Universal Property of Quantum Gravity implied by

Uniqueness Theorem of Bekenstein-Hawking Entropy

(Universal = Independent from any existing model of quantum gravity)

SAIDA Hiromi (Daido Univ. at Nagoya)

- $\diamond~$ Entropy 13 (2011) 1611 , arXiv:1109.0842
- ◇ Invited as a Feature (and refereed) Paper by J.Bekenstein for Special Issue "BH Thermodynamics" in a journal "Entropy"

1. Introduction

1.1 Approach to Quantum Gravity (QG) : Not a model building

- Issues which need QG for complete answer ⇐ A window to QG
 BH thermodyn., BH evapo., Info. Paradox, BH/Initial Sing.
 → Here we watch BH Thermodyn.
- Aim of this talk :

Search for a Universal (model independent) Property of QG

1.2 What I want to do : recall the basis of BH Thermodyn.

- General Relativity \rightarrow Stationary BH is **stable** under metric perturbation
- QFT on stationary BH spacetime
 - \rightarrow **Hawking Rad.** : Black body radiation (BBR)

• **Presuppositions** of BBR : $\begin{cases}
Thermodyn. and Statist. Mach. are right Arbitrary system is in thermal equilibrium The system emits arbitrary quantum field
The system emits arbitrary quantum field$

→ For the emitted quantum field (= the collection of harmonic oscillators) [Energy expectation value by Statist. Mech] – [zero point energy] $= \frac{\omega}{\exp(\omega/T) \pm 1} : \text{Planck Spectrum} (\omega : \text{frequency of mode fn.})$

 \Downarrow — From these theoretical facts \cdots

• Presuppositions of this talk :

Presup.1 : Stationary BH is a stable thermal equilibrium state of the underlying QG.

 \downarrow

Presup.2 : Equilibrium thermodyn. and statist. mech. are applicable to thermal properties of stationary BHs.

- → Under these presuppositions, QG should have the property justifying the Boltzmann formula, $S = \ln \Omega$, which the ordinary quant. mech. of laboratory systems has.
- \rightarrow This property is regarded as the "universal" property of QG \leftarrow The point of this talk

1.3 Concrete issues in following discussion

• Issue on Presup.1 (BH thermodynamics) :

Boltzmann formula determines entropy **uniquely**, but \cdots

- In BH thermodyn., uniqueness of BH entropy has not been proven.
- \rightarrow Give a rigorous proof to **uniqueness theorem of BH entropy** in the framework of *axiomatic thermodynamics*
- Issue on Presup.2 (ordinary quant. mech.) : For the number of states of ordinary quantum system Ω , a thermodyn. limit, $\lim_{V \to \infty} \frac{\ln \Omega}{V} \ (\neq \infty)$, must exist !
 - \rightarrow Show the conditions for interaction pot. of particles which ensure the existence of the thermodyn. limit.

 \rightarrow Ruelle-Tasaki Thm & Dobrushin Thm of ordinary quant. mech.

- 2. Uniqueness Thm of Bekenstein-Hawking Entropy H.S., Entropy 13 (2011) 1611, arXiv:1109.0842
 - $\diamond S_{\rm BH}$: Bekenstein-Hawking Entropy (= $\frac{1}{4} \cdot 4\pi (2M)^2$)
 - $\diamond \ K_{\rm BH} : \ {\rm Arbitrary \ quantity \ satisfying, \ (1) \ extensivity,} \\ {\rm (2) \ additivity \ and \ (3) \ increase \ by \ adiabatic \ process }$
 - \Rightarrow $K_{\rm BH}$ is an affine transform of $S_{\rm BH}$:

 $K_{\rm BH} = \alpha S_{\rm BH} + \eta$

where $\alpha \ (> 0)$ and η are constants.

Note : By this Thm, any other property is also uniquely determined.

Then it is justified to consider the Boltzmann formula which determines the entropy uniquely !

 \downarrow

3. Property Justifying Boltzmann Formula in Quant. Mech.

3.1 Setting

3.1 Setting

• System : Non-relativistic identical particles
 1 NV : volume of system
 N: number of particles
 m: mass of one particle

• Hamiltonian : $H_{V,N} := -\frac{1}{2m} \sum_{i=1}^{N} \Delta_i + \Phi$

• Interaction pot.: $\Phi(\vec{x}_1, \cdots, \vec{x}_N) = \sum_{j=1}^N \sum_{1 \le i_1 < \cdots < i_j \le N} \phi^{(j)}(\vec{x}_{i_1}, \cdots, \vec{x}_j)$ \uparrow

- Energy eigen value: $E_k(V, N)$ $k = 1, 2, \cdots$
- $\uparrow \\ \Phi = 0 \text{ at "infinity"}$
 - \rightarrow Increasing order : $E_k(V, N) \leq E_{k+1}(V, N)$

 \rightarrow Ground energy : $E_G(V, N) = E_1 = \cdots = E_d$ (d : degeneracy)

• Number of states : $\Omega_{V,N}(U) := \max_{E_k \leq U} k$ (# eigen states of $E_k \leq U$)

Ruelle-Tasaki Thm gives Sufficient conditions for the validity of Boltzmann formula.

• The sufficient conditions given in this theorem

Cond.A : *j*-particle interaction pot. $\phi^{(j)}$ is negative at "infinity". i.e. There exists a constant $r_A (> 0)$ so that $\phi^{(j)}(\vec{x}_{i_1}, \cdots, \vec{x}_{i_j}) \leq 0$ for $r_A \leq \min_{\substack{k \neq l \\ k, l = 1, \cdots, j}} |\vec{x}_{i_k} - \vec{x}_{i_l}|$ Cond.B : Total interaction pot. Φ is bounded below. i.e. There exists a constant $\phi_B (> 0)$ so that $\Phi(\vec{x}_1, \cdots, \vec{x}_N) \geq -N \phi_B$

Then · · ·

• Results of Ruelle-Tasaki theorem

Quantum system satisfying conditions A and B has following unique limits : Result 1 : $\varepsilon_g(\rho) := \lim_{l.s.l.} \frac{E_G(V, N)}{V}$ ($\lim_{l.s.l.} : V \to \infty$, $\rho := \frac{N}{V} = \text{const.}$) Result 2 : $\sigma(\rho, \varepsilon) := \lim_{t.l.} \frac{\ln \Omega_{V,N}(U)}{V}$ ($\varepsilon := \frac{U}{V} \ge \varepsilon_g(\rho)$) and σ is concave w.r.t. (ρ, ε) and increasing w.r.t. ε ($\lim_{t.l.} : V \to \infty$ and $\rho, \varepsilon = \text{consts.}$)

Note 1 : Result 1 gives the lower bound of ε for result 2.

Note 2 : " $\sigma(\rho, \varepsilon) = \text{const.}$ for *reversible* adiabatic process" is also shown. \rightarrow With regarding this as one part of the entropy principle \cdots $\sigma(\rho, \varepsilon)$ is usually regarded as the entropy density! $\rightarrow S = \ln \Omega$

3.3 Dobrushin theorem for quantum system

Dobrushin, Teorija Verojatn. i ee Prim.9 (1964) 626

 \rightarrow This paper seems to be for classical systems. I extended to quantum system.

Dobrushin Thm gives a Necessary condition for the existence of thermal equilibrium states.

• Preparation : Grand Partition Function , $\Xi_V := \sum_{N=1}^{\infty} e^{\beta \mu N} \operatorname{Tr} e^{-\beta H_{V,N}}$

 \rightarrow Basic equivalent relation

 $[\Xi_V \text{ exists }] \iff [\text{ Statistical equilibrium states of system exist }]$

• Contents of theorem

Supposition 1 :
$$\Phi = \sum_{1 \le i < j \le N} \phi^{(2)}(\vec{x}_i, \vec{x}_j)$$
 (only 2-particle int.)
Supposition 2 : $\lim_{l.s.l.} \frac{1}{V^N} \int \cdots \int_V d^3 x_1 \cdots d^3 x_N \Delta_1^{q_1} \cdots \Delta_N^{q_N} \Phi = \text{finite}$
($q_i = 0, 1, 2, \cdots$ and $q_1 + \cdots + q_N \neq 0$)
Under these suppositions \cdots
If $I_V^{(2)} := \frac{1}{V^2} \iint_V d^3 x_1 d^3 x_2 \phi^{(2)}(\vec{x}_1, \vec{x}_2) < 0$
then $\lim_{l.s.l.} \Xi_V \to \infty$ (statistical equilibrium does not exits)

 \rightarrow Contraposition : For the system of 2-particle interaction, [Thermal equilibrium exists] \implies [$I_V^{(2)} \ge 0$] Note on Suppos.2 : Ex. $\phi^{(2)} \propto \frac{1}{|\vec{x}_i - \vec{x}_j|^{\alpha}}$ ($\alpha \ge 0$) \rightarrow a weak constraint

3.4 Case : therm. equil. is possible for a system of $\Phi = \sum \phi^{(2)}$

- - \rightarrow Reasonably, we adopt the conditions A and B. ^(also for BHs !)
- By the necessary condition given by Dobrushin Thm : $\phi^{(2)}$ satisfies $I_V^{(2)} \ge 0$

Repulsive at short length scale !

4. Conclusion : Universal Property of Quantum Gravity (QG) Entropy 13 (2011) 1611 , arXiv:1109.0842

Reasonable Presuppositions based on Uniqueness of BH entropy :

- Presup.1 : Stationary BH is a stable thermal equilibrium of QG. Presup.2 : Thermodyn. and Statist. Mech. are valid for BHs.
- \rightarrow QG and ordinary quantum mechanics should share the property which justifies the Boltzmann formula :
- Suggestion : Interaction between quantum states of gravity is bounded below and repulsive at short (Planck) length scale.
- \rightarrow QG is not necessarily expressed by a potential $\phi^{(2)}(r)$...
- Interpretation : Semiclassical Lagrangian of underlying QG should raise a repulsive gravity at Planck length scale.
 - This property is independent of existing models of QG.

Suppl. Difference of BH thermodyn. and laboratory thermodyn.

- Basic axioms of ordinary thermodyn. are not only 0th to 3rd laws !
 - \rightarrow Ex.: All state variables are distinguished into two groups, "extensive" and "intensive" variables.
 - \rightarrow This axiom is used in the proof of uniqueness of entropy.

Lieb & Yngvason 1999 ; Tasaki 2000

 \bullet How about BH's state variables ? \cdots ex : Schwarzschild BH

• Basic scaling and Categorization of BH's state variables

 \rightarrow This classification is very different from that of ordinary thermodyn.

 \rightarrow It is not obvious if BH entropy is unique or not !

 \cdots I have shown the uniqueness.