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1. Introduction

1.1 Approach to Quantum Gravity (QG) : Not a model building

• Issues which need QG for complete answer ⇐⇒ A window to QG

BH thermodyn. , BH evapo. , Info. Paradox , BH/Initial Sing.

→ Here we watch BH Thermodyn.

• Aim of this talk :

Search for a Universal (model independent) Property of QG



1.2 What I want to do : recall the basis of BH Thermodyn.

• General Relativity → Stationary BH is stable under metric perturbation

• QFT on stationary BH spacetime

→ Hawking Rad. : Black body radiation (BBR)

• Presuppositions of BBR :


Thermodyn. and Statist. Mach. are right

Arbitrary system is in thermal equilibrium

The system emits arbitrary quantum field

→ For the emitted quantum field (= the collection of harmonic oscillators)

[Energy expectation value by Statist. Mech] − [zero point energy]

=
ω

exp(ω/T )± 1
: Planck Spectrum ( ω : frequency of mode fn. )

⇓— From these theoretical facts · · ·



⇓
• Presuppositions of this talk :

Presup.1 : Stationary BH is a stable thermal equilibrium

state of the underlying QG.

Presup.2 : Equilibrium thermodyn. and statist. mech. are

applicable to thermal properties of stationary BHs.

→ Under these presuppositions, QG should have

the property justifying the Boltzmann formula, S = lnΩ ,

which the ordinary quant. mech. of laboratory systems has.

→ This property is regarded as

the “universal” property of QG ← The point of this talk



1.3 Concrete issues in following discussion

• Issue on Presup.1 (BH thermodynamics) :

Boltzmann formula determines entropy uniquely, but · · ·

In BH thermodyn., uniqueness of BH entropy has not been proven.

→ Give a rigorous proof to uniqueness theorem of BH entropy

in the framework of axiomatic thermodynamics

• Issue on Presup.2 (ordinary quant. mech.) :

For the number of states of ordinary quantum system Ω,

a thermodyn. limit, lim
V→∞

ln Ω

V
(6=∞), must exist !

→ Show the conditions for interaction pot. of particles

which ensure the existence of the thermodyn. limit.

→ Ruelle-Tasaki Thm & Dobrushin Thm of ordinary quant. mech.



2. Uniqueness Thm of Bekenstein-Hawking Entropy

H.S., Entropy 13 (2011) 1611 , arXiv:1109.0842

� SBH : Bekenstein-Hawking Entropy（= 1
4 · 4π(2M)2 ）

� KBH : Arbitrary quantity satisfying, (1) extensivity,
(2) additivity and (3) increase by adiabatic process

⇒ KBH is an affine transform of SBH :

KBH = αSBH + η

where α (> 0) and η are constants.

Note : By this Thm, any other property is also uniquely determined.

⇓
Then it is justified to consider the Boltzmann formula

which determines the entropy uniquely !



3. Property Justifying Boltzmann Formula in Quant. Mech.

3.1 Setting

• System : Non-relativistic identical particles


V : volume of system

N : number of particles

m : mass of one particle

• Hamiltonian : HV,N := − 1

2m

N∑
i=1
4i + Φ

• Interaction pot.: Φ(~x1, · · · , ~xN ) =
N∑
j=1

∑
1≤i1<···<ij≤N

φ(j)(~xi1, · · · , ~xj)

↑
Φ = 0 at “infinity”• Energy eigen value: Ek(V,N) k = 1, 2, · · ·

→ Increasing order : Ek(V,N) ≤ Ek+1(V,N)

→ Ground energy : EG(V,N) = E1 = · · · = Ed （ d : degeneracy）

• Number of states : ΩV,N (U) := max
Ek≤U

k (# eigen states of Ek ≤ U)



3.2 Ruelle-Tasaki theorem Ruelle 1969 & 1999 ; Tasaki 2008

Ruelle-Tasaki Thm gives Sufficient conditions

for the validity of Boltzmann formula.

• The sufficient conditions given in this theorem

Cond.A : j-particle interaction pot. φ(j) is negative at “infinity”.

i.e. There exists a constant rA (> 0) so that

φ(j)(~xi1, · · · , ~xij) ≤ 0 for rA ≤ min
k 6=l

k,l=1,··· ,j

∣∣~xik − ~xil
∣∣

Cond.B : Total interaction pot. Φ is bounded below.

i.e. There exists a constant φB (> 0) so that

Φ(~x1, · · · , ~xN ) ≥ −N φB

Then · · ·



• Results of Ruelle-Tasaki theorem

Quantum system satisfying conditions A and B
has following unique limits :

Result 1 : εg(ρ) := lim
l.s.l.

EG(V,N)

V
( lim
l.s.l.

: V →∞ , ρ :=
N

V
= const.)

Result 2 : σ(ρ, ε) := lim
t.l.

ln ΩV,N (U)

V
( ε :=

U

V
≥ εg(ρ) ）

and σ is concave w.r.t. (ρ, ε) and increasing w.r.t. ε

( lim
t.l.

: V →∞ and ρ, ε = consts.)

Note 1 : Result 1 gives the lower bound of ε for result 2.

Note 2 : “σ(ρ, ε) = const. for reversible adiabatic process” is also shown.

→ With regarding this as one part of the entropy principle · · ·
σ(ρ, ε) is usually regarded as the entropy density! → S = lnΩ



3.3 Dobrushin theorem for quantum system

Dobrushin, Teorija Verojatn. i ee Prim.9 (1964) 626

→ This paper seems to be for classical systems.

I extended to quantum system.

Dobrushin Thm gives a Necessary condition

for the existence of thermal equilibrium states.

• Preparation : Grand Partition Function , ΞV :=
∞∑

N=1
eβµN Tr e−βHV,N

→ Basic equivalent relation

[ ΞV exists ] ⇐⇒ [ Statistical equilibrium states of system exist ]



• Contents of theorem

Supposition 1 : Φ =
∑

1≤i<j≤N
φ(2)(~xi, ~xj) (only 2-particle int.)

Supposition 2 : lim
l.s.l.

1

V N

∫
· · ·

∫
V
d3x1 · · · d3xN 4

q1
1 · · ·4

qN
N Φ = finite

( qi = 0, 1, 2, · · · and q1 + · · · + qN 6= 0 )

Under these suppositions · · ·

If I
(2)
V :=

1

V 2

∫∫
V
d3x1 d

3x2 φ(2)(~x1, ~x2) < 0

then lim
l.s.l.

ΞV →∞ (statistical equilibrium does not exits)

→ Contraposition : For the system of 2-particle interaction,

[ Thermal equilibrium exists ] =⇒ [ I
(2)
V ≥ 0 ]

Note on Suppos.2 : Ex. φ(2) ∝ 1

|~xi − ~xj|α
（ α ≥ 0 ）→ a weak constraint



3.4 Case : therm. equil. is possible for a system of Φ =
∑

φ(2)

• On the sufficient conditions given by Ruelle-Tasaki Thm{
No counter-example to Cond.A and B is found in laboratory.

No strong reason to violate Cond.A and B for real thermal systems.
(also for BHs !)→ Reasonably, we adopt the conditions A and B.

• By the necessary condition given by Dobrushin Thm : φ(2) satisfies I
(2)
V ≥ 0

⇓

Typical potential is the right one −→
where we assume for simplicity,

φ(2)(~x1, ~x2) = φ(2)(r) ，r = |~x1 − ~x2|

Repulsive at short length scale！

φ(2)
(r)

0
rA r

Lower Bound

IV > 0

φ(2)
(r > rA) < 0



4. Conclusion : Universal Property of Quantum Gravity (QG)

Entropy 13 (2011) 1611 , arXiv:1109.0842

Reasonable Presuppositions based on Uniqueness of BH entropy :

Presup.1 : Stationary BH is a stable thermal equilibrium of QG.

Presup.2 : Thermodyn. and Statist. Mech. are valid for BHs.

→ QG and ordinary quantum mechanics should share the property

which justifies the Boltzmann formula :

Suggestion : Interaction between quantum states of gravity is

bounded below and repulsive at short (Planck) length scale.

→ QG is not necessarily expressed by a potential φ(2)(r) · · ·

Interpretation : Semiclassical Lagrangian of underlying QG

should raise a repulsive gravity at Planck length scale.

This property is independent of existing models of QG.



Suppl. Difference of BH thermodyn. and laboratory thermodyn.

• Basic axioms of ordinary thermodyn. are not only 0th to 3rd laws !

→ Ex.: All state variables are distinguished into two groups,

“extensive” and “intensive” variables.

→ This axiom is used in the proof of uniqueness of entropy.

Lieb & Yngvason 1999 ; Tasaki 2000

• How about BH’s state variables ? · · · ex : Schwarzschild BH

→ BH in a cavity

of heat bath

(by York, 1986)
BH

Heat Bath
Surface of Heat Bath
(State variables
     are measured here)

Hawking Radiation
Cavity



• Basic scaling and Categorization of BH’s state variables

Scaling of basic parameters of system :

M → λM , rw → λ rw (length)

Then, BH’s state variables are distinguished into 3 groups:
Extensive variables X（e.g. SBH） : X → λ2X

Intensive variables Y（e.g. TBH） : Y → Y

λ
Thermodyn. energy Z（e.g. FBH）: Z → λZ

→ This classification is very different from that of ordinary thermodyn.

→ It is not obvious if BH entropy is unique or not !

· · · I have shown the uniqueness.


