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Parity violation

 Origin of chirality 

• CPT invariance is fundamental

 String theory

•candidate for unified theory & quantum gravity

•imples P-violating gravitational interactions Green & Schwarz

 Chern-Simons interactions are ubiquitous in string theory

• CP & T violations may be transmitted to gravity sector via field eqs.

• In GR, this is generally suppressed

⇒ detection of P-violation of gravity will shed light on ultimate theory 



Gravitational waves

 Inflationary universe as HEP laboratory

 Our work

•gives another useful measure for the Planck scale physics

•best testbed to explore parity violation 

•primordial gravitational waves during inflation

Seto 05, Seto-Taruya 06, Saito-Ichiki-Taruya 07,
Sato & Soda 08, Takahashi-Soda 09

Focus on non-Gaussianity of gravitons

‣have different GW amplitudes b/w +ve & -ve helicity (circular polarizations)

‣detectable through correlations of CMB

⇒ P-violation encoded in power spectrum



Correlators via dual CFT

 Maldacena-Pimentel 2011

•develop a new formalism for computing higher-order graviton correlators  

•discussed graviton non-Gaussianity in dS by studying 3D CFT

•shapes of bispectrum are constrained by dS isometry SO(4,1)

 What we would like to do

•reveal conditions under which the parity-violation arises in bispectrum

Wµνρσ : Weyl tensor

 this does not imply that parity violation appears in graviton bispectrum

•valid in arbitrary order in derivative expansion



Plan

(I) New formalism for graviton correlators

(II) Graviton bispectrum during inflation

(III) Concluding remarks



GWs in Minkowski spacetime

 Polarization of GWs

plus mode γ+ cross mode γx

left-handed right-handed

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
8
0
P
_
0
6
1
1
 
v
1

2. A Formalism for Graviton Non-gaussianity

In this section, with the aid of the helicity basis, we present a useful method to evaluate

graviton non-gaussianity generated by a parity-violating Weyl cubic term.

Let us start with the Friedmann-Lemâıtle-Robertson-Walker (FLRW) metric

ds2 = a2(η)
[

−dη2 + δijdxidxj
]

, (2.1)

where i, j are indices of the spatial coordinates. No distinction is made between their

upper and lower indices hereafter for the three-dimensional tensorial quantities. Tensor

perturbations on this background universe are defined by

ds2 = a2(η)
[

−dη2 + (δij + hij) dxidxj
]

, (2.2)

where hij obeys the transverse traceless conditions hii = hij,j = 0. The gravitational action

for the tensor perturbation reads

SG =
1

4κ2

∫

dηd3xa2

[

1

2
h′

ijh
′
ij −

1

2
hij,khij,k

]

, (2.3)

where the prime denotes the differentiation with respect to the conformal time η and

κ2 = 8πG with the Newton constant G. We have two physical degrees of freedom for

tensor perturbations which can be characterized by the symmetric polarization tensors

e(±)
ij (k) satisfying

e(s)
ii (k) = 0 , kje

(s)
ij (k) = 0 , (2.4)

where k is a comoving wavenumber vector, and s = ± represents the helicity states ±2.

Namely, they satisfy

εijl
∂

∂xl

[

e(s)
mj(k)eik·x

]

= ske(s)
im(k)eik·x , (2.5)

with k = |k|. It is convenient to adopt the normalization

e(s)
ij (k)e∗(s

′)
ij (k) = δss′ , (2.6)

where ∗ represents a complex conjugate. Remark that if we choose the phase of each

polarization tensor appropriately, the following relations hold:

e∗(s)ij (k) = e(−s)
ij (k) = e(s)

ij (−k). (2.7)

These relations will play a crucial rôle in proving that no parity violation occurs in non-

gaussianity for the exact de Sitter universe.

Now, it is straightforward to quantize tensor perturbations. The mode expansion is

written as

hij(x, η) = 2κ

∫

d3k

(2π)3/2
√

2k

∑

s=±

[

e(s)
ij (k)uk(η)as(k) + e∗(s)ij (−k)uk(η)a†s(−k)

]

eik·x ,

(2.8)

– 3 –
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•linear polarization

•circular polarization

s= ±

γij = γ+e
(plus)
ij + γ×e

(cross)
ij



Helicity variables

 Duality operator
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A. Pseudo Self-duality, Helicity, Parity Violating Action

The pseudo self-dual and anti-self-dual Weyl tensor are defined by

W±
µνλσ := Wµνλσ ± i ∗ Wµνλσ, ∗W µν

λρ =
1

2
εµναβWαβλρ , (A.1)

which satisfy

∗W±
µνλρ = ∓iW±

µνλρ . (A.2)

The factor “i” arises due to the Lorentzian signature. Since the relation W+
µν

αβW−
αβ

γδ = 0

holds, we get

εµνλρWµν
αβWαβ

γδWλργδ =
1

4i

(

W+
µν

αβW+
αβ

γδW+
γδ

µν − W−
µν

αβW−
αβ

γδW−
γδ

µν
)

. (A.3)

Note that we also have a relation

Wµν
αβWαβ

γδWγδµν =
1

8

(

W+
µν

αβW+
αβ

γδW+
γδ

µν + W−
µν

αβW−
αβ

γδW−
γδ

µν
)

. (A.4)

Let us consider tensor perturbations in the Minkowski spacetime

ds2 = −dη2 +
(

δij + γ(M)ij

)

dxidxj , (A.5)

where γ(M)ij is a transverse traceless symmetric tensor describing a gravitational wave.

The on-shell equations of motion are

−γ′′
(M)ij + ∇2γ(M)ij = 0 , (A.6)

where the prime denotes the differentiation with respect to η. It is convenient to define a

new variable by γ̃(M)ij := εjklγ(M)ik,l. By multiplying εmij to both side, we can prove this

new tensor is symmetric. Then, it is easy to see the transversality of γ̃(M)ij. Thus γ̃(M)ij

is also the transverse traceless symmetric tensor. Using this new tensor, we can define

helicity eigenstate by

γ±
(M)ij :=

1

2

(

γ′
(M)ij ∓ iγ̃(M)ij

)

. (A.7)

One can then verify the relation

εijl
∂

∂xl
γ±
(M)mj = ±kγ±

(M)im . (A.8)

A direct calculation yields

W 0
i0k =

1

2
γ′′
(M)ik (A.9)

W 0
jkl = −γ(M)j[k,l] = −

1

2
εklmγ̃(M)jm (A.10)

W j
klm = −δl[jγ

′′
(M)k]m + δm[jγ

′′
(M)k]l , (A.11)

where we used on-shell equations for gravitational waves (A.6) in Minkowski spacetime. It

is easy to derive the following relations 3

3In appearance the expression of W 3 derived here disagree with Eq. (2.14) in [18]. However, they can

be shown to be equivalent by using three-dimensional identity 2(γ′
(M)i[k,l]γ

′
(M)j[k,l] + γ′

(M)k[l,i]γ
′
(M)k[l,j]) ≡

δijγ
′
(M)kl,mγ′

(M)k[l,m].

– 17 –
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•correspond to projections onto left & right 
circular polarizations

•form an irrep. of E3

imaginary (anti-)self dual Weyl tensor

W3 & *WW2 are interchanged into each other under

define a map

γ̃ij = γ̃(ij) , γ̃ii = ∂iγ̃ij = 0 , ˜̃γij = −∆γij ,

c.f. Higaki 1986

W3 & *WW2 can be treated
in a unified manner

•C-valued, symmetric TT tensor



GWs in FLRW

 GWs in FLRW

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
8
0
P
_
0
6
1
1
 
v
1

W±
µν

αβW±
αβ

γδW±
γδ

µν
= 64(γ±

(M)ij)
′(γ±

(M)jk)
′(γ±

(M)ki)
′ . (A.12)

and

Wµν
αβWαβ

γδWγδ
µν = 2γ′′

(M)ij

[

γ′′
(M)jkγ

′′
(M)ki − 3γ̃′

(M)jkγ̃
′
(M)ki

]

, (A.13)

εµνλρWµν
αβWαβ

γδWλργδ = 4γ̃′′
(M)ij

[

γ̃′′
(M)jkγ̃

′′
(M)ki − 3γ′

(M)jkγ
′
(M)ki

]

. (A.14)

These equations manifest the symmetry between W 3 and ∗WW 2 in a flat space.

Now, we would like to promote the above beautiful relation to FLRW spacetime (2.2).

The Weyl tensor is obtained as

W 0
i0k =

1

2a

(

ah′
ik

)′
(A.15)

W 0
jkl = −h′

j[k,l] (A.16)

W j
klm =

1

a

[

−δl[j(ah′
k]m)′ + δm[j(ah′

k]l)
′
]

, (A.17)

where we have used on-shell equations for gravitational waves in FLRW spacetime. Com-

paring this expression with the one in Minkowski spacetime, we notice that if we make the

identification

γ′
ij = ah′

ij , (A.18)

a simple relation

W µ
νλρ(h) =

1

a
W µ

νλρ(γ)
∣

∣

Minkowski
(A.19)

holds irrespective of the expansion history of the universe. Therefore, with a definition

γ±
ij =

1

2

(

γ′
ij ∓ iεjklγik,l

)

, (A.20)

we obtain

W±
µν

αβ(h)W±
αβ

γδ(h)W±
γδ

µν(h) =
64

a9
γ′±

ij γ′±
jk γ′±

ki . (A.21)

Thus, we can deduce the action in the main text.

B. Polarization tensors

We fix the representation of polarization tensors [25]. Because of momentum conservation

k1 +k2 +k3 = 0, we can make all ki lying on the (x, y)-plane without losing any generality.

It follows that a triangle can be constructed as

k1 = k1 (1, 0, 0) , k2 = k2 (cos θ, sin θ, 0) , k3 = k3 (cos φ, sin φ, 0) , (B.1)

where

cos θ =
k2
3 − k2

1 − k2
2

2k1k2
, sin θ =

λ

2k1k2
, cos φ =

k2
2 − k2

3 − k2
1

2k3k1
, sin φ = −

λ

2k3k1
,

(B.2)

λ =
√

2k2
1k

2
2 + 2k2

2k
2
3 + 2k2

3k
2
1 − k4

1 − k4
2 − k4

3 . (B.3)
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W±
µν

αβW±
αβ

γδW±
γδ

µν
= 64(γ±

(M)ij)
′(γ±

(M)jk)
′(γ±

(M)ki)
′ . (A.12)

and

Wµν
αβWαβ

γδWγδ
µν = 2γ′′

(M)ij

[

γ′′
(M)jkγ

′′
(M)ki − 3γ̃′

(M)jkγ̃
′
(M)ki

]

, (A.13)

εµνλρWµν
αβWαβ

γδWλργδ = 4γ̃′′
(M)ij

[

γ̃′′
(M)jkγ̃

′′
(M)ki − 3γ′

(M)jkγ
′
(M)ki

]

. (A.14)

These equations manifest the symmetry between W 3 and ∗WW 2 in a flat space.

Now, we would like to promote the above beautiful relation to FLRW spacetime (2.2).

The Weyl tensor is obtained as

W 0
i0k =

1

2a

(

ah′
ik

)′
(A.15)

W 0
jkl = −h′

j[k,l] (A.16)

W j
klm =

1

a

[

−δl[j(ah′
k]m)′ + δm[j(ah′

k]l)
′
]

, (A.17)

where we have used on-shell equations for gravitational waves in FLRW spacetime. Com-

paring this expression with the one in Minkowski spacetime, we notice that if we make the

identification

γ′
ij = ah′

ij , (A.18)

a simple relation

W µ
νλρ(h) =

1

a
W µ

νλρ(γ)
∣

∣

Minkowski
(A.19)

holds irrespective of the expansion history of the universe. Therefore, with a definition

γ±
ij =

1

2

(

γ′
ij ∓ iεjklγik,l

)

, (A.20)

we obtain

W±
µν

αβ(h)W±
αβ

γδ(h)W±
γδ

µν(h) =
64

a9
γ′±

ij γ′±
jk γ′±

ki . (A.21)

Thus, we can deduce the action in the main text.

B. Polarization tensors

We fix the representation of polarization tensors [25]. Because of momentum conservation

k1 +k2 +k3 = 0, we can make all ki lying on the (x, y)-plane without losing any generality.

It follows that a triangle can be constructed as

k1 = k1 (1, 0, 0) , k2 = k2 (cos θ, sin θ, 0) , k3 = k3 (cos φ, sin φ, 0) , (B.1)

where

cos θ =
k2
3 − k2

1 − k2
2

2k1k2
, sin θ =

λ

2k1k2
, cos φ =

k2
2 − k2

3 − k2
1

2k3k1
, sin φ = −

λ

2k3k1
,

(B.2)

λ =
√

2k2
1k

2
2 + 2k2

2k
2
3 + 2k2

3k
2
1 − k4

1 − k4
2 − k4

3 . (B.3)
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Define

∂ihij=hii=0

γ�i j ≡ ah�i j

= (γ±(M)i j)
�

W3 = 1
4 Re(W+)3 , ∗WW2 = 1

4 Im(W+)3

(radiative parts~Ψ0, Ψ4)

Hint = −8ib

�
dηa−5[(γ+)�3 − (γ−)�3]
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where the creation and annihilation operators are normalized as
[

as(k), a†s(k
′)
]

= δss′δ(k − k′) . (2.9)

The mode function uk satisfies the evolution equation

u′′
k + 2

a′

a
u′

k + k2uk = 0 . (2.10)

The canonical commutation relation leads to the normalization condition

u∗
k

∂

∂η
uk − uk

∂

∂η
u∗

k = −
2ik

a2
. (2.11)

Once a set of mode functions satisfying this normalization is specified, the corresponding

Fock vacuum is determined by as(k)|0〉 = 0. Then, we can calculate graviton correlation

functions for each interaction with the help of the standard perturbation technique.

The purpose of this work is to explore the possibility of parity violation. It is well known

that the information of gravitational waves is completely encoded in the Weyl tensor Wµνλρ.

When we restrict ourselves to pure gravity, possible parity-violating interaction terms can

be found easily. Apparently, the linear term in the Weyl tensor
∫

dηd3x
√
−gεµνλρWµνλρ (2.12)

vanishes, whereas the quadratic term
∫

dηd3x
√
−gεµνλρWµν

αβWαβλρ (2.13)

is a topological term. Thus, the first two terms in Wµνλρ are irrelevant to the parity

violation. It follows that the leading term comes from the following cubic action

SPV = −b

∫

dηd3x
√
−gεµνλρWµν

αβWαβ
γδWλργδ , (2.14)

which is P- and T-odd. Here, b is a constant with dimension [length]2 (in c = ! = 1 units).

We shall evaluate the graviton non-gaussianity generated by this term and examine if the

parity violation emerges in the bispectrum.

We first establish an efficient formulation to calculate graviton correlation functions

in a general FLRW universe. In this method, the fact that the helicity decomposition is

related to the decomposition by a pseudo-duality in the Minkowski spacetime plays an

important rôle. To see this, let us consider gravitational waves γ(M)ij in the Minkowski

spacetime (see Appendix A). In terms of the new variable defined by

γ±
(M)ij =

1

2

(

γ′
(M)ij ∓ iεjklγ(M)ik,l

)

, (2.15)

which is transverse and symmetric, we can express the cube of the chiral combinations (A.1)

of the Weyl tensor as (W±)3 = 64(γ±
(M))

3. This remarkable relation makes computations

quite simple.
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W±
µν

αβW±
αβ

γδW±
γδ

µν
= 64(γ±

(M)ij)
′(γ±

(M)jk)
′(γ±

(M)ki)
′ . (A.12)

and

Wµν
αβWαβ

γδWγδ
µν = 2γ′′

(M)ij

[

γ′′
(M)jkγ

′′
(M)ki − 3γ̃′

(M)jkγ̃
′
(M)ki

]

, (A.13)

εµνλρWµν
αβWαβ

γδWλργδ = 4γ̃′′
(M)ij

[

γ̃′′
(M)jkγ̃

′′
(M)ki − 3γ′

(M)jkγ
′
(M)ki

]

. (A.14)

These equations manifest the symmetry between W 3 and ∗WW 2 in a flat space.

Now, we would like to promote the above beautiful relation to FLRW spacetime (2.2).

The Weyl tensor is obtained as

W 0
i0k =

1

2a

(

ah′
ik

)′
(A.15)

W 0
jkl = −h′

j[k,l] (A.16)

W j
klm =

1

a

[

−δl[j(ah′
k]m)′ + δm[j(ah′

k]l)
′
]

, (A.17)

where we have used on-shell equations for gravitational waves in FLRW spacetime. Com-

paring this expression with the one in Minkowski spacetime, we notice that if we make the

identification

γ′
ij = ah′

ij , (A.18)

a simple relation

W µ
νλρ(h) =

1

a
W µ

νλρ(γ)
∣

∣

Minkowski
(A.19)

holds irrespective of the expansion history of the universe. Therefore, with a definition

γ±
ij =

1

2

(

γ′
ij ∓ iεjklγik,l

)

, (A.20)

we obtain

W±
µν

αβ(h)W±
αβ

γδ(h)W±
γδ

µν(h) =
64

a9
γ′±

ij γ′±
jk γ′±

ki . (A.21)

Thus, we can deduce the action in the main text.

B. Polarization tensors

We fix the representation of polarization tensors [25]. Because of momentum conservation

k1 +k2 +k3 = 0, we can make all ki lying on the (x, y)-plane without losing any generality.

It follows that a triangle can be constructed as

k1 = k1 (1, 0, 0) , k2 = k2 (cos θ, sin θ, 0) , k3 = k3 (cos φ, sin φ, 0) , (B.1)

where

cos θ =
k2
3 − k2

1 − k2
2

2k1k2
, sin θ =

λ

2k1k2
, cos φ =

k2
2 − k2

3 − k2
1

2k3k1
, sin φ = −

λ

2k3k1
,

(B.2)

λ =
√

2k2
1k

2
2 + 2k2

2k
2
3 + 2k2

3k
2
1 − k4

1 − k4
2 − k4

3 . (B.3)
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3. No Parity Violating Bispectrum in de Sitter Universe

Employing the formulation developed in the previous section let us compute the bispectrum

in de Sitter universe. We prove that no parity violation appears in non-gaussianity due to

the symmetry of de Sitter universe.

The mode function in a de Sitter background reads

uk =
H

k
(1 + ikη) e−ikη , (3.1)

where H is a constant Hubble parameter. Letting

γ±
ij (η,x) =

∫

d3k

(2π)3
γ±

ij (η,k)eik·x , (3.2)

and substituting the above mode function into (2.21), we obtain the following formula

(

γ+
ij (η,k)

)′
= 2iκk(2π)3/2

√

k

2

[

e(+)
ij (k)e−ikηa+(k) − e∗(−)

ij (−k)eikηa†−(−k)
]

, (3.3)

and

(

γ−
ij (η,k)

)′
= 2iκk(2π)3/2

√

k

2

[

e(−)
ij (k)e−ikηa−(k) − e∗(+)

ij (−k)eikηa†+(−k)
]

. (3.4)

Here, the operator γ+
ij annihilates a helicity +2 graviton and creates a helicity −2 graviton.

While, the operator γ−
ij does the opposite. In the de Sitter background it is easy to integrate

these equations. In the asymptotic limit η = 0, we have

γ+
ij (0,p) = −2κ(2π)3/2

√

p

2

[

e(+)
ij (p)a+(p) + e∗(−)

ij (−p)a†−(−p)
]

, (3.5a)

γ−
ij (0,p) = −2κ(2π)3/2

√

p

2

[

e(−)
ij (p)a−(p) + e∗(+)

ij (−p)a†+(−p)
]

. (3.5b)

Thus, we arrive at the simple relation 1

hij(0,p) = −
H

p2

[

γ+
ij (0,p) + γ−

ij (0,p)
]

. (3.6)

It is worth noting here the following property

γ±
ij (η,k) =

(

γ∓
ij (η,−k)

)†
. (3.7)

This traces back to the property of helicity basis (2.7) and plays a key rôle in proving no

parity violation in the exactly de Sitter universe.

In the calculations of bispectrum based on the in-in formalism, we need

〈0|γ±
ij (0,p)

(

γ∓
kl(η,k)

)′ |0〉 = 2iκ2(2π)3k2Π±
ij,kl(p)δ(k + p)eikη , (3.8)

〈0|
(

γ∓
kl(η,k)

)′
γ±

ij (0,p)|0〉 = −2iκ2(2π)3k2Π∓
ij,kl(p)δ(k + p)e−ikη , (3.9)

〈0|γ±
ij (0,p)(γ±

kl(η,k))′|0〉 = 〈0|(γ±
kl(η,k))′γ±

ij (0,p)|0〉 = 0 , (3.10)

1Since hij and γij are related via the differential equation (2.16), γ±

ij at η = 0 can take arbitrary value.

Hence, Eq. (3.5) should be regarded simply as the definition of γ±
ij(0, p).
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2. A Formalism for Graviton Non-gaussianity

In this section, with the aid of the helicity basis, we present a useful method to evaluate

graviton non-gaussianity generated by a parity-violating Weyl cubic term.

Let us start with the Friedmann-Lemâıtle-Robertson-Walker (FLRW) metric

ds2 = a2(η)
[

−dη2 + δijdxidxj
]

, (2.1)

where i, j are indices of the spatial coordinates. No distinction is made between their

upper and lower indices hereafter for the three-dimensional tensorial quantities. Tensor

perturbations on this background universe are defined by

ds2 = a2(η)
[

−dη2 + (δij + hij) dxidxj
]

, (2.2)

where hij obeys the transverse traceless conditions hii = hij,j = 0. The gravitational action

for the tensor perturbation reads

SG =
1

4κ2

∫

dηd3xa2

[

1

2
h′

ijh
′
ij −

1

2
hij,khij,k

]

, (2.3)

where the prime denotes the differentiation with respect to the conformal time η and

κ2 = 8πG with the Newton constant G. We have two physical degrees of freedom for

tensor perturbations which can be characterized by the symmetric polarization tensors

e(±)
ij (k) satisfying

e(s)
ii (k) = 0 , kje

(s)
ij (k) = 0 , (2.4)

where k is a comoving wavenumber vector, and s = ± represents the helicity states ±2.

Namely, they satisfy

εijl
∂

∂xl

[

e(s)
mj(k)eik·x

]

= ske(s)
im(k)eik·x , (2.5)

with k = |k|. It is convenient to adopt the normalization

e(s)
ij (k)e∗(s

′)
ij (k) = δss′ , (2.6)

where ∗ represents a complex conjugate. Remark that if we choose the phase of each

polarization tensor appropriately, the following relations hold:

e∗(s)ij (k) = e(−s)
ij (k) = e(s)

ij (−k). (2.7)

These relations will play a crucial rôle in proving that no parity violation occurs in non-

gaussianity for the exact de Sitter universe.

Now, it is straightforward to quantize tensor perturbations. The mode expansion is

written as

hij(x, η) = 2κ

∫

d3k

(2π)3/2
√

2k

∑

s=±

[

e(s)
ij (k)uk(η)as(k) + e∗(s)ij (−k)uk(η)a†s(−k)

]

eik·x ,

(2.8)

– 3 –



No parity violation

•project onto left & right handed circular polarizations

In dS universe, parity violation does not appear in graviton non-Gaussianity.

�γ+i1 j1 (0,p1)γ+i2 j2 (0,p2)γ+i3 j3 (0,p3)�

= 384ibH
5
M
−6
pl (2π)3(p1 p2 p3)2δ(3)(p)

5!
p6

�
Π+i1 j1,kl(p1)Π+i2 j2,lm(p2)Π+i3 j3,mk(p3) + Π−i1 j1,kl(p1)Π−i2 j2,lm(p2)Π−i3 j3,mk(p3)

�

�hL(0,p1)hL(0,p2)hL(0,p3)� = 0

F(k1, k2, k3) = − (k1 + k2 + k3)3 (k1 + k2 − k3) (k2 + k3 − k1) (k3 + k1 − k2)
64k2

1k2
2k2

3

�hR(0,p1)hR(0,p2)hR(0,p3)� − �hL(0,p1)hL(0,p2)hL(0,p3)� = 0

�hR(0,p1)hL(0,p2)hL(0,p3)� = 0

�hR(0,p1)hR(0,p2)hL(0,p3)� − �hL(0,p1)hL(0,p2)hR(0,p3)� = 0



Slow roll corrections

 Consider deviations away from de Sitter

I. mode function

•expand terms by slow roll parameter

II. interaction Hamiltonian

III. cosmic expansion
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4.2.4 (+ + −) part

In parallel with the previous one, this part of the bispectrum reads

〈γ+
i1j1

(0,p1)γ
+
i2j2

(0,p2)γ
−
i3j3

(0,p3)〉

= i

∫ 0

−∞

dη〈0|
[

HPV(η), γ+
i1j1

(0,p1)γ
+
i2j2

(0,p2)γ
−
i3j3

(0,p3)
]

|0〉

= 96ibεκ6H5
∗ (2π)3p2

1p
2
2p

2
3δ(p1 + p2 + p3)

×
[

Π+
i1j1,kl(p1)Π

+
i2j2,lm(p2)Π

−
i3j3,mk(p3)A− + Π−

i1j1,kl(p1)Π
−
i2j2,lm(p2)Π

+
i3j3,mk(p3)A

∗
−

]

+ {(i1j1) ↔ (i2j2)} . (4.30)

4.3 Change of the cosmic expansion

The final contribution comes from the imaginary part of the integral

∫ 0

−∞

dη(−η)5+5εe−i(p1+p2+p3)η =
Γ(6 + 5ε)

(−i)6+5ε(p1 + p2 + p3)6+5ε

∼ −
5!

(p1 + p2 + p3)6

(

1 +
5π

2
iε

)

≡ −
5!

(p1 + p2 + p3)6
− εB ,

(4.31)

where the real part of O(ε) has been neglected in the second line since it has nothing to do

with the parity violation. In terms of this integral, 〈γ+γ+γ+〉 and 〈γ−γ−γ−〉 are expressed

as

〈γ+
i1j1

(0,p1)γ
+
i2j2

(0,p2)γ
+
i3j3

(0,p3)〉

= 384ibεκ6H5
∗ (2π)3p2

1p
2
2p

2
3δ(p1 + p2 + p3)

×
[

Π+
i1j1,kl(p1)Π

+
i2j2,lm(p2)Π

+
i3j3,mk(p3)B

∗ + Π−
i1j1,kl(p1)Π

−
i2j2,lm(p2)Π

−
i3j3,mk(p3)B

]

,

(4.32)

and

〈γ−
i1j1

(0,p1)γ
−
i2j2

(0,p2)γ
−
i3j3

(0,p3)〉

= −384ibεκ6H5
∗ (2π)3p2

1p
2
2p

2
3δ(p1 + p2 + p3)

×
[

Π−
i1j1,kl(p1)Π

−
i2j2,lm(p2)Π

−
i3j3,mk(p3)B

∗ + Π+
i1j1,kl(p1)Π

+
i2j2,lm(p2)Π

+
i3j3,mk(p3)B

]

.

(4.33)

From these expressions, it is found that the imaginary part of B fails to cancel the contri-

butions to the non-gaussianity from 〈γ+γ+γ+〉 and 〈γ−γ−γ−〉.

4.4 Parity Violation

Now, we are in a position to discuss parity violation in a slow-roll inflationary universe by
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4.2.4 (+ + −) part

In parallel with the previous one, this part of the bispectrum reads

〈γ+
i1j1

(0,p1)γ
+
i2j2

(0,p2)γ
−
i3j3

(0,p3)〉

= i

∫ 0

−∞

dη〈0|
[

HPV(η), γ+
i1j1

(0,p1)γ
+
i2j2

(0,p2)γ
−
i3j3

(0,p3)
]

|0〉

= 96ibεκ6H5
∗ (2π)3p2

1p
2
2p

2
3δ(p1 + p2 + p3)

×
[

Π+
i1j1,kl(p1)Π

+
i2j2,lm(p2)Π

−
i3j3,mk(p3)A− + Π−

i1j1,kl(p1)Π
−
i2j2,lm(p2)Π

+
i3j3,mk(p3)A

∗
−

]

+ {(i1j1) ↔ (i2j2)} . (4.30)

4.3 Change of the cosmic expansion

The final contribution comes from the imaginary part of the integral

∫ 0

−∞

dη(−η)5+5εe−i(p1+p2+p3)η =
Γ(6 + 5ε)

(−i)6+5ε(p1 + p2 + p3)6+5ε

∼ −
5!

(p1 + p2 + p3)6

(

1 +
5π

2
iε

)

≡ −
5!

(p1 + p2 + p3)6
− εB ,

(4.31)

where the real part of O(ε) has been neglected in the second line since it has nothing to do

with the parity violation. In terms of this integral, 〈γ+γ+γ+〉 and 〈γ−γ−γ−〉 are expressed

as

〈γ+
i1j1

(0,p1)γ
+
i2j2

(0,p2)γ
+
i3j3

(0,p3)〉

= 384ibεκ6H5
∗ (2π)3p2

1p
2
2p

2
3δ(p1 + p2 + p3)

×
[

Π+
i1j1,kl(p1)Π

+
i2j2,lm(p2)Π

+
i3j3,mk(p3)B

∗ + Π−
i1j1,kl(p1)Π

−
i2j2,lm(p2)Π

−
i3j3,mk(p3)B

]

,

(4.32)

and

〈γ−
i1j1

(0,p1)γ
−
i2j2

(0,p2)γ
−
i3j3

(0,p3)〉

= −384ibεκ6H5
∗ (2π)3p2

1p
2
2p

2
3δ(p1 + p2 + p3)

×
[

Π−
i1j1,kl(p1)Π

−
i2j2,lm(p2)Π

−
i3j3,mk(p3)B

∗ + Π+
i1j1,kl(p1)Π

+
i2j2,lm(p2)Π

+
i3j3,mk(p3)B

]

.

(4.33)

From these expressions, it is found that the imaginary part of B fails to cancel the contri-

butions to the non-gaussianity from 〈γ+γ+γ+〉 and 〈γ−γ−γ−〉.

4.4 Parity Violation

Now, we are in a position to discuss parity violation in a slow-roll inflationary universe by
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4.1 Change in the asymptotic mode function

In the slow-roll stage, the universe undergoes the following evolution

ds2 = −dt2 + a2(t)δijdxidxj = a2(η)
[

−dη2 + δijdxidxj
]

. (4.1)

Though the explicit functional form of the scale factor is sensitive to the inflaton potential

and/or kinetic term, the scale factor takes a simple form in the leading order of the slow-roll

parameter. To see this, let us define the slow roll parameter ε as2

ε = −
Ḣ

H2
= −

H ′

aH2
, H =

ȧ

a
=

a′

a2
, (4.2)

where the dot denotes the derivative with respect to the cosmic time t. In the leading order

of the slow-roll approximation this slow-roll parameter ε can be regarded as a constant.

Under this condition by integrating

(

1

aH

)′

= ε − 1, (4.3)

which is equivalent to the definition of ε, we obtain

a(η) = (−H∗η)−1/(1−ε) = (−H∗η)1/2−ν , (4.4)

where H∗ is a constant of integration, and we have defined

ν =
3

2
+

ε

1 − ε
"

3

2
+ ε . (4.5)

The equation of motion for gravitational waves in this background can be written as

h′′
ij −

2

(1 − ε)η
h′

ij + k2hij = 0 . (4.6)

By solving this, we find that the mode function which satisfies the normalization condi-

tion (2.11) and approaches the Bunch-Davis type mode in the η → −∞ limit is given

by

uk(η) =

√

πk

2H∗
eiπν/2−iπ/4 (−H∗η)ν H(1)

ν (−kη) , (4.7)

where H(1)
ν is the Hankel function of the first kind. In the asymptotic limit −η → 0, this

function freezes out and approaches to the constant value

uk(η) =
H∗

k
eiπε/2

[

1 + ε

(

2 − γ − log 2 + log
H∗

k

)]

, (4.8)

where γ is the Euler constant. Here, we used

H(1)
ν (z) ∼ −

i

π
Γ(ν)

(z

2

)−ν
, as |z| & 1 for Re[ν] > 0 . (4.9)

2This is slightly abuse of nomenclature since the inflaton may not be slowly rolling the potential. The

parameter ε simply measures the departure from constancy of H .
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Parity violation

No parity violation

Parity violation shows up & is proportional to slow-roll parameter

This sort of parity violation can be observed in CMB

Shiraishi-Nitta-Yokoyama 2011

F(k1, k2, k3) = − (k1 + k2 + k3)3 (k1 + k2 − k3) (k2 + k3 − k1) (k3 + k1 − k2)
64k2

1k2
2k2

3

� �



Concluding remarks

 Summary

•a new formalism for computing graviton correlators

•for Weyl cubic interactions parity violation does not show up 
in exact de Sitter, but it does in the slow roll case

 Outlooks

•a single field effective field theory admits parity-odd interaction S. Weinberg 2008

provides us w/ unified treatment of W3 & *WW2

Wabcd: Weyl tensor



(conformal) isometries in dS

 Conformal Killing vectors

η=0

η=
-∞

RW metric admits maximal set of 15 CKVs

φ(i) are given by

isometry for dS

Kµ = 2xµD − (xνxν)Pµ

Ki generates special CT of E3 for late time (η~0)

η=const.

⇒ restricts allowed correlators for tensors w/ conformal dimension 2 (=stress tensor)


