). The evolving parameter € < 1 with

£ = max [|C] ([l 2 + (87G) Tt + 156000 |

(P-ii). The Ricci scalar, the SO(1,1) normal connection and the
energy-momentum tensor satisfy

1
B, Jwal? and  (87G)Tupbn® < =5

(P-iii). The derivatives of horizon fields are at most the same order
in € as the (maximum of the) original fields. For example,

C C
IDCI =S ID.DiCl = Ty



Method without quasi-local energy: Near equilibrium
state

The slowly evolving conditions are given:

(P-i"). |Lxwall and |Lxkx| = €/L?;

(P-ii"). |Lx0©| < /L2
With these conditions, one can find that xx is nearly a constant
on the past trapping horizon. So it can also be expanded as

Kx = Ko+ O(e€).



Method without quasi-local energy: Near equilibrium

state

Clausius like equations:
For the future slowly evolving trapping horizon

),CXJZ/ /eq abﬁaﬁb + Uib)a“)ab} ,

(56

Similarly, for the past slowly evolving horizon, we have

(87767

)Exﬁf /Eq Topnn —G-U((Ib) (”)ab} )

(41)

(42)



Geometry of FRW universe

The metric of the FLRW universe (M, g) is

g = —dt* + dr + aQTQdQn 2, (43)

l—k

by introducing two null vectors £ and n

1 a
Lodz® = \[ —dt + dr) ; 44
2 < 1 — kr? (44)

1 a
ngdr® =4/ = | —dt — ——=dr | . 45
¢ 2 ( V1 —kr? ) (45)
So we have hy, = —€yny — nely, while gqp is just the metric for the

sphere part, i.e.,
qapdz®dz’ = a r2dQ



Null trapping horizons

Null trapping horizons exist only when k& = 0.
Further, only inner horizon exists in the future case, and only outer
horizon exists in the past case.
On the null trapping horizons (future and past), the Hubble
parameter H is always a constant.

We only consider the past outer case.



Slowly past evolving trapping horizons in FRW universe

The evolution vector X can be expressed as

X% =al*—n", (46)
where i
H
o=——". (47)
H +2H?

From the definition, the evolving parameter € in the condition (P-i)
becomes (we only consider the four dimension case, and choose L

to be the radius 7 = 1/|H| for k = 0.)

¢ app . Lo@n)
S = lal (Gt + 50000} (48)

772



Straightforward calculation shows: on the trapping horizons, €'s are

given by .
e = |a (4 - ;) . (49)
By defining .
s:—éé>0, (50)

then, from the expression of « in eq.(47), we have

s
2—s°

(51)

o= —

The evolution parameter € now has a simple form

8=s<4+3>. (52)

2—s




So, the requirement of the evolving parameter € < 1 automatically
implies that s = —H /H? is very small.
It's not hard to find

2H?s H
Exnxzﬂ [2—3+s + (HH)] ) (53)

So the slowly evolving condition of kx requires that |H /H?| is
also a small quantity.



Thermodynamics on slowly evolving trapping horizon in
FRW

For the past horizon, from eq.(42), we have

eq T n®. (54)

87rG

Up to second order of € (or the first order of s).
The temperature of the system can be expanded as

= — ~ —

RX H (1
2T 2

= g) O,



Temperature from the formalism with quasi-local
energy

The surface gravity  in eq.(26) becomes
H
—=—=(1-7), (55)

where s is defined in eq.(50). So the temperature of the past outer
trapping horizon is
Tgﬂzﬁ@_g
2w 2w 2

The Clausius relation is

a_ M
A, X = 27T£Xs. (56)



Conclusions and Discussions

e General deformation equations are given without introducing any
local frames.

e The Hawking energy is generalized into higher dimension.
However, this energy is only interesting when the codimension-2
surface is Einstein. Recently Bray proposed an energy form

n=3 n—1
. |S| n—2 2(n 72) n—2
M(S) =3 Wn—2 - 2(n 2)2 wn 2 fS n1dS
(57)

e In cosmology, the condition of the slowly evolving trapping
horizon has close relation to the slow-roll condition.



Thanks for your attention!
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