Beyond delta-N formalism

Atsushi Naruko

Yukawa Institute Theoretical Physics, Kyoto

In collaboration with

Yuichi Takamizu (Waseda) and Misao Sasaki (YITP)

The contents of my talk

- 1. Introduction and Motivation
- 2. Gradient expansion and delta-N formalism
- 3. Beyond delta-N formalism

Introduction

- Inflation is one of the most promising candidates as the generation mechanism of primordial fluctuations.
- We have hundreds or thousands of inflation models.
 → we have to discriminate those models
- Non-Gaussianity in CMB will have the key of this puzzle.
- In order to calculate the NG correctly, we have to go to the second order perturbation theory, but ...

Evolution of fluctuation

Concentrating on the evolution of fluctuations on large scales, we don't necessarily have to solve complicated pertur. Eq.

Gradient expansion approach

- In GE, equations are expanded in powers of spatial gradients.
 - → Although it is only applicable to superhorizon evolution, full nonlinear effects are taken into account.
- At the lowest order in GE (neglect all spatial gradients),

lowest order Eq.

Background Eq.

• Just by solving background equations,

we can calculate curvature perturbations and NG in them.

 $\mathcal{R} \sim$ (difference of e-fold) : delta-N formalism

• Don't we have to care about spatial gradient terms ?

Slow-roll violation

• If slow-roll violation occured, we cannot neglect gradient terms.

 Since slow-roll violation may naturally occur in multi-field inflation models, we have to take into account gradient terms more seriously in multi-field case.

Goal

Our goal is to give the general formalism for solving

the higher order terms in (spatial) gradient expansion,

which can be applied to the case of multi-field.

Gradient expansion approach and delta-N formalism

Gradient expansion approach

• On superhorizon scales, gradient expansion will be valid.

$$\begin{vmatrix} \partial_i Q \\ \ll \\ \begin{vmatrix} \partial_t Q \\ \end{vmatrix} \sim HQ \qquad L \gg H^{-1} \\ \partial_i \rightarrow \epsilon \ \partial_i \\ \Rightarrow \text{ We expand Equations in powers of spatial gradients : } \epsilon \end{vmatrix}$$

• We express the metric in ADM form

$$ds^{2} = -\alpha^{2}dt^{2} + g_{ij}(dx^{i} + \beta^{i}dt)(dx^{j} + \beta^{j}dt)$$

• We decompose spatial metric g_{ii} and extrinsic curvature K_{ii} into

$$g_{ij} = a^{2}(t)e^{2\Psi}\gamma_{ij} \quad \det |\gamma_{ij}| = 1 \qquad \text{a(t) : fiducial "B.G}$$

$$\Psi \sim \mathbf{R} : \text{curvature perturbation} \qquad c.f. \quad \Psi(t_{*}, 0) = K_{ij}\left(\sim \dot{g}_{ij}\right) = a^{2}e^{2\Psi}\left(\frac{1}{3}K\gamma_{ij} + \underline{A_{ij}}\right) \qquad \text{traceless}$$

11

Lowest-order in gradient expansion

 After expanding Einstein equations, lowest-order equations are lowest-order eq.
 background eq.

 $\frac{1}{3}K^2 = E -\frac{1}{3}K = \frac{\partial_\tau (ae^{\Psi})}{ae^{\Psi}}$ $\frac{1}{\alpha}\partial_t K = \partial_\tau K = \frac{3}{2}(E+P)$

$$3H^2 = \rho_0 \quad H = \frac{\partial_t a}{a}$$
$$\partial_t (-3H) = \frac{3}{2}(\rho_0 + P_0)$$

→ The structure of lowest-order eq is same as that of B.G. eq with identifications, $d\tau \Leftrightarrow dt$ and $ae^{\Psi} \Leftrightarrow a$!

delta-N formalism

• We define the non-linear e-folding number and delta-N.

•

$$\mathcal{N} \equiv \frac{1}{3} \int K \alpha dt \sim -\int (H + \dot{\Psi}) dt \quad \delta N \equiv \mathcal{N} - N = \left[\Psi\right]_{\text{initial}}^{\text{final}}$$

• Choose slicing such that initial : flat & final : uniform energy

delta-N gives the final curvature perturbation $\Psi_E(t_f) = \delta N = N[E_i + \delta E_i, E_f] - N[E_i, E_f]$

Beyond delta-N formalism

Gradient expansion approach

towards "Beyond delta-N"

• At the next order in gradient expansion,

we need to evaluate spatial gradient terms.

$$\partial_{\tau}^2 \phi^{(2)} + 3H \partial_{\tau} \phi^{(2)} + V_{\phi}^{(2)} = \Delta \phi^{(0)} \qquad Q^{(2)} = \mathcal{O}(\epsilon^2)$$

- Since those gradient terms are given by the spatial derivative of lowest-order solutions, we can easily integrate them...
- Once spatial gradient appeared in equation, we cannot use "τ" as time coordinate which depends on xⁱ because integrable condition is not satisfied.

$$d\tau \neq \alpha(t, x^i)dt$$
 \checkmark $dN = H(t)dt$

we cannot freely choose time coordinate (gauge) !!

• We usually use e-folding number (not t) as time coordinate.

$$\mathcal{N} = \frac{1}{3} \int K \alpha dt = -\int (H + \dot{\Psi}) dt \to N$$

- \rightarrow We choose uniform N gauge and use N as time coordinate.
- Form the gauge transformation δN : uniform N \rightarrow uniform E, we can evaluate the curvature perturbation $\Psi_E \sim \delta N$.

Summary

• We gave the formalism, "Beyond delta-N formalism", to calculate spatial gradient terms in gradient expansion.

 If you have background solutions, you can calculate the correction of "delta-N formalism" with this formalism just by calculating the "delta-N".

Linear perturbation theory

FLRW universe

- For simplicity, we focus on single scalar field inflation.
- Background spacetime : flat FLRW universe

$$ds^2 = a^2(\eta) \left[-d\eta^2 + \delta_{ij} dx^i dx^j \right]$$

Friedmann equation :

$$3\mathcal{H}^2 = a^2 \rho_0 = \frac{1}{2} \phi'_0(\eta)^2 + V(\phi_0) \qquad \mathcal{H} \equiv \frac{a'}{a}$$

Linear perturbation

• We define the scalar-type perturbation of metric as

Linear perturbation : J = 0

• We take the comoving gauge = uniform scalar field gauge.

$$a^2 J = \phi_0' \delta \phi = 0$$

• Combining four equations, we can derive the master equation.

$$\mathcal{R}_{c}^{\prime\prime} + 2\frac{z^{\prime}}{z}\mathcal{R}_{c}^{\prime} - \bigtriangleup \mathcal{R}_{c} = 0 \qquad z \equiv \frac{a\phi_{0}^{\prime}}{\mathcal{H}}$$

• On super horizon scales, R_c become constant.

$${\cal R}_c = {
m const.}$$
 and ${\cal R}_c^\prime \propto z^{-2} \sim a^{-2}$

Einstein equations in J = 0

• Original Einstein equations in J = 0 gauge are

 $(0,0): \quad \Delta \mathcal{R} + \Delta^{\frac{1}{2}}\sigma_g + 3\mathcal{H}(\mathcal{H}\alpha - \mathcal{R}') = -\frac{1}{2}a^2\delta\rho = \frac{1}{2}\phi_0'^2\alpha$ (0, i): $\mathcal{R}' - \mathcal{H}\alpha = -\frac{1}{2}\phi'_0\delta\phi$ $a^2\delta\rho = \phi'_0\delta\phi' - \phi'_0{}^2\alpha + a^2V_\phi\delta\phi$ $\sigma_a \equiv \Delta^{\frac{1}{2}}\beta - E'$ trace: $\mathcal{R}'' + 2\mathcal{H}\mathcal{R}' - \mathcal{H}\alpha' - (2\mathcal{H}' + \mathcal{H}^2)\alpha = -\frac{1}{2}a^2\delta P$ traceless: $(\triangle^{\frac{1}{2}}\sigma_g)' + 2\mathcal{H}(\triangle^{\frac{1}{2}}\sigma_g) = -\triangle(\alpha + \mathcal{R})$ $\mathcal{R}'_c \sim \mathcal{H}\alpha \sim \triangle^{\frac{1}{2}}\sigma_g \to a^{-2}$ $ds^{2} = a^{2} \left| -(1+2\alpha)d\eta^{2} + 2\Delta^{-\frac{1}{2}}\partial_{i}\beta d\eta dx^{i} + \left\{ (1+2\mathcal{R})\delta_{ij} + \Delta^{-1}\partial_{i}\partial_{j}E \right\} dx^{i} dx^{j} \right|$

$$R_c = a \delta \phi_{flat}$$

$$\mathcal{R}_{c}^{\prime\prime} + 2\frac{z^{\prime}}{z}\mathcal{R}_{c}^{\prime} - \bigtriangleup \mathcal{R}_{c} = 0 \quad \square \qquad u^{\prime\prime} - \left(z^{\prime\prime}/z + \bigtriangleup\right)u = 0$$

• u is the perturbation of scalar field on R = 0 slice.

$$\mathcal{R}_c \equiv \mathcal{R} + \frac{\mathcal{H}}{\phi'_0} \delta \phi \quad \blacksquare \quad u = z \mathcal{R}_c = z \mathcal{R} + a \delta \phi = a \delta \phi_{\text{flat}}$$

- \rightarrow quantization is done on flat (R = 0) slice.
- → perturbations at horizon crossing which give the initial conditions for ∇ expansion are given by fluctuations on flat slice.

Curvature perturbation ?

• We parameterised the spatial metric as

 $g_{ij} = a^2(t)e^{2\Psi}\gamma_{ij} \implies (1+2\Psi)\delta_{ij} + \Delta^{-1}\left(\partial_i\partial_j E - \frac{1}{3}\Delta E\delta_{ij}\right)$

- In the linear perturbation, we parametrised the spatial metric as $g_{ij} = a^2 \Big[(1 + 2R) \delta_{ij} + 2 \triangle^{-1} \partial_i \partial_j E \Big]$ R : curvature perturbation $R^{(3)} = -\frac{4}{a^2} \triangle R$ $\mathcal{R} = \Psi - \frac{1}{3}E$
 - Strictly speaking, Ψ is not the curvature perturbation. $\sigma_q \sim E'$
 - \rightarrow On SH scales, E become constant and we can set E = 0.

Shear and curvature perturbation

 Once we take into account spatial gradient terms, shear (σ_g or A_{ij}) will be sourced by them and evolve.
 → we have to solve the evolution of E.

$$\left(\triangle^{\frac{1}{2}}\sigma_g\right)' + 2\mathcal{H}(\triangle^{\frac{1}{2}}\sigma_g) = -\triangle(\alpha + \mathcal{R})$$

• At the next order in gradient expansion,

 Ψ is given by "delta-N" like calculation.

In addition, we need to evaluate E.

$$\mathcal{R} = \Psi - \frac{1}{3} \mathcal{E}$$
$$E \sim \int dt \sigma_g \sim \int dt \dot{E}$$

delta-N formalism 1

• We define the non-linear e-folding number

$$\mathcal{N} \equiv \frac{1}{3} \int K \alpha dt \sim -\int (H + \dot{\Psi}) dt = N - \left[\Psi\right]_{\text{initial}}^{\text{final}}$$

• Curvature perturbation is given by the difference of "N"

delta-N formalism 2

• Choose slicing such that initial : flat & final : uniform

delta-N gives the final curvature perturbation $\delta N = \Psi_c(t_f) - \Psi_f(t_i) = N[\phi_i + \delta \phi_i, \phi_f] - N[\phi_i, \phi_f]$

• We usually use e-folding number (not t) as time coordinate.

$$\mathcal{N} = \frac{1}{3} \int K \alpha dt = -\int (H + \dot{\Psi}) dt$$

 \rightarrow We choose uniform N slicing and use N as time coordinate.

• Combining equations, you will get the following equation for φ.

$$\frac{V}{3} \left(1 - \frac{1}{6} \partial_N \phi^2 \right)^{-1} \partial_N^2 \phi - \frac{V}{9} \partial_N \phi + V_{\phi} = F^{(2)} \left[N, \phi^{(0)}(N_i), \gamma_{ij}^{(0)}(N_i) \right]$$
$$\phi^{(2)} = f \left[N, \phi^{(0)}(N_i), \gamma_{ij}^{(0)}(N_i) \right]$$

• We compute "delta N" from the solution of scalar field.

- We extend the formalism to multi-field case.
- As a final slice, we choose uniform E or uniform K slice since we cannot take "comoving slice". T^0_i : vectorial

$$K^2 \sim E \qquad \partial_i K = J_i \qquad extsf{@}$$
 lowest order

• We can compute "delta N" form the solution of E, K.

$$\mathcal{R}_{\text{final}}^{E,K} = \delta N - \frac{1}{3} \left(E_{\text{final}}^{E,K} - E_{\text{initial}}^{\text{flat}} \right)$$

Question

How can we calculate the correction of delta-N formalism ?

Answer

To calculate the cor. of delta-N, all you have to do is calculate "delta-N".