Parity Violation in Graviton Non-Gaussianity

> Masato Nozawa (KEK)

cowork with Jiro Soda (Kyoto Univ) & Hideo Kodama (KEK)

based on JHEP 1108 067 (2011)

Parity violation

Origin of chirality

- CPT invariance is fundamental
- CP & T violations may be transmitted to gravity sector via field eqs.
- In GR, this is generally suppressed

String theory

- •candidate for unified theory & quantum gravity
- imples P-violating gravitational interactions Green & Schwarz

$$S = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} e^{-2\phi} \left[R + 4(\nabla\phi)^2 - \frac{1}{12}H_{\mu\nu\rho}H^{\mu\nu\rho} \right] + S_{\rm PV}$$
$$S_{\rm PV} = \frac{\alpha'}{8\kappa_{10}^2} \int d^{10}x \sqrt{-g} \left(F_{\mu\nu}^a \star F^{a\mu\nu} - \mathcal{R}_{\mu\nu\rho\sigma} \star \mathcal{R}^{\mu\nu\rho\sigma} \right)$$

Chern-Simons interactions are ubiquitous in string theory

 \Rightarrow detection of P-violation of gravity will shed light on ultimate theory

Gravitational waves

Inflationary universe as HEP laboratory

best testbed to explore parity violation

•primordial gravitational waves during inflation

 \Rightarrow P-violation encoded in power spectrum

have different GW amplitudes b/w +ve & -ve helicity (circular polarizations)

detectable through correlations of CMB

Seto 05, Seto-Taruya 06, Saíto-Ichíkí-Taruya 07, Sato & Soda 08, Takahashí-Soda 09

Our work

Focus on *non-Gaussianity* of gravitons

•gives another useful measure for the Planck scale physics

Correlators via dual CFT

Maldacena-Pimentel 2011

- •discussed graviton non-Gaussianity in dS by studying 3D CFT
- shapes of bispectrum are constrained by dS isometry SO(4, 1)

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2} M_{\rm pl}^2 R + a W^{\mu\nu}{}_{\rho\sigma} W^{\rho\sigma}{}_{\tau\lambda} W^{\tau\lambda}{}_{\mu\nu} - b \star W^{\mu\nu}{}_{\rho\sigma} W^{\rho\sigma}{}_{\tau\lambda} W^{\tau\lambda}{}_{\mu\nu} \right)$$
$$W_{\mu\nu\rho\sigma} : \text{Weyl tensor} \qquad \star W_{\mu\nu\rho\sigma} = \frac{1}{2} \epsilon_{\mu\nu\lambda\tau} W^{\lambda\tau}{}_{\rho\sigma}$$

•valid in arbitrary order in derivative expansion

whis does not imply that parity violation appears in graviton bispectrum

What we would like to do

•reveal conditions under which the parity-violation arises in bispectrum

•develop a new formalism for computing higher-order graviton correlators

(I) New formalism for graviton correlators

(II) Graviton bispectrum during inflation

(III) Concluding remarks

GWs in Minkowski spacetime

Polarization of GWs

$$ds^{2} = -d\eta^{2} + (\delta_{ij} + \gamma_{ij})dx^{i}dx^{j} \qquad \gamma_{ii} = \partial_{i}\gamma_{ij} = 0 \qquad \gamma_{ij}'' - \Delta\gamma_{ij} = 0$$

• linear polarization $\gamma_{ij} = \gamma_{+}e_{ij}^{(\text{plus})} + \gamma_{\times}e_{ij}^{(\text{cross})}$
plus mode γ_{+} cross mode γ_{x}

•circular polarization

$$\gamma_{ij} = \gamma^L e_{ij}^{(+)} + \gamma^R e_{ij}^{(-)}$$

left-handed

$$\begin{split} k_{j}e_{ij}^{(s)}(\pmb{k}) &= 0 \qquad e_{ii}^{(s)}(\pmb{k}) = 0 \qquad e_{ij}^{*(s)}(\pmb{k}) = e_{ij}^{(-s)}(\pmb{k}) = e_{ij}^{(s)}(-\pmb{k}) \\ \epsilon_{ijl}\frac{\partial}{\partial x_{l}} \left[e_{mj}^{(s)}(\pmb{k})e^{i\pmb{k}\cdot\pmb{x}} \right] &= ske_{im}^{(s)}(\pmb{k})e^{i\pmb{k}\cdot\pmb{x}}, \qquad e_{ij}^{(s)}(\pmb{k})e^{*(s')}(\pmb{k}) = \delta_{ss'}, \qquad \mathbf{s} = \mathbf{\pm} \end{split}$$

right-handed
$$\gamma^R = rac{1}{\sqrt{2}}(\gamma_+ + \mathrm{i}\gamma_{ imes})$$

Helicity variables

Duality operator

define a map $\sim: \gamma_{ij} \mapsto \tilde{\gamma}_{ij} = \epsilon_{ikl} \partial_l \gamma_{kj}$ $\tilde{\gamma}_{ij} = \tilde{\gamma}_{(ij)}, \quad \tilde{\gamma}_{ii} = \partial_i \tilde{\gamma}_{ij} = 0, \quad \tilde{\tilde{\gamma}}_{ij} = -\Delta \gamma_{ij}, \qquad \gamma_{ij}'' - \Delta \gamma_{ij} = 0$

$$\left(\gamma_{ij}^{\pm} := \frac{1}{2} (\gamma_{ij}' \mp \mathrm{i} \tilde{\gamma}_{ij})\right)$$

•form an irrep. of E^3

•correspond to projections onto left & right circular polarizations *c.f. Higaki 1986*

imaginary (anti-)self dual Weyl tensor

$$W^{\pm}_{\mu\nu\lambda\sigma} := W_{\mu\nu\lambda\sigma} \pm i * W_{\mu\nu\lambda\sigma}, \qquad *W^{\pm}_{\mu\nu\lambda\rho} = \mp i W^{\pm}_{\mu\nu\lambda\rho}$$
$$(W^{\pm})^{3} = 64[(\gamma^{\pm})']^{3}$$
$$W^{\mu\nu}{}_{\rho\sigma}W^{\rho\sigma}{}_{\tau\lambda}W^{\tau\lambda}{}_{\mu\nu} = \frac{1}{4}\text{Re}(W^{+})^{3}$$
$$*W^{\mu\nu}{}_{\rho\sigma}W^{\rho\sigma}{}_{\tau\lambda}W^{\tau\lambda}{}_{\mu\nu} = \frac{1}{4}\text{Im}(W^{+})^{3} \qquad \longrightarrow \qquad \text{W}^{3} \& *WW^{2} \text{ can be treated}$$
in a unified manner

W³ & *WW² are interchanged into each other under $\partial_{\eta} \leftrightarrow i\epsilon_{ijk}\partial_k$

GWs in FLRW

GWs in FLRW $ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right] \qquad \partial_{i} h_{ij} = h_{ii} = 0 \qquad h_{ij}'' + 2\frac{a'}{a} h_{ij}' - \Delta h_{ij} = 0$ $W^{\pm 0}{}_{i0j} = \frac{1}{2a} [a(h'_{ij} \mp i\epsilon_{ikl}\partial_l h_{jk})]' \qquad \longleftrightarrow \qquad ds^2 = -d\eta^2 + (\delta_{ij} + \gamma_{(M)ij})dx^i dx^j$ (radiative parts~ Ψ_0, Ψ_4) $W^{\pm 0}{}_{i0j} = \frac{1}{2} (\gamma'_{(M)ij} \mp i\epsilon_{ikl}\partial_l \gamma_{(M)jk})'$ $= (\gamma^{\pm}_{(M)ij})'$ Define $\left(\gamma'_{ij} \equiv ah'_{ij}\right) \longrightarrow \left(W^{\mu}_{\nu\lambda\rho}(h) = \frac{1}{a}W^{\mu}_{\nu\lambda\rho}(\gamma)\Big|_{\text{Minkowski}}\right)$ $W^{\pm \alpha\beta}_{\mu\nu}(h)W^{\pm \gamma\delta}_{\alpha\beta}(h)W^{\pm \mu\nu}_{\gamma\delta}(h) = \frac{64}{a^9}\gamma'^{\pm}_{ij}\gamma'^{\pm}_{jk}\gamma'^{\pm}_{ki} \qquad W^3 = \frac{1}{4}\text{Re}(W^+)^3, \quad *WW^2 = \frac{1}{4}\text{Im}(W^+)^3$ $S_{\rm PV} = -b \int d^4x \sqrt{-g} * W^{\mu\nu}{}_{\rho\sigma} W^{\rho\sigma}{}_{\tau\lambda} W^{\tau\lambda}{}_{\mu\nu} = 8ib \int d\eta d^3x a^{-5} [(\gamma^+)'^3 - (\gamma^-)'^3]$ $H_{\text{int}} = -8ib \int d\eta a^{-5} [(\gamma^+)'^3 - (\gamma^-)'^3]$

Graviton bispectrum in dS

Pure de Sitter case

correlators can be calculable via in-in formalism

$$\langle A(t) \rangle = -i \int_{t_0}^t \mathrm{d}t' \langle [A(t), H_{\text{int}}(t')] \rangle \qquad \qquad H_{\text{int}} = b \int \mathrm{d}^4 x \sqrt{-g} * W W^2$$

 $\langle \gamma_{ij}^{\pm}(\mathbf{p})(\gamma_{kl}^{\mp}(\eta,\mathbf{k}))' \rangle = 2iM_{\rm pl}^{-2}k^2\Pi_{ij,kl}^{\pm}(\mathbf{p})\delta^{(3)}(\mathbf{p}+\mathbf{k})e^{ik\eta} \qquad \Pi_{ij,kl}^{\pm}(\mathbf{p}) = e_{ij}^{(\pm)}(\mathbf{p})e_{kl}^{*(\pm)}(\mathbf{p})$

No parity violation

$$\begin{aligned} \gamma_{i_{1}j_{1}}^{+}(0,\mathbf{p}_{1})\gamma_{i_{2}j_{2}}^{+}(0,\mathbf{p}_{2})\gamma_{i_{3}j_{3}}^{+}(0,\mathbf{p}_{3})\rangle \\ &= 384ibH^{5}M_{pl}^{-6}(2\pi)^{3}(p_{1}p_{2}p_{3})^{2}\delta^{(3)}(\mathbf{p})\frac{5!}{p^{6}} \left[\Pi_{i_{1}j_{1},kl}^{+}(\mathbf{p}_{1})\Pi_{i_{2}j_{2},lm}^{+}(\mathbf{p}_{2})\Pi_{i_{3}j_{3},mk}^{+}(\mathbf{p}_{3}) + \Pi_{i_{1}j_{1},kl}^{-}(\mathbf{p}_{1})\Pi_{i_{2}j_{2},lm}^{-}(\mathbf{p}_{2})\Pi_{i_{3}j_{3},mk}^{-}(\mathbf{p}_{3})\right] \\ &= 384ibH^{5}M_{pl}^{-6}(2\pi)^{3}(p_{1}p_{2}p_{3})^{2}\delta^{(3)}(\mathbf{p})\frac{5!}{p^{6}} \left[\Pi_{i_{1}j_{1},kl}^{+}(\mathbf{p}_{1})\Pi_{i_{2}j_{2},lm}^{+}(\mathbf{p}_{2}) + \Pi_{i_{3}j_{1},mk}^{-}(\mathbf{p}_{3}) + \Pi_{i_{3}j_{3},mk}^{-}(\mathbf{p}_{3})\right] \\ &= p\sum_{i} \mathbf{p}_{i} \end{aligned}$$
•project onto left & right handed circular polarizations
$$h^{R} := h_{ij}e_{ij}^{*(+)}, \quad h^{L} := h_{ij}e_{ij}^{*(-)} \qquad h_{ij}(\eta = 0, \mathbf{p}) = -\frac{H}{p^{2}}[\gamma_{ij}^{+}(\mathbf{p}) + \gamma_{ij}^{-}(\mathbf{p})] \\ \langle h^{R}(0,\mathbf{p}_{1})h^{R}(0,\mathbf{p}_{2})h^{R}(0,\mathbf{p}_{3})\rangle \\ &= -384i(2\pi)^{3}(bH)^{2}(H/M_{pl})^{6}F(p_{2},p_{2},p_{3}) \left[\frac{5!}{(p_{1}+p_{2}+p_{3})^{2}} - \frac{5!}{(p_{1}+p_{2}+p_{3})^{2}}\right] \delta^{(3)}(\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}) = 0 \\ F(k_{1},k_{2},k_{3}) = -\frac{(k_{1}+k_{2}+k_{3})^{3}(k_{1}+k_{2}-k_{3})(k_{2}+k_{3}-k_{1})(k_{3}+k_{1}-k_{2})}{64k_{1}^{2}k_{2}^{2}k_{3}^{2}} \\ \langle h^{L}(0,\mathbf{p}_{1})h^{L}(0,\mathbf{p}_{2})h^{L}(0,\mathbf{p}_{3})\rangle = 0 \qquad \langle h^{R}(0,\mathbf{p}_{1})h^{L}(0,\mathbf{p}_{2})h^{L}(0,\mathbf{p}_{3})\rangle = 0 \\ \left(h^{R}(0,\mathbf{p}_{1})h^{R}(0,\mathbf{p}_{2})h^{R}(0,\mathbf{p}_{3})\rangle - \langle h^{L}(0,\mathbf{p}_{1})h^{L}(0,\mathbf{p}_{2})h^{L}(0,\mathbf{p}_{3})\rangle = 0 \\ \langle h^{R}(0,\mathbf{p}_{1})h^{R}(0,\mathbf{p}_{2})h^{L}(0,\mathbf{p}_{3})\rangle - \langle h^{L}(0,\mathbf{p}_{1})h^{L}(0,\mathbf{p}_{2})h^{R}(0,\mathbf{p}_{3})\rangle = 0 \\ \langle h^{R}(0,\mathbf{p}_{1})h^{R}(0,\mathbf{p}_{2})h^{L}(0,\mathbf{p}_{3})\rangle - \langle h^{L}(0,\mathbf{p}_{1})h^{L}(0,\mathbf{p}_{3})\rangle = 0 \\ \langle h^{R}(0,\mathbf{p}_{1})h^{R}(0,\mathbf{p}_{2})h^{L}(0,\mathbf{p}_{3})\rangle - \langle h^{L}(0,\mathbf{p}_{1})h^{L}(0,\mathbf{p}_{3})\rangle = 0 \\ \langle h^{R}(0,\mathbf{p}_{1})h^{R}(0,\mathbf{p}_{2})h^{L}(0,\mathbf{p}_{3})\rangle - \langle h^{L}(0,\mathbf{p}_{1})h^{L}(0,\mathbf{p}_{3})\rangle = 0 \\ \langle h^{R}(0,\mathbf{p}_{1})h^{R}(0,\mathbf{p}_{3})h^{L}(0,\mathbf{p}_{3})\rangle - \langle h^{L}(0,\mathbf{p}_{1})h^{L}(0,\mathbf{p}_{3})\rangle = 0 \\ \langle h^{R}(0,\mathbf{p}_{1})h^{R}(0,\mathbf{p}_{3})h^{R}(0,\mathbf{p}_{3})\rangle - \langle h^{L}(0,\mathbf{p}_{3})h^{R}(0,\mathbf{p}_{3})\rangle = 0 \\ \langle$$

In dS universe, parity violation does not appear in graviton non-Gaussianity.

Slow roll corrections

Consider deviations away from de Sitter

•expand terms by slow roll parameter $\epsilon := -\dot{H}/H^2$, $a \sim (-H_*\eta)^{-1-\epsilon}$

I. mode function

$$u_{k}(\eta) = \sqrt{\frac{\pi k}{2H_{*}}} e^{i\pi\nu/2 - i\pi/4} \left(-H_{*}\eta\right)^{\nu} H_{\nu}^{(1)}\left(-k\eta\right) , \qquad h_{ij}(0, \mathbf{p}) = -\frac{H_{*}}{p^{2}} C\left[\gamma_{ij}^{+}(0, \mathbf{p}) + \gamma_{ij}^{-}(0, \mathbf{p})\right]$$
$$C = 1 + \epsilon(2 - \gamma - \log 2 + \log H_{*}/k)$$

II. interaction Hamiltonian

$$H_{\rm int} = -8ib \int d\eta d^3x a^{-5} [(\gamma^+)'^3 - (\gamma^-)'^3] \qquad (\gamma_{ij}^{\pm})' \to (\gamma_{(\rm dS)ij}^{\pm})' + \epsilon \chi_{ij}^{\pm}$$

III. cosmic expansion

$$\int_{-\infty}^{0} d\eta (-\eta)^{5+5\epsilon} e^{-i(p_1+p_2+p_3)\eta} \sim -\frac{5!}{(p_1+p_2+p_3)^6} \left(1+\frac{5\pi}{2}i\epsilon\right)^{6} d\eta (-\eta)^{5+5\epsilon} e^{-i(p_1+p_2+p_3)\eta} \sim -\frac{5!}{(p_1+p_2+p_3)^6} \left(1+\frac{5\pi}{2}i\epsilon\right)^{6} d\eta (-\eta)^{5+5\epsilon} e^{-i(p_1+p_2+p_3)\eta} = -\frac{5!}{(p_1+p_2+p_3)^6} \left(1+\frac{5\pi}{2}i\epsilon\right)^{6} d\eta (-\eta)^{5+5\epsilon} d\eta (-\eta)^$$

Parity violation

$$\langle h^{R}(0,\mathbf{p}_{1})h^{R}(0,\mathbf{p}_{2})h^{R}(0,\mathbf{p}_{3})\rangle = -\langle h^{L}(0,\mathbf{p}_{1})h^{L}(0,\mathbf{p}_{2})h^{L}(0,\mathbf{p}_{3})\rangle$$

$$= -64(2\pi)^{4}\epsilon(bH_{*}^{2})(H_{*}/M_{\mathrm{pl}})^{6}\delta^{(3)}(\mathbf{p})F(p_{1},p_{2},p_{3})\frac{6!}{p^{6}}$$

$$\left(F(k_{1},k_{2},k_{3}) = -\frac{(k_{1}+k_{2}+k_{3})^{3}(k_{1}+k_{2}-k_{3})(k_{2}+k_{3}-k_{1})(k_{3}+k_{1}-k_{2})}{64k_{1}^{2}k_{2}^{2}k_{3}^{2}} \right) \mathbf{p} = \sum_{i} \mathbf{p}_{i}$$

$$\blacktriangleright \quad \left\langle (h^R)^3 \right\rangle - \left\langle (h^L)^3 \right\rangle \neq 0$$

Parity violation shows up & is proportional to slow-roll parameter

$$\langle h^L(0,\mathbf{p}_1)h^L(0,\mathbf{p}_2)h^R(0,\mathbf{p}_3)\rangle = \langle h^R(0,\mathbf{p}_1)h^R(0,\mathbf{p}_2)h^L(0,\mathbf{p}_3)\rangle$$

$$= 192i(2\pi)^{3} \epsilon H_{*}^{2} (H_{*}/M_{\rm pl})^{6} J(p_{1}, p_{2}, p_{3}) (A_{-} - A_{-}^{*}) \delta^{(3)}(\mathbf{p})$$

No parity violation

This sort of parity violation can be observed in CMB

Shíraíshí-Nítta-Yokoyama 2011

Concluding remarks

•a new formalism for computing graviton correlators

 \longrightarrow provides us w/ unified treatment of W³ & *WW²

•for Weyl cubic interactions parity violation does not show up in exact de Sitter, but it does in the slow roll case

Outlooks

•a single field effective field theory admits parity-odd interaction S. Weinberg 2008

 $L_{0} = R - \frac{1}{2} (\nabla \phi)^{2} - V(\phi) \qquad L_{1} = f_{1}(\phi) (\nabla \phi)^{4} + f_{2}(\phi) W_{abcd} W^{abcd} + f_{3}(\phi) W_{abcd} \star W^{abcd}$ $\star W_{abcd} = \frac{1}{2} \epsilon_{abef} W^{ef}_{cd} \qquad W_{abcd} : Weyl tensor$

(conformal) isometries in dS

 \bigcirc Conformal Killing vectors $\mathscr{L}_{\zeta_{(i)}}g_{ab} = 2\phi_{(i)}g_{ab}, \quad \phi_{(i)} = \frac{1}{4}\nabla_a \zeta^a_{(i)}$

RW metric $ds^2 = a^2(\eta) \left(-d\eta^2 + dx^2 + dy^2 + dz^2\right)$. admits maximal set of 15 CKVs

$$P_{\mu} = \partial_{\mu} \quad D = x^{\mu} \partial_{\mu}, \quad M_{\mu\nu} = x_{\mu} \partial_{\nu} - x_{\nu} \partial_{\mu}, \qquad K_{\mu} = 2x_{\mu} D - (x_{\nu} x^{\nu}) P_{\mu}$$
$$[D, K_{\mu}] = K_{\mu}, \quad [D, P_{\mu}] = P_{\mu}, \quad [K_{\mu}, P_{\mu}] = 2(\eta_{\mu\nu} D + 2M_{\mu\nu}) \qquad \eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$$
$$[K_{\mu}, M_{\nu\rho}] = \eta_{\mu\nu} K_{\rho} - \eta_{\mu\rho} K_{\nu}, \quad [P_{\mu}, M_{\nu\rho}] = \eta_{\mu\nu} P_{\rho} - \eta_{\mu\rho} P_{\nu}, \quad [M_{\mu\nu}, M_{\rho\sigma}] = -\eta_{\mu\rho} M_{\sigma\nu} + \cdots.$$

 $\phi_{(i)} \text{ are given by}$ $\phi_{P_0} = \mathcal{H}, \quad \phi_{K_0} = -2\eta - (\eta^2 + x^i x_i)\mathcal{H}, \quad \phi_{M_{0i}} = -\mathcal{H}x_i$ $\phi_D = 1 + \eta\mathcal{H},$ $\phi_{K_i} = 2x_i(1 + \eta\mathcal{H})$ isometry for dS $(\mathcal{H} = -1/\eta)$ $\mathcal{H} = d(\ln a)/d\eta$ $(\mathcal{H} = -1/\eta)$

 K_i generates special CT of E^3 for late time ($\eta \sim 0$)

 \Rightarrow restricts allowed correlators for tensors w/ conformal dimension 2 (=stress tensor)