Parity Violation in Graviton Non-Gaussianity

Masato Nozawa (KEK)

cowork with
Jiro Soda (Kyoto Univ) \& Hideo Kodama (KEK)

based on JHEP II08 067 (201I)

Parity violation

O Origin of chirality

- CPT invariance is fundamental
- CP \& T violations may be transmitted to gravity sector via field eqs.
- In GR, this is generally suppressed

Q String theory

- candidate for unified theory \& quantum gravity
-imples P -violating gravitational interactions

$$
\begin{aligned}
& S=\frac{1}{2 \kappa_{10}^{2}} \int \mathrm{~d}^{10} x \sqrt{-g} e^{-2 \phi}\left[R+4(\nabla \phi)^{2}-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}\right]+S_{\mathrm{PV}} \\
& S_{\mathrm{PV}}=\frac{\alpha^{\prime}}{8 \kappa_{10}^{2}} \int \mathrm{~d}^{10} x \sqrt{-g}\left(F_{\mu \nu}^{a} \star F^{a \mu \nu}-\mathcal{R}_{\mu \nu \rho \sigma} \star \mathcal{R}^{\mu \nu \rho \sigma}\right)
\end{aligned}
$$

- Chern-Simons interactions are ubiquitous in string theory
\Rightarrow detection of P -violation of gravity will shed light on ultimate theory

Gravitational waves

Q Inflationary universe as HEP laboratory
-best testbed to explore parity violation
-primordial gravitational waves during inflation
$\Rightarrow \mathrm{P}$-violation encoded in power spectrum

- have different GW amplitudes b/w +ve \& -ve helicity (circular polarizations)
- detectable through correlations of CMB

Seto 05, Seto-Taruya 06, Saíto-Ichiki-Taruya 07,
Sato \& Soda o8, Takahashí-Soda o9
Q Our work

Focus on non-Gaussianity of gravitons
-gives another useful measure for the Planck scale physics

Correlators via dual CFT

Q Maldacena-Pimentel 2011
-discussed graviton non-Gaussianity in dS by studying 3D CFT

- shapes of bispectrum are constrained by $d S$ isometry $\mathrm{SO}(4, I)$

$$
\begin{gathered}
S=\int \mathrm{d}^{4} x \sqrt{-g}\left(\frac{1}{2} M_{\mathrm{pl}}^{2} R+a W_{\rho \sigma}^{\mu \nu} W_{\tau \lambda}^{\rho \sigma} W_{\mu \nu}^{\tau \lambda}-b \star W_{\rho \sigma}^{\mu \nu} W_{\tau \lambda}^{\rho \sigma} W^{\tau \lambda}{ }_{\mu \nu}\right) \\
W_{\mu \nu \rho \sigma}: \text { Weyl tensor } \quad \star W_{\mu \nu \rho \sigma}=\frac{1}{2} \epsilon_{\mu \nu \lambda \tau} W_{\rho \sigma}^{\lambda \tau}
\end{gathered}
$$

- valid in arbitrary order in derivative expansion
this does not imply that parity violation appears in graviton bispectrum

Q What we would like to do
-reveal conditions under which the parity-violation arises in bispectrum
-develop a new formalism for computing higher-order graviton correlators

Plan

(I) New formalism for graviton correlators
(II) Graviton bispectrum during inflation
(III) Concluding remarks

GWs in Minkowski spacetime

Q Polarization of GWs

$$
\mathrm{d} s^{2}=-\mathrm{d} \eta^{2}+\left(\delta_{i j}+\gamma_{i j}\right) \mathrm{d} x^{i} \mathrm{~d} x^{j} \quad \gamma_{i i}=\partial_{i} \gamma_{i j}=0 \quad \gamma_{i j}^{\prime \prime}-\Delta \gamma_{i j}=0
$$

-linear polarization $\quad \gamma_{i j}=\gamma_{+} e_{i j}^{(\text {plus })}+\gamma_{\times} e_{i j}^{(\text {cross })}$
plus mode γ_{+}

-circular polarization $\quad \gamma_{i j}=\gamma^{L} e_{i j}^{(+)}+\gamma^{R} e_{i j}^{(-)}$

$$
\begin{aligned}
& \text { left-handed } \\
& \gamma^{L}=\frac{1}{\sqrt{2}}\left(\gamma_{+}-\mathrm{i} \gamma_{\times}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { right-handed } \\
\gamma^{R}=\frac{1}{\sqrt{2}}\left(\gamma_{+}+\mathrm{i} \gamma_{\times}\right)
\end{gathered}
$$

$$
\begin{gathered}
k_{j} e_{i j}^{(s)}(\boldsymbol{k})=0 \quad e_{i i}^{(s)}(\boldsymbol{k})=0 \\
\epsilon_{i j l} \frac{\partial}{\partial x_{l}}\left[e_{m j}^{(s)}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}}\right]=s k e_{i m}^{(s)}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}},
\end{gathered}
$$

$$
e_{i j}^{*(s)}(\boldsymbol{k})=e_{i j}^{(-s)}(\boldsymbol{k})=e_{i j}^{(s)}(-\boldsymbol{k})
$$

$$
e_{i j}^{(s)}(\boldsymbol{k}) e_{i j}^{*\left(s^{\prime}\right)}(\boldsymbol{k})=\delta_{s s^{\prime}}, \quad \mathbf{s}= \pm
$$

Helicity variables

Q Duality operator define a map $\sim: \gamma_{i j} \mapsto \tilde{\gamma}_{i j}=\epsilon_{i k l} \partial_{l} \gamma_{k j}$

$$
\tilde{\gamma}_{i j}=\tilde{\gamma}_{(i j)}, \quad \tilde{\gamma}_{i i}=\partial_{i} \tilde{\gamma}_{i j}=0, \quad \tilde{\tilde{\gamma}}_{i j}=-\Delta \gamma_{i j}, \quad \gamma_{i j}^{\prime \prime}-\Delta \gamma_{i j}=0
$$

-C-valued, symmetric TT tensor

$$
\gamma_{i j}^{ \pm}:=\frac{1}{2}\left(\gamma_{i j}^{\prime} \mp \mathrm{i} \tilde{\gamma}_{i j}\right)
$$

- form an irrep. of \mathbf{E}^{3}
- correspond to projections onto left \& right circular polarizations
imaginary (anti-)self dual Weyl tensor

$$
\begin{aligned}
W_{\mu \nu \lambda \sigma}^{ \pm} & :=W_{\mu \nu \lambda \sigma} \pm i * W_{\mu \nu \lambda \sigma}, \quad * W_{\mu \nu \lambda \rho}^{ \pm}=\mp i W_{\mu \nu \lambda \rho}^{ \pm} \\
\left(W^{ \pm}\right)^{3} & =64\left[\left(\gamma^{ \pm}\right)^{\prime}\right]^{3}
\end{aligned}
$$

$$
W_{\rho \sigma}^{\mu \nu} W_{\tau \lambda}^{\rho \sigma} W_{\mu \nu}^{\tau \lambda}=\frac{1}{4} \operatorname{Re}\left(W^{+}\right)^{3}
$$

$W^{3} \& * W W^{2}$ can be treated

$$
* W_{\rho \sigma}^{\mu \nu} W_{\tau \lambda}^{\rho \sigma} W^{\tau \lambda}{ }_{\mu \nu}=\frac{1}{4} \operatorname{Im}\left(W^{+}\right)^{3}
$$ in a unified manner

$\mathrm{W}^{3} \& * \mathrm{WW}^{2}$ are interchanged into each other under $\partial_{\eta} \leftrightarrow i \epsilon_{i j k} \partial_{k}$

GWs in FLRW

Q GWs in FLRW

$$
\begin{aligned}
& \mathrm{d} s^{2}=a^{2}(\eta)\left[-\mathrm{d} \eta^{2}+\left(\delta_{i j}+h_{i j}\right) \mathrm{d} x^{i} \mathrm{~d} x^{j}\right] \quad \partial_{i} h_{i j}=h_{i i}=0 \quad h_{i j}^{\prime \prime}+2 \frac{a^{\prime}}{a} h_{i j}^{\prime}-\Delta h_{i j}=0 \\
& W^{ \pm 0}{ }_{i 0 j}=\frac{1}{2 a}\left[a\left(h_{i j}^{\prime} \mp \mathrm{i} \epsilon_{i k l} \partial_{l} h_{j k}\right)\right]^{\prime} \\
& \left.\quad \text { (radiative parts } \sim \Psi_{0}, \Psi_{4}\right)
\end{aligned} \quad \begin{gathered}
\mathrm{d} s^{2}=-\mathrm{d} \eta^{2}+\left(\delta_{i j}+\gamma_{(\mathrm{M}) i j}\right) \mathrm{d} x^{i} \mathrm{~d} x^{j} \\
W^{ \pm 0}{ }_{i 0 j}=\frac{1}{2}\left(\gamma_{(\mathrm{M}) i j}^{\prime} \mp \mathrm{i} \epsilon_{i k l} \partial_{l} \gamma_{(\mathrm{M}) j k}\right)^{\prime} \\
=\left(\gamma_{(\mathrm{M}) i j}^{ \pm}\right)^{\prime}
\end{gathered}
$$

Define $\gamma_{i j}^{\prime} \equiv a h_{i j}^{\prime} \longrightarrow W^{\mu}{ }_{\nu \lambda \rho}(h)=\left.\frac{1}{a} W^{\mu}{ }_{\nu \lambda \rho}(\gamma)\right|_{\text {Minkowski }}$

$$
\begin{gathered}
W_{\mu \nu}^{ \pm \alpha \beta}(h) W_{\alpha \beta}^{ \pm \gamma \delta}(h) W_{\gamma \delta}^{ \pm \mu \nu}(h)=\frac{64}{a^{9}} \gamma_{i j}^{\prime \pm} \gamma_{j k}^{\prime \pm} \gamma_{k i}^{\prime \pm} \quad W^{3}=\frac{1}{4} \operatorname{Re}\left(W^{+}\right)^{3}, \quad * W W^{2}=\frac{1}{4} \operatorname{Im}\left(W^{+}\right)^{3} \\
S_{\mathrm{PV}}=-b \int \mathrm{~d}^{4} x \sqrt{-g} * W_{\rho \sigma}^{\mu \nu} W^{\rho \sigma}{ }_{\tau \lambda} W^{\tau \lambda}{ }_{\mu \nu}=8 \mathrm{i} b \int \mathrm{~d} \eta \mathrm{~d}^{3} x a^{-5}\left[\left(\gamma^{+}\right)^{\prime 3}-\left(\gamma^{-}\right)^{\prime 3}\right] \\
>H_{\mathrm{int}}=-8 \mathrm{i} b \int \mathrm{~d} \eta a^{-5}\left[\left(\gamma^{+}\right)^{\prime 3}-\left(\gamma^{-}\right)^{\prime 3}\right]
\end{gathered}
$$

Graviton bispectrum in dS

Q Pure de Sitter case

$$
\begin{aligned}
h_{i j} & =\frac{2}{M_{\mathrm{pl}}} \int \frac{\mathrm{~d}^{3} \mathbf{k}}{(2 \pi)^{3 / 2} \sqrt{2 k}} \sum_{s= \pm}\left[e_{i j}^{(s)}(\mathbf{k}) u_{k}(\eta) a_{s}(\mathbf{k}) e^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}+(\mathrm{h} . \mathrm{c} .)\right] \quad h_{i j}^{\prime \prime}+2 \frac{a^{\prime}}{a} h_{i j}^{\prime}-\Delta h_{i j}=0 \\
& \text { mode function } \quad u_{k}=\frac{H}{k}(1+i k \eta) e^{-i k \eta}, \quad\left[a_{s}(\boldsymbol{k}), a_{s}^{\dagger}\left(\boldsymbol{k}^{\prime}\right)\right]=\delta_{s s^{\prime}} \delta\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \\
& \gamma_{i j}^{\prime}=a h_{i j}^{\prime} \quad \gamma_{i j}^{ \pm}:=\frac{1}{2}\left(\gamma_{i j}^{\prime} \mp \mathrm{i} \tilde{\gamma}_{i j}\right) \quad \epsilon_{i j l} \frac{\partial}{\partial x_{l}}\left[e_{m j}^{(s)}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}}\right]=s k e_{i m}^{(s)}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}}, \\
& \longrightarrow \gamma_{i j}^{+}=-2 \int \frac{k \mathrm{~d}^{3} \mathbf{k}}{M_{\mathrm{pl}}(2 \pi)^{3 / 2} \sqrt{2 k}}\left[e_{i j}^{(+)}(\mathbf{k}) e^{-\mathrm{i} k \eta} a_{+}(\mathbf{k})+e_{i j}^{(-)}(-\mathbf{k}) e^{\mathrm{i} k \eta} a_{-}(\mathbf{k})\right] e^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}
\end{aligned}
$$

correlators can be calculable via in-in formalism

$$
\begin{aligned}
& \langle A(t)\rangle=-i \int_{t_{0}}^{t} \mathrm{~d} t^{\prime}\left\langle\left[A(t), H_{\mathrm{int}}\left(t^{\prime}\right)\right]\right\rangle \quad H_{\mathrm{int}}=b \int \mathrm{~d}^{4} x \sqrt{-g} * W W^{2} \\
& \left\langle\gamma_{i j}^{ \pm}(\mathbf{p})\left(\gamma_{k l}^{\mp}(\eta, \mathbf{k})\right)^{\prime}\right\rangle=2 \mathrm{i} M_{\mathrm{pl}}^{-2} k^{2} \Pi_{i j, k l}^{ \pm}(\mathbf{p}) \delta^{(3)}(\mathbf{p}+\mathbf{k}) e^{\mathrm{i} k \eta} \quad \Pi_{i j, k l}^{ \pm}(\mathbf{p})=e_{i j}^{(\pm)}(\mathbf{p}) e_{k l}^{*(\pm)}(\mathbf{p})
\end{aligned}
$$

No parity violation

$$
\begin{aligned}
& \left\langle\gamma_{i_{1} j_{1}}^{+}\left(0, \mathbf{p}_{1}\right) \gamma_{i_{2} j_{2}}^{+}\left(0, \mathbf{p}_{2}\right) \gamma_{i_{3} j_{3}}^{+}\left(0, \mathbf{p}_{3}\right)\right\rangle \\
& =384 \mathrm{i} b H^{5} M_{\mathrm{pl}}^{-6}(2 \pi)^{3}\left(p_{1} p_{2} p_{3}\right)^{2} \delta^{(3)}(\mathbf{p}) \frac{5!}{p^{6}}\left[\Pi_{i_{1}, k l l}^{+}\left(\mathbf{p}_{1}\right) \Pi_{i_{2} j_{2}, l m}^{+}\left(\mathbf{p}_{2}\right) \Pi_{i_{3} j_{3}, m k}^{+}\left(\mathbf{p}_{3}\right)+\Pi_{i_{1} j_{1}, k l}^{-}\left(\mathbf{p}_{1}\right) \Pi_{i_{i} j_{2}, l m}^{-}\left(\mathbf{p}_{2}\right) \Pi_{i_{3} j_{3}, m k}^{-}\left(\mathbf{p}_{3}\right)\right] \\
& \text { enroiort }
\end{aligned}
$$

- project onto left \& right handed circular polarizations

$$
\begin{aligned}
& h^{R}:=h_{i j} e_{i j}^{*(+)}, \quad h^{L}:=h_{i j} e_{i j}^{*(-)} \quad h_{i j}(\eta=0, \mathbf{p})=-\frac{H}{p^{2}}\left[\gamma_{i j}^{+}(\mathbf{p})+\gamma_{i j}^{-}(\mathbf{p})\right] \\
& \left\langle h^{R}\left(0, \mathbf{p}_{1}\right) h^{R}\left(0, \mathbf{p}_{2}\right) h^{R}\left(0, \mathbf{p}_{3}\right)\right\rangle \\
& =-384 i(2 \pi)^{3}(b H)^{2}\left(H / M_{\mathrm{pl}}\right)^{6} F\left(p_{2}, p_{2}, p_{3}\right)\left[\frac{5!}{\left(p_{1}+p_{2}+p_{3}\right)^{2}}-\frac{5!}{\left(p_{1}+p_{2}+p_{3}\right)^{2}}\right] \delta^{(3)}\left(\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}\right)=0 \\
& F\left(k_{1}, k_{2}, k_{3}\right)=-\frac{\left(k_{1}+k_{2}+k_{3}\right)^{3}\left(k_{1}+k_{2}-k_{3}\right)\left(k_{2}+k_{3}-k_{1}\right)\left(k_{3}+k_{1}-k_{2}\right)}{64 k_{1}^{2} k_{2}^{2} k_{3}^{2}} \\
& \left\langle h^{L}\left(0, \mathbf{p}_{1}\right) h^{L}\left(0, \mathbf{p}_{2}\right) h^{L}\left(0, \mathbf{p}_{3}\right)\right\rangle=0 \quad\left\langle h^{R}\left(0, \mathbf{p}_{1}\right) h^{L}\left(0, \mathbf{p}_{2}\right) h^{L}\left(0, \mathbf{p}_{3}\right)\right\rangle=0 \\
& \left\langle\begin{array}{l}
\left\langle h^{R}\left(0, \mathbf{p}_{1}\right) h^{R}\left(0, \mathbf{p}_{2}\right) h^{R}\left(0, \mathbf{p}_{3}\right)\right\rangle-\left\langle h^{L}\left(0, \mathbf{p}_{1}\right) h^{L}\left(0, \mathbf{p}_{2}\right) h^{L}\left(0, \mathbf{p}_{3}\right)\right\rangle=0 \\
\left\langle h^{R}\left(0, \mathbf{p}_{1}\right) h^{R}\left(0, \mathbf{p}_{2}\right) h^{L}\left(0, \mathbf{p}_{3}\right)\right\rangle-\left\langle h^{L}\left(0, \mathbf{p}_{1}\right) h^{L}\left(0, \mathbf{p}_{2}\right) h^{R}\left(0, \mathbf{p}_{3}\right)\right\rangle=0
\end{array}\right.
\end{aligned}
$$

In dS universe, parity violation does not appear in graviton non-Gaussianity.

Slow roll corrections

Q Consider deviations away from de Sitter
-expand terms by slow roll parameter $\quad \epsilon:=-\dot{H} / H^{2}, \quad a \sim\left(-H_{*} \eta\right)^{-1-\epsilon}$
I. mode function

$$
\begin{array}{ll}
u_{k}(\eta)=\sqrt{\frac{\pi k}{2 H_{*}}} e^{i \pi \nu / 2-i \pi / 4}\left(-H_{*} \eta\right)^{\nu} H_{\nu}^{(1)}(-k \eta), & h_{i j}(0, \mathbf{p})=-\frac{H_{*}}{p^{2}} C\left[\gamma_{i j}^{+}(0, \mathbf{p})+\gamma_{i j}^{-}(0, \mathbf{p})\right] \\
& C=1+\epsilon\left(2-\gamma-\log 2+\log H_{*} / k\right)
\end{array}
$$

II. interaction Hamiltonian

$$
H_{\mathrm{int}}=-8 \mathrm{i} b \int \mathrm{~d} \eta \mathrm{~d}^{3} x a^{-5}\left[\left(\gamma^{+}\right)^{\prime 3}-\left(\gamma^{-}\right)^{\prime 3}\right] \quad\left(\gamma_{i j}^{ \pm}\right)^{\prime} \rightarrow\left(\gamma_{(\mathrm{dS}) i j}^{ \pm}\right)^{\prime}+\epsilon \chi_{i j}^{ \pm}
$$

III. cosmic expansion

$$
\int_{-\infty}^{0} d \eta(-\eta)^{5+5 \epsilon} e^{-i\left(p_{1}+p_{2}+p_{3}\right) \eta} \sim-\frac{5!}{\left(p_{1}+p_{2}+p_{3}\right)^{6}}\left(1+\frac{5 \pi}{2} i \epsilon\right)
$$

Parity violation

$$
\begin{aligned}
\left\langle h^{R}(0,\right. & \left.\left.\mathbf{p}_{1}\right) h^{R}\left(0, \mathbf{p}_{2}\right) h^{R}\left(0, \mathbf{p}_{3}\right)\right\rangle=-\left\langle h^{L}\left(0, \mathbf{p}_{1}\right) h^{L}\left(0, \mathbf{p}_{2}\right) h^{L}\left(0, \mathbf{p}_{3}\right)\right\rangle \\
& =-64(2 \pi)^{4} \epsilon\left(b H_{*}^{2}\right)\left(H_{*} / M_{\mathbf{p l}}\right)^{6} \delta^{(3)}(\mathbf{p}) F\left(p_{1}, p_{2}, p_{3}\right) \frac{6!}{p^{6}} \\
& \quad\left(F\left(k_{1}, k_{2}, k_{3}\right)=-\frac{\left(k_{1}+k_{2}+k_{3}\right)^{3}\left(k_{1}+k_{2}-k_{3}\right)\left(k_{2}+k_{3}-k_{1}\right)\left(k_{3}+k_{1}-k_{2}\right)}{64 k_{1}^{2} k_{2}^{2} k_{3}^{2}}\right. \\
& \left.\mathbf{p}=\sum_{i} \mathbf{p}_{i}\right) \\
&
\end{aligned}
$$

Parity violation shows up \& is proportional to slow-roll parameter

$$
\begin{gathered}
\left\langle h^{L}\left(0, \mathbf{p}_{1}\right) h^{L}\left(0, \mathbf{p}_{2}\right) h^{R}\left(0, \mathbf{p}_{3}\right)\right\rangle=\left\langle h^{R}\left(0, \mathbf{p}_{1}\right) h^{R}\left(0, \mathbf{p}_{2}\right) h^{L}\left(0, \mathbf{p}_{3}\right)\right\rangle \\
=192 i(2 \pi)^{3} \epsilon H_{*}^{2}\left(H_{*} / M_{\mathrm{pl}}\right)^{6} J\left(p_{1}, p_{2}, p_{3}\right)\left(A_{-}-A_{-}^{*}\right) \delta^{(3)}(\mathbf{p})
\end{gathered}
$$

\longrightarrow No parity violation

This sort of parity violation can be observed in CMB

Concluding remarks

Q Summary
-a new formalism for computing graviton correlators
\longrightarrow provides us $w /$ unified treatment of $W^{3} \& * W^{2}$

- for Weyl cubic interactions parity violation does not show up in exact de Sitter, but it does in the slow roll case

O Outlooks

-a single field effective field theory admits parity-odd interaction
S. Weinberg 2008

$$
\begin{array}{cc}
L_{0}=R-\frac{1}{2}(\nabla \phi)^{2}-V(\phi) & L_{1}=f_{1}(\phi)(\nabla \phi)^{4}+f_{2}(\phi) W_{a b c d} W^{a b c d}+f_{3}(\phi) W_{a b c d} \star W^{a b c d} \\
\star W_{a b c d}=\frac{1}{2} \epsilon_{a b e f} W^{e f} & W_{a b c d}: \text { Weyl tensor }
\end{array}
$$

(conformal) isometries in dS

Q Conformal Killing vectors $\quad \mathscr{L}_{\zeta_{(0}} g_{a b}=2 \phi_{(i)} g_{a b}, \quad \phi_{(i)}=\frac{1}{4} \nabla_{a \zeta_{(i)}}^{a}$
RW metric $\mathrm{d} s^{2}=a^{2}(\eta)\left(-\mathrm{d} \eta^{2}+\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)$. admits maximal set of 15 CKV s

$$
\begin{aligned}
& P_{\mu}=\partial_{\mu} \quad D=x^{\mu} \partial_{\mu}, \quad M_{\mu \nu}=x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}, \quad K_{\mu}=2 x_{\mu} D-\left(x_{v} x^{\nu}\right) P_{\mu} \\
& {\left[D, K_{\mu}\right]=K_{\mu}, \quad\left[D, P_{\mu}\right]=P_{\mu}, \quad\left[K_{\mu}, P_{\mu}\right]=2\left(\eta_{\mu \nu} D+2 M_{\mu \nu}\right) \quad \eta_{\mu \nu}=\operatorname{diag}(-1,1,1,1)} \\
& {\left[K_{\mu}, M_{\nu \rho}\right]=\eta_{\mu \nu} K_{\rho}-\eta_{\mu \rho} K_{\nu}, \quad\left[P_{\mu}, M_{\nu \rho}\right]=\eta_{\mu \nu} P_{\rho}-\eta_{\mu \rho} P_{\nu}, \quad\left[M_{\mu \nu}, M_{\rho \sigma}\right]=-\eta_{\mu \rho} M_{\sigma v}+\cdots .}
\end{aligned}
$$

$\phi_{(\mathrm{i})}$ are given by

$$
\phi_{P_{0}}=\mathcal{H}, \quad \phi_{K_{0}}=-2 \eta-\left(\eta^{2}+x^{i} x_{i}\right) \mathcal{H}, \quad \phi_{M_{0 i}}=-\mathcal{H} x_{i}
$$

$$
\left.\begin{array}{l}
\phi_{D}=1+\eta \mathcal{H}, \\
\phi_{K_{i}}=2 x_{i}(1+\eta \mathcal{H})
\end{array}\right\} \begin{gathered}
\\
\text { isometry for } \mathrm{dS} \\
(\mathcal{H}=-1 / \eta)
\end{gathered} \quad \mathcal{H}=\mathrm{d}(\ln a) / \mathrm{d} \eta
$$

K_{i} generates special CT of \mathbf{E}^{3} for late time ($\eta \sim 0$)
\Rightarrow restricts allowed correlators for tensors w/ conformal dimension 2 (=stress tensor)

