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1. Introduction

1.1 Approach to Quantum Gravity (QG) : Not a model building

e Issues which need QG for complete answer <— A window to QG

BH thermodyn. , BH evapo. , Info. Paradox, BH /Initial Sing.
— Here we watch BH Thermodyn.

e Aim of this talk :
Search for a Universal (model independent) Property of QG



1.2 What I want to do : recall the basis of BH Thermodyn.

e General Relativity — Stationary BH is stable under metric perturbation

e OFT on stationary BH spacetime
— Hawking Rad. : Black body radiation (BBR)

Thermodyn. and Statist. Mach. are right

e Presuppositions of BBR : ¢ Arbitrary system is in thermal equilibrium

The system emits arbitrary quantum field

— For the emitted quantum field (= the collection of harmonic oscillators)

[Energy expectation value by Statist. Mech| — |zero point energy]

W

— (/T £ 1 . Planck Spectrum ( w : frequency of mode fn. )

J— From these theoretical facts - - -



Y
e Presuppositions of this talk :

Presup.1 : Stationary BH is a stable thermal equilibrium
state of the underlying QG.

Presup.2 : Equilibrium thermodyn. and statist. mech. are
applicable to thermal properties of stationary BHs.

— Under these presuppositions, QG should have
the property justifying the Boltzmann formula, S =1Inf) ,

which the ordinary quant. mech. of laboratory systems has.

— This property is regarded as

the “universal” property of QG <— HNtRoYeihaiaNe) ik NI #:11s



1.3 Concrete issues in following discussion

e [ssue on Presup.1 (BH thermodynamics) :
Boltzmann formula determines entropy uniquely, but - - -
In BH thermodyn., uniqueness of BH entropy has not been proven.

— Give a rigorous proof to uniqueness theorem of BH entropy
in the framework of ariomatic thermodynamics

e [ssue on Presup.2 (ordinary quant. mech.) :

For the number of states of ordinary quantum system €2,

In €
a thermodyn. limit, lim —— (# oo), must exist !
V=00

— Show the conditions for interaction pot. of particles
which ensure the existence of the thermodyn. limit.

— Ruelle-Tasaki Thm & Dobrushin Thm of ordinary quant. mech.



2. Uniqueness Thm of Bekenstein-Hawking Entropy

¢ Spy : Bekenstein-Hawking Entropyl] = % Ar(2M)? O

o Ky : Arbitrary quantity satisfying, (1) extensivity,
(2) additivity and (3) increase by adiabatic process

= Kgpy i1s an affine transform of Spy :
Kpy = aSph+1

where o (> 0) and 7 are constants.

Note : By this Thm, any other property is also uniquely determined.
Y

Then it is justified to consider the Boltzmann formula
which determines the entropy uniquely !



3. Property Justifying Boltzmann Formula in Quant. Mech.

3.1 Setting ‘

V' volume of system

e System : Non-relativistic identical particles < N: number of particles

It | m: mass of one particle

1
e Hamiltonian : Hy n = — v N+ D
| m =1

N .
e [nteraction pot.: ®(Z, -+ ,ZN) = > > gb(ﬁ(fil, e T)
j=1 1<ij<<ij<N
T

e Energy eigen value: EL.(V,N) k=1,2,--- ¢ = 0 at “infinity”

— Increasing order : EL(V,N) < Ej.1(V,N)
— Ground energy : Eqg(V,N)=FE{=---=FE; 0 d: degeneracy

e Number of states : Qy n(U) = énggjk (# eigen states of Fj. < U)
k>




3.2 Ruelle-Tasaki theorem Ruelle 1969 & 1999 ; Tasaki 2008

Ruelle-Tasaki Thm gives Sufficient conditions

for the validity of Boltzmann formula.

e The sufficient conditions given in this theorem

Cond.A : j-particle interaction pot. q§<j ) is negative at “infinity”.
i.e. There exists a constant r4 (> 0) so that
OUN(Ey, -+ ) <0 for ry < min |F, — &

iy
kal:L'" >j

Cond.B : Total interaction pot. ® is bounded below.
i.e. There exists a constant ¢ (> 0) so that

Oy, ,Zn) > —Nop

Then - --




e Results of Ruelle-Tasaki theorem

Quantum system satisfying conditions A and B
has following unique limits :

. Eq(V,N) N
Result 1 : = | lim : V — = t.
sultteslol= v U Ve pmy moonst)
In € U
Result 2 : o(p,e) = 1tHln V"/N( ) (e:=— > eg(p) O

and o is concave w.r.t. (p,¢) and increasing w.r.t. ¢

(hrln : V — o0 and p, e = consts.)
t

Note 1 : Result 1 gives the lower bound of € for result 2.

Note 2 : “o(p,e) = const. for reversible adiabatic process” is also shown.

— With regarding this as one part of the entropy principle - - -
o(p,e) is usually regarded as the entropy density! — S =1In{)




3.3 Dobrushin theorem for quantum system

— This paper seems to be for classical systems.

[ extended to quantum system.

Dobrushin Thm gives a Necessary condition
for the existence of thermal equilibrium states.

- H
e Preparation : Grand Partition Function, Zy .= > eV Ty e PHV.N
N=1

— DBasic equivalent relation

| =y exists | <= | Statistical equilibrium states of system exist |



e Contents of theorem

Supposition 1: = 5 ¢ (Z;,7;) (only 2-particle int.)
1<i<j<N

Supposition 2 : lthZl W/ / d X1 - :z:N AQI A%VCD = finite
(¢;=0,1,2,--- and ¢ +---+qy #0)
Under these suppositions - - -

i LQ / / By By 922y, 79) < 0

then thll —y — oo (statistical equilibrium does not exits)
S

— Contraposition : For the system of 2-particle interaction,

[ Thermal equilibrium exists | = | ]‘</2> >0 ]

1 .

— [0 o> 00 — a weak constraint
. e

’377, 5’3]‘

Note on Suppos.2 : Ex. gb<2) X




3.4 Case : therm. equil. is possible for a system of & = ) o2

e On the sufficient conditions given by Ruelle-Tasaki Thm
{No counter-example to Cond.A and B is found in laboratory.

No strong reason to violate Cond.A and B for real thermal systems.
(also for BHs !)

e By the necessary condition given by Dobrushin Thm : (b<2) satisfies I‘(/Q ) > ()

— Reasonably, we adopt the conditions A and B.

[ (I)f)(f’) L,>0
Typical potential is the right one — L d’aj(’” >r)=<0
where we assume for simplicity, ol 74 p
O, By) = ¢ (r) Or = |7 — &y
PR Lower Bound

Repulsive at short length scalel]



4. Conclusion : Universal Property of Quantum Gravity (QG)

Reasonable Presuppositions based on Uniqueness of BH entropy :
Presup.1 : Stationary BH is a stable thermal equilibrium of QG.
Presup.2 : Thermodyn. and Statist. Mech. are valid for BHs.

— QG and ordinary quantum mechanics should share the property
which justifies the Boltzmann formula

Suggestion : Interaction between quantum states of gravity is
bounded below and repulsive at short (Planck) length scale.

— QG 1s not necessarily expressed by a potential gb<2)(7") ce

Interpretation : Semiclassical Lagrangian of underlying QG
should raise a repulsive gravity at Planck length scale.

This property is independent of existing models of QG.



Suppl. Difference of BH thermodyn. and laboratory thermodyn.

e Basic axioms of ordinary thermodyn. are not only Oth to 3rd laws !

— Ex.: All state variables are distinguished into two groups,
“extensive” and “intensive” variables.

— This axiom is used in the proot of uniqueness of entropy:.

e How about BH’s state variables ? --- ex : Schwarzschild BH
— BH in a cavity

of heat bath Cavity
(by York, 1986) W

Hawking Radiation

------- Surface of Heat Bath
(State variables
are measured here)




e Basic scaling and Categorization of BH’s state variables

Scaling of basic parameters of system :
M — XM , ry— Ary  (length)
Then, BH’s state variables are distinguished into 3 groups:

(Extensive variables X[ e.g. Sppd @ X — A2 X

Y
4 Intensive variables YOe.g. Tgyd : Y — 5N

\Thermodyn. energy Zle.g. Fpyldl: Z - A2

— This classification is very different from that of ordinary thermodyn.

=4 It is not obvious if BH entropy is unique or not !

.-+ | have shown the uniqueness.



