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& Introduction
o

« Seeds of large scale structure of the universe

The primordial fluctuations generated from Inflation are
one of the most interesting prediction of quantum theory of
fundamental physics.

However, we have iInformation about Inflation

O More accurate observations give more
Information about primordial fluctuations

€ Non-Gaussianity from Inflation | ¢ PLANCK (2009-)




@ Non-Gaussianity <) = () + 797 @ )

Current bound

WMAP 7-year —10 < i3 < 74
PLANK 2009- detect within | fnL|>5

Slow-roll ? Single field ? Canonical kinetic ?
Standard single slow-roll scalar [, = 0(102)

Many models predicting Large Non-Gaussianity
( Multi-fields, DBI inflation & Curvaton) [fnL > O(1)

Non-Gaussianity will be one of powerful tool to

discriminate many possible inflationary models with the future
precision observations
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€ Three stages for generating Non-Gaussianity
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@ Generation of NG in superhorizon needs
violation of the condition for

(M slow-roll or(and) @ single




@ Nonlinear perturbations on superhorizon scales

Spatial gradient approach : ¢ = 1 / ( H L)‘ Salopek & Bond (90)

> Spatial derivatives are small compared to time derivative

» Expand Einstein egs in terms of small parameter ¢, and
can solve them for nonlinear perturbations iteratively

(Starobinsky 85,

1 . Nambu & Taruya 96 ,
’ O N formalism ¢ Separated universe ) Sasaki & Stewart 96)

((t,x) = 0N = N(t.x) - Ny(t) O(°)

Curvature perturbation = Fluctuations of
the local e-folding number

o Powerful fool for the estimation of NG




Two hypersurfaces: Curvature perturbation

Time

e-folding perturbation
(N =10oga)

/ﬁ\/\ Uniform energy density

> Space
((1,x) = 0N = N(1,x) — Np(1)

e Local expansion _
= Expansion of the unperturbed Universe

N(tca f) — N(tcv gbI(tCa f))

¢ = 0 Flatslicing




® O N formalism

V(o) 72 A V(o)

Ex] Single slow-roll scalar: ¢ ~ — ,
[EX] Sing o VT 3

e-folding number

N:/Hdt:/% E>5N=N’¢5qb:%gb

@ Calculation of Power spectrum well known result

2 2 2\ 2
<CC>:N%<5(])5(/)>: (H> (H> :(H)

o) \om 274
»>Also Easy to calculate Non—Gaussianity by only
using background equation
» Applied to Multi—scalar system

[(7 Violation of ]




® Temporary violating of slow-roll condition
[(@2)Violation of slow-roll]

For Single inflaton-field (this talk)
@ Multi—field inflation always shows (With Naruko, Sasaki in progress)

® 6 Nformalism | (O(¥)  [¢(,x) = const

» Ignore the decaying mode of curvature perturbation

Not conserved !

® Beyond & N formalism O(e2 )‘ ((t,x) = const

» Decaying modes cannot be neglected in this case

» Enhancement of curvature perturbation in the linear theory
[Seto et al (01), Leach et al (01) ]




€ Linear theory for a single scalar field

® Mukhanov-Sasaki equation: Master equation

. , - -
ngm” 4 2Z—72|g'n, 4 k’2c§72|gm —
z

O If we focus on a scalar type perturbation, One can derive the
equation for One basic variable as one degree of freedom(Density)

Solution in Long wavelength expansion (gradient expansion)

O(k%) R = const

Growing mode

Decaying mode




€ Example

@ Starobinsky’ s model (92):

» There is a stage at which slow—roll

conditions are violated _ %8 (7)
« Linear theory

@ Lcach, Sasaki, Wands & Liddle (01)
[The In the expansion

Violating of Slow-Roll
Decaying mode

n = 0 (Final) 7% (initial)

Enhancement of curvature perturbation near




@ Nonlinear perturbations on superhorizon
scales up to Next-leading order in the expansion
Standard perturbative

m N1 2...0007") . ey
Gradient s e —
«pansio)] [ '}éN
2
; = =Beyond oN
T
0(6 ) Linear 2nd n-th =oo: Fully
order order nonlinear
0 theoryperturb perturb




L 4 Bey_ond 6N—form_a|ism YT, S.Mukohyama, M.Sasaki
for single scalar-field & Y.Tanaka JCAP(2010)

Nonlinear variable (including ON)

« Nonlinear Source term

Simple result ! [

@ Nonlinear theory in ‘O (e2 )‘

=

d“"\

/ 27

_\-‘-_‘ R4 Z 4 ._d

. % \ Ricci scalar of
@ Linear theory spatial metric
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@ Application of Beyond dN-formalism

@ To Bispectrum for Starobinsky model

eql - Ratio of the slope of
S N[ — 2T : P
the potential

Y = \/Tk/lio ~ 1.5
Evenfor 7" = 10

fnr ~ 20 at k£~ 0.5k

@ Temporary violation of slow-rolling leads to particular
behavior (e.g. sharp spikes) of the power & bispectrum

:> Localized feature models

These features may be one of powerful tool to discriminate
many inflationary models with the future precision observations




@ Beyond oN-formalism

System :|I = /d4:17\/—g

INSYERN;

_|_ P(X7 Cb)-

2

Single scalar
case

X = _Qﬂ'yaﬂ@&/(b

Single scalar field with general potential & kinetic term
Including K- inflation & DBI etc

@® ADM decomposition & Gradient expansion

Oith = 1 x O(e)

Small parameter: |c = 1/ (H L)|

Background is the flat FLRW universe

A" = 0O(e),

o' = 0(e), OFi; = O(e)

> Absence of any decaying at leading order
» Can be justified in taking the background as FLRW

Basic assumption:

m) 017i; = O(e”)




Solve the Einstein equation after ADM decomposition

General solution | InUniform Hubble + Time-orthogonal
slicing

valid up to O(¢2) YT& Mukohyama, JCAP 01(2009)

@ Curvature perturbation

» Variation of Pressure (speed of sound etc)
» Scalar decaying mode




@ Beyond dN-formalism for multi-scalar

With Naruko in progress
System: [ — fd433\/—gP(XI’],,gbA), X1 = — g0, 4! 0y’
@® ADM decomposition & Gradient expansion

in Uniform Hubble + Time-orthogonal
slicing

Curvature pertb. can be enhanced by inhomogeneous lapse

Using background solution with

propertime - _ / dt o PG =do(T)
i=const. gradient

::> a(o) _ 2H(t)
EO)(#) + POI(t,27)




@ Need to solve in a numerical way

o= flo() =1 o [dta),

@ Analytic example (Naruko brid)

1 1
P = EXI.J ~V(¢h), V(¢') =Vyexp {Z Zm%@?] :
i

In Uniform e-folding slicing

1 )
N=1] b = N(t) N = [dtH(t)
3 Jat=const.

Easy to obtain the solution because ¢ (t,z') = O

Gauge transformation to uniform Hubble can give an analytic
solution of time-dependent curvature perturb.




4

8 \We develop a theory of nonlinear cosmological perturbations on
superhorizon scales for a scalar field with a general potential & Kinetic terms

1 We employ the and the spatial gradient expansion
approach to obtain general solutions valid up through second-order O(e?)

1 We formulate a general method to match n-th order perturbative solution
3 Can applied to Non-Gaussianity in temporary violating of slow-rolling

1 Beyond 6N-formalism: Two nonlinear effects

8 (D Nonlinear variable : including 6N (fully nonlinear)

2 (@ Nonlinear source term : Simple 2nd order diff equation

3 Applications: Bispectrum for Starobinsky model & Inflaton stopping




