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Introduction

e The fact that black holes possess thermodynamic

properties has been intriguing in gravity
— Hawking temperature, Black hole entropy

e The AdS/CFT has opened up new insights about

these properties
— Stationary black holes correspond to thermal equilibrium
state of dual field theories at finite-temperature

e |tisinterestingto explore generalization for non-
stationary spacetime
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What is problem?

e |nstationary cases Hawking temperature is given by
surface gravity of (Killing) horizon. How about dynamical
cases?

— No Killing horizon. Which horizon?

— If we defined temperatures by using some quantities associated
with event horizon, how can we observe it at asymptotic
region? It is puzzling from causality.

e Qur approach: we try to define temperature from

spectrum of Hawking radiation
— For gravitational collapse, Barcelo et al. (2011) have considered.
— We will focus our attention on eternal BHs because we are
interested in near-equilibrium systems
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Conventional derivation of the Hawking
radiation

e We introduce two null coordinates
— U: asymptotic time (natural time for asymptotic
observers)
— U: Kruskal time (an affine parameter on the past horizon)

e Bogoliubov transfomation between two sets of
mOdeS U, X e_iwu Uy, X e_w,U
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Thermal spectrum

JGRG21 A



Extension to time-dependent spacetime

e We use wave packets which are localized in both of

time and frequency domains

Y, (u) = \/;Tiww&u(u — ug)e

—wu

WAy () :awindow function which goes rapidly to zero outside Auw

{ A :aduration of observation

Up :atime of observation

We expect to be able to define temperature, if the background
spacetime would evolve sufficiently slowly within the above
time interval
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Saddle-point approximation

. Bogoliubov coefficients for wave packets

[ w dU
} _ / wAu i Uo :l:zwu iw U(u)du
B o

Geometric optics
This integral can be evaluated as :

/_OowAu(u_UO)eXPQb( Jdu ~ wa (ux —ug)e qb(u \/qyf (uy)

[ o(u) =log U’ (u) £ iwu — iw'U(u Saddle point:
¢ d(u) =—k(u) £ iw— 'Lw’U(u) Cb( )—0
L ¢ (u) = = K (u) +iw'U' (u)(u)
_ d dU
We have defined k(u) = . log — T
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Adiabatic expansion

e To clarify what slowly evolving is, we will define
adiabatic expansion

k(u) = ko[l + ef (u)] If(u)] <1 for |u—ug| < Au
‘ i—’z<e (6r = |k(u) — Kol)

e Expanding U(u) with respecttoe¢

') =exp (- [ wlal)du') = Uge™ (1~ enagl) + O(e))

1 — e—moﬁu

Ko

Uw)= | U'()dv =Uy+ U — kg | e g(u)du + O(2) ),
0

U (1) = — k(u)U' (u) = —ro(1 4 ef (u))Use "% (1 — ergg(u) + O(€?))
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Adiabatic expansion

e Also, we will expand the saddle point and solve the
saddle point equation order by order

Uy = u,(ko) e eu,(kl) 4 0(62)
/ i0 a1 —kodul®
0= 0" (usx) =— kore™"’ — iw'Uje™ 70"

+ €Ky [—f(ugo)) + iw’Uée_"O‘s“iO) (us}) + g(uﬁo)))] + O(€%)

d(us) — d(ug) = ¢o + €1 + O(€%), ¢ (us) = ¢y + €] + O(€%)

To guarantee that the purturbative expansion is valid, we should require each
of correction term to be sufficiently smaller than its leading term

Sufficient condition # |wa,|2 ( 2TWw )
5 = exp | —
e <1 | Awer| k(o)
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Surface gravity for past horizon

e Geometrical meaning of x(U)
— In-going null vectors with respect to uand U

po = (%) e — (%) (k* = U’ (w)k%)

— Geodesic equation

“surface gravity” for past horizon
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Application to AdS-Vaidya

e Atoy model of thermalization for CFT fluid . pountaey

— Mass injection into BH N 2=0
1 v =
ds? = 2_2[_(1 — 2m(v)z*)dv? — 2dvdz + dZ3) Z, k)
Mass function:
[ mo 4+ Am (v > Aw)
Lo TV
m(v) = { mg + Amsin? TN (0 <v < Av)
[ o (v < 0)

Awv :time-scale of injection
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Results
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Even if the mass-injetion is so rapid, the terhpeature will gradually

typical thermal scale 1/T.
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Summary

e We have discussed Hawking temperature for non-

stationary spactimes
— Hawking temperature is determined by surface gravity for
the past horizon
e We have applied it to AdS-Vaidya as a toy model of
thermalization process in AdS/CFT
— Even if the spacetime rapidly changes, the temperature

will gradually evolve and its time-scale is bounded by
typical thermal time-scale

JGRG21 12



