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Introduction

Inflation is one of the most promising candidates

as the generation mechanism of primordial fluctuations.

We have hundreds or thousands of inflation models.
— we have to discriminate those models

Non-Gaussianity in CMB will have the key of this puzzle.
In order to calculate the NG correctly,

we have to go to the second order perturbation theory,
but ...



Evolution of fluctuation
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we don’t necessarily have to solve complicated pertur. Eq.

[Concentrating on the evolution of fluctuations on large scales, ]




Gradient expansion approach

In GE, equations are expanded in powers of spatial gradients.
— Although it is only applicable to superhorizon evolution,
full nonlinear effects are taken into account.

At the lowest order in GE (neglect all spatial gradients),

lowest order Eq. | — Background Eg.

Just by solving background equations,
we can calculate curvature perturbations and NG in them.

[ R ~ (difference of e-fold) : delta-N formalism ]

Don’t we have to care about spatial gradient terms ?



Slow-roll violation

* If slow-roll violation occured, we cannot neglect gradient terms.
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* Since slow-roll violation may naturally occur in multi-field

inflation models, we have to take into account gradient terms

more seriously in multi-field case.



Goal

(6 )

ur goal is to give the general formalism for solving

the higher order terms in (spatial) gradient expansion,

which can be applied to the case of multi-field.
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Gradient expansion approach
and
delta-N formalism



Gradient expansion approach

* On superhorizon scales, gradient expansion will be valid.
0.Q| < |0Q|~HQ  L>H!
87; — € (9@

- We expand Equations in powers of spatial gradients : €

 We express the metricin ADM form
ds* = —a?dt® + g;;(dx’ + B'dt)(dz? + [ dt)
* We decompose spatial metric g; and extrinsic curvature K; into

gii = az(t)e@%j det ;5| = 1 a(t) : fiducial “B.G.”

W ~ R: curvature perturbation c.f. W(t,,0) =0

1
AN @ e 3 i t iy traceless



Lowest-order in gradient expansion

* After expanding Einstein equations, lowest-order equations are

lowest-order eq.

background eq.

4 oy ) 4 )
lK2:E —leaT(ae ) 3H” = pg H:@
3 3 aeV a
1 3 3
—0;K =0.K = -(F + P) O (—3H) = §(po + Pp)
O 2 J Y,

—> The structure of lowest-order eq is same as that of B.G. eq
with identifications, dT < dt and ae” S a !

lowest-order sol.

69(r) = f(7.61)

changing t by T background sol.

G B0 = f(t,00))




delta-N formalism

* We define the non-linear e-folding number and delta-N.

z%/KadtN—/(H+\if)dt SN=N—N = M

final
initial

* Choose slicing such that initial : flat & final : uniform energy

Eﬂnal
E const. E
flat /NN/ N iN
flat N 1N \%N\Emmﬂat

delta-N gives the final curvature perturbation
Up(tfy) =0N =N|E;, +0E;,E¢| — N|E;, E]

J




Beyond delta-N formalism



Gradient expansion approach
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towards “Beyond delta-N”"

At the next order in gradient expansion,
we need to evaluate spatial gradient terms.

2
26 +3HO, 6P + VP = £p® QP =0()
* Since those gradient terms are given by the spatial derivative

of lowest-order solutions, we can easily integrate them...

* Once spatial gradient appeared in equation,
we cannot use “1” as time coordinate which depends on x’
because integrable condition is not satisfied.

dr # a(t,z')dt <mm) dN = H(t)dt

[ — we cannot freely choose time coordinate (gauge) !! ]




Beyond delta-N

 We usually use e-folding number (not t) as time coordinate.
1 :
N = g/Kozdt:—/(HJr\If)dt%N
- We choose uniform N gauge and use N as time coordinate.

* Form the gauge transformation 6N : uniform N - uniform E,

we can evaluate the curvature perturbation W, ~ o /V.

(—[ lowest order ]-\ ./\/A N - const next order
3H? = E + O(¢?)

E(O) _ E(O) (N, Ez) Wat E(2) _ E(2) (N’ EZ)




Summary

* We gave the formalism, “Beyond delta-N formalism”,
to calculate spatial gradient terms in gradient expansion.

* If you have background solutions, you can calculate
the correction of “delta-N formalism” with this formalism
just by calculating the “delta-N".






Linear perturbation theory



FLRW universe

* For simplicity, we focus on single scalar field inflation.

* Background spacetime : flat FLRW universe
ds* = a*(n)[—dn* + §;;dz" d2’]

Friedmann equation :

/

1
3H? = a’po = Sop(n)* +V(go)  H=7

a



Linear perturbation

 We define the scalar-type perturbation of metric as
ds* = a* [—(1 + 2a)dn® + 2N, Bdndz’ + {(1 + 2R )d;; + A_l@-@jE}dxidxj}

s 1
(0,0): AR+ A20,4+3H(Ha—-TR') = —§a25p

. 1 a*6p = ¢y0d — ¢pa+ a*Vde
(0,i): R —Ha = —§gb65gb

1
trace: R"+2HR —Hd' — (2H +HP)a = —§a25P

traceless: (A%ag)’ + 2H(A%ag) = —-A(a+R)
0y = AN23 — E



Linear perturbation :J =0

* We take the comoving gauge = uniform scalar field gauge.

a’J = ¢pdp =0
 Combining four equations, we can derive the master equation.
2’ _agy
R/C/-FQ;R/C—ARC:O Z:?

* On super horizon scales, R_ become constant.

K. = const. and R’C X 272 ~a"?



Einstein equationsin)J =0

e Original Einstein equations in J = 0 gauge are

1 1
(0,0): MJF Az0y +%—\R/) = —§a25p = %¢62a

(O’ |) : R/ _ HO( — N /5¢ a2510 — ¢65¢/ - ¢62Oi‘|‘a2v(/55¢
2 o, =023 —FE'

1
trace: R +2HR —Ha' — (2H +H>)a = —§a26P

traceless : (A%gg)’ + QH(A%O-Q) — %\w

1
R, ~Ha~ N2o, = a2

ds* = a* [—(1 + 2a)dn® + 2N, Bdndz’ + {(1 +2R)d;; + A_l&b-@jE}da:idxj}




Rc = d 6cI)flat

* We can quantize the perturbationwith 1y = 2R, # = 1

/
/) 2Z—’—A = //_(// A) _
Re+2-R. = AR: =0 > U 22+ N)u=0
* uisthe perturbation of scalar field on R = 0 slice.
H
Re=R+ ¢_65¢ uUu=2zR.= 2R 4+ add = aopgat

—> guantization is done on flat (R = 0) slice.

—> perturbations at horizon crossing
which give the initial conditions for V expansion
are given by fluctuations on flat slice.



Curvature perturbation ?

 We parameterised the spatial metric as

= g2 2V Hlinearlise 5ii AL 9.0, —lﬁ 5
9ij — a (t)e Yii o way (14 2W)d;; + i0; 1 3 L0;;

traceless

* In the linear perturbation, we parametrised the spatial metric as

= a’ 0 A19,;0; 1
9ij a{(l#@) j+2 JE} _/[R—\IJ§EJ

. 4
R : curvature perturbation R® = ——5 AR

* Strictly speaking, W is not the curvature perturbation. o, ~ E’
—> On SH scales, E become constant and we can set E = 0.

— W can be regarded as curvature perturbation
at lowest-order in V expansion. U ~R



Shear and curvature perturbation

* Once we take into account spatial gradient terms,
shear (o, or A;) will be sourced by them and evolve.
—> we have to solve the evolution of E.
(A20,) +2H(A%o,) = —A(a+R)

* At the next order in gradient expansion,
W is given by “delta-N" like calculation.
In addition, we need to evaluate E.

-@- ;0
5N/ \EN/deN/th'



delta-N formalism 1

* We define the non-linear e-folding number

Nzé/Kadtw—/(HJr\if)dt:N—[\If}

final
initial
e Curvature perturbation is given by the difference of “N”

5N — N — N = \Ij(tﬁnal) — \Ij(tinitial)

e \Ij(tﬁnal)
fIat/ >f\ _—
SN I N
flat _ ~
/ M\ A

U (tinitial)



delta-N formalism 2

* Choose slicing such that initial : flat & final : uniform

st. E const.
| \ 5N E const.

flat ON \?/\f

lat

flat

( )

delta-N gives the final curvature perturbation

ON = U, (ts) — Opty) = N + 00, ] — [sz'aﬁbf])




Beyond delta-N

 We usually use e-folding number (not t) as time coordinate.

V= [ Kadi= - [+ i

— We choose uniform N slicing and use N as time coordinate.

 Combining equations, you will get the following equation for ¢.

1% 1 - 1%
- (1 _ 68N</52> 02, ¢ — GOND+ V= F® [N, ¢(0)(Ni)7’77;(§>(Ni)}

3
(62 = 1[N 6O @)1 ()] »)




Beyond delta-N 2

* We compute “delta N” from the solution of scalar field.

= F {N o' (Ny), Z(;))(NZ)} | com.

|1 J\

com.
flat

~ 1

ON = \Ijlginal \Ijﬂat 7zfcinal T g(Eigmal Eﬂat )

initial — initial

1
3

On Aij = 3As; + GO N, 6O (N;), 1 (W)




Beyond delta-N 3

e We extend the formalism to multi-field case.

* As a final slice, we choose uniform E or uniform K slice

since we cannot take “comoving slice”. TV, : vectorial

K2 ~ E 0, K =.J, @ lowestorder

 We can compute “delta N” form the solution of E, K.

/%K@)—K(z) N0 (), (V)|

E. K E K a
7zﬁnabl = 0N — (Eﬁnal Eﬂ t )

3 initial






Question

How can we calculate
the correction of delta-N formalism ?



Answer

To calculate the cor. of delta-N,
all you have to do is calculate “delta-N”.



