

Low-metallicity active galactic nuclei: challenges toward identifying young SMBHs

Tohru Nagao Ehime University, Japan

初代星・初代銀河研究会 2014 @東北大学 19-21 Jan. 2015, Sendai, Japan

An e-mail from Toma-san

招待講演のお願い

Kenji Toma <toma@astr.tohoku.ac.jp>

Nov 3

長尾様、

to Tohru 🖃

東北大の當真です。

「初代星・初代銀河研究会」への参加ありがとうございます。

長尾さんには

超低金属量の銀河と活動銀河核形成

について招待講演をお願いしたいと考えております。

お引き受けいただけますでしょうか?

eXtremely Metal-Poor Galaxies (XMPGs)

HSC/ACS F555W image of I Zw 18 z ~ 0.0025 12+log(O/H)~7.1 Izotov+04

SBS 0335-052 (12+log(O/H)~7.2)

"超" 低金属量銀河 (XMPG) 12+log(O/H) < 7.65 or *Z*_{gas} < 1/12 *Z*_{sun} (e.g., Kniazev+03, Izotov+06, Nagao+06)

dwarf irregular galaxies (dlrr) の特に低金属量のもの。 a few 10² 程度の存在が 見つかっている。遠方宇宙でも z~1 までちらほら報告あり (e.g., Kakazu+07, Ly,Nagao+14)

星質量も非常に軽い。

 $M_{\rm stellar} \sim 10^{6-7} M_{\rm sun}$ (e.g., Lee+06)

eXtremely Metal-Poor Galaxies (XMPGs)

AGN host galaxies

AGNのSMBH質量と母銀河 (のバルジ成分)の質量は正の 相関 → "共進化" を示唆

M_{BH}/M_{bulge} ~ 0.2% 多くの場合 M_{BH} > 10⁷ M_{sun} → M_{bulge} > 10¹⁰ M_{sun}

AGN母銀河は、結構立派。

P

AGN metallicity?

BLR metallicity: SDSS view

SDSS DR2 QSO at 2.0<z<4.5 → 5344 objects

	$2.0 \le z < 2.5$	$2.5 \le z < 3.0$
$-24.5 > M_B \ge -25.5$	643	50
$-25.5 > M_B \ge -26.5$	1497	284
$-26.5 > M_B \ge -27.5$	917	385
$-27.5 > M_B \ge -28.5$	105	71
$-28.5 > M_B \ge -29.5$	5	11

BLR metallicity: Origin of the L_{AGN} - Z_{BLR} relation \mathcal{C}

>2677 QSOs at 2.3 < z < 3.0 from the SDSS DR7 quasar catalog >Making "composite" spectra for each (M_{BH} , L/L_{Edd}) bin

BLR metallicity: Origin of the L_{AGN} - Z_{BIR} relation

➢ Positive correlation between Z_{BLR} & M_{BH}

>Only weak correlation between Z_{BIR} & L/L_{Edd}

 \succ The L-Z relation is caused by the relation between the BH mass and Metallicity

Suggesting a strong connection with the galaxy mass-metallicity relation

BLR metallicity: at lower redshifts?

BLRからの輝線のほとんどは 静止系紫外線で放射されるので low-z AGN で BLR 金属量を 診断することは一般に困難 (地上観測が無理なので)。 HST, IUE などでUV分光した 近傍AGN (PG QSOなど)の UV spectraをアーカイブで収集 (HST 40天体、IUE 30天体) → BLR 金属量を解析

BLR metallicity: at lower redshifts?

天体数が少なく stacking analysis ができないため、天体の個性が 支配的で傾向など分かりにくい。が、low z では high z と違い $M_{\rm BH}$ ではなく $L/L_{\rm Edd}$ が BLR 金属量を決めている? いずれにせよ low z でも $Z_{\rm BLR}$ > $Z_{\rm sun}$ 、場合により ~10 $Z_{\rm sun}$ に至る。

BLR metallicity: at higher redshifts?

Requiring NIR coverage (but feasible)
Requiring good targets at z>5

 (now we have many, thanks to SDSS)

A metallicity decrease is predicted...

Table 1. (SiIV+OIV)/CIV measurements.

Name	z	(SiIV+OIV)/CIV	$\log \lambda L_{\lambda}^{a}$
SDSS J000239.4+255035	5.80	0.61 ± 0.12	46.93
SDSS J000552.3-000656	5.85	0.34 ± 0.06	46.20
SDSS J001714.66-100055.4b	5.01	0.58 ± 0.07	46.56
SDSS J012004.82+141108.2 ^b	4.73	0.32 ± 0.03	46.09
SDSS J015642.11+141944.3b	4.32	0.16 ± 0.03	46.62
SDSS J023137.6-072855	5.41	0.29 ± 0.07	46.56
SDSS J023923.47-081005.1b	4.02	0.23 ± 0.04	46.58
SDSS J033829.3+002156	5.00	0.97 ± 0.29	46.46
SDSS J075618.1+410408	5.07	0.80 ± 0.15	46.53
SDSS J083643.8+005453	5.80	0.63 ± 0.16	46.97
SDSS J085210.89+535948.9 ^b	4.22	0.42 ± 0.04	46.53
SDSS J095707.67+061059.5	5.16	0.70 ± 0.14	46.65
SDSSp J102119.16-030937.2	4.70	0.35 ± 0.12	46.58
SDSS J103027.1+052455	6.28	0.59 ± 0.20	46.68
SDSS J104433.04-012502.2 ^b	5.78	0.40 ± 0.13	46.88
SDSS J104845.05+463718.3 ^b	6.20	0.42 ± 0.20	46.81
SDSS J114816.6+525150	6.40	0.41 ± 0.08	46.95
SDSS J120441.7-002150	5.05	0.57 ± 0.12	46.63
SDSSp J120823.8+001028	5.27	0.63 ± 0.21	46.07
SDSS J130608.2+035626	5.99	0.38 ± 0.19	47.32
SDSS J141111.3+121737	5.93	0.57 ± 0.13	46.58
SDSS J160254.2+422823	6.07	0.53 ± 0.17	46.90
SDSS J160320.89+072104.5	4.39	0.39 ± 0.08	46.85
SDSS J160501.21-011220.6 ^b	4.92	0.37 ± 0.15	46.46
SDSS J161425.13+464028.9	5.31	0.34 ± 0.03	46.62
SDSS J162331.8+311201	6.22	0.54 ± 0.12	46.54
SDSS J162626.50+275132.4	5.20	0.30 ± 0.09	46.94
SDSS J163033.9+401210	6.06	0.23 ± 0.11	46.38
SDSS J220008.7+001744	4.77	0.55 ± 0.07	46.58
SDSS J221644.0+001348	4.99	0.29 ± 0.06	46.18

BLR metallicity: at *much* higher redshifts?

最近の広域近赤外サーベイで見つかってきた z~7 クェーサーの スペクトルを見ても、輝線スペクトルの様子は lower redshifts の ものと大差ない (see also Venemans+13)。 SMBH質量もかなり大きい: $M_{\rm BH} \sim 2 \times 10^9 M_{sun}$

BLR metallicity: possible concerns

 $M_{\rm BLR} = \frac{4\pi}{3} l^3 N_{\rm C} n_e m_p$ = $\frac{4\pi}{3} \varepsilon r^3 n_e m_p$ (ε : BLR filling factor) ~ $10^{-3} L_{42}$ (CIV) $M_{\rm sun}$ < $100 M_{\rm sun}$ for luminous quasars

大質量銀河の化学進化を考えると、 *Z* > *Z*_{sun} を実現させるには 1 Gyr 弱の時間が必要。z~7 (宇宙年齢 0.77 Gyr) で *Z* > *Z*_{sun} を実現 させるのは相当大変。 BLRガス雲の総量は、 質量としては非常に少ない。 少数の超新星爆発などの影響を 受けすぎていて、母銀河としての 化学進化を反映していないかも?

NLRは母銀河スケールに近い空間的広がりを持ち、 ガス総量としてはBLRより何桁も大きな成分なので、 母銀河の化学進化をトレースするにはBLRよりも NLRの方がよい、かもしれない。 静止系可視なので観測しやすいのも利点。 ただしNLR金属量診断方法はあまり確立されていない。

仮定している。

CIII]λ1909/CIVλ1549

20

NLR metallicity: evolution

NLR metallicity: at higher-z

This highest-z radio galaxy had been already experienced a significant fraction of its chemical evolution (the C/O elemental ratio had reached at least ~30% of the solar value)

Matsuoka, Nagao, et al. (2011)

Why no evolution in Z_{AGN} , or why no low- Z_{AGN} objects

Kawakatu et al. 03, Granato et al. 04, Juarez, Maiolino, Nagao, et al. 09

Galaxy-BH co-evolution models

Assuming mass-accretion events triggered by nuclear star-formation

 We see only brightest QSOs at high-z
Sampling only well-evolved objects
No-evolution due to selection effects?? (and those young QSOs could be dusty)

How about the metallicity in high-z low-luminosity dusty AGNs?

10-7

10-8

Gilli+11

Observed energy [keV]

that consist of FIR fine-structure lines

High-z \rightarrow redshifted to the ALMA frequency! ([CII] has been observed for this object with APEX)

The ALMA view

ALMA cycle 0 observation band 6, compact configuration 3.6 hours with 18 antennas [NII] clearly detected with S/N~8 while its flux is only ~5% of [CII] (ALMA is really powerful!!)

The ALMA view

The [NII]/[CII] ratio is comparable with that seen in low-z galaxies

This SMG has a substantially high metallicity (~ Z_{sun}) even at z~4.76

しかし冷静に考えてみると (考えるまでもないかも?) dusty とか言ってる時点で そこそこ metal-rich なのは 予想されることではある。

Nagao, Maiolino, et al. (2012) (model details are given in Nagao+11)

An e-mail from Toma-san, revisited

招待	講演のお願い	
•	Kenji Toma <toma@astr.tohoku.ac.jp> to Tohru</toma@astr.tohoku.ac.jp>	Nov 3
	長尾様、	
	東北大の當真です。 「初代星・初代銀河研究会」への参加ありがとうございます。 長尾さんには	
	超低金属量の銀河と活動銀河核形成 について招待講演をお願いしたいと考えております。 お引き受けいただけますでしょうか?	

Broad-line emission in XMPGs?

Broad-line emission in XMPGs: what are they?

WR? Winds from luminous blue variable? SN-related something (e.g., bubbles)?

expected $L(H\alpha_{broad}) \sim 10^{36-40}$ cgs, but observed $L(H\alpha_{broad}) \sim 10^{41.5-42}$ cgs → たぶん違う

shocks propagating in the circumstellar envelopes of Type IIn Sne?

constant *L*(H α_{broad}) for 3-7 years → なので違う

BLR emission from AGN (消去法だがもっともらしそう)

 \rightarrow metal-poor AGN with log $M_{\rm BH}/M_{\rm sun} \sim 6 - 6.5$

AGNs in XMPGs: Subaru NIR imaging

M_{BH} が測定されているので、 母銀河の星質量やサイズが気になる →Subaru/IRCS K-band撮像 (2014年3月)

悪天候 (30分くらいしか晴れず) AO観測で空間分解したかったが 分解できず...

Ν

卒業研究 (川崎光太@愛媛大)

若い時期のAGNを調べる上で興味深い
ターゲットだが、現時点で数天体しか
知られていない
→ SDSS分光限界が浅すぎるため

PFS parameters and survey plan

Number of fibers	2400 (600 for each spectrograph)		
Number of moets	2400 (000 for each spectrograph)		
Field of view	<u>1.3 deg (hexagonal – diameter of circumscribed circle)</u>		
Field of view area	1.098deg^2		
Fiber diameter	1.13'' diameter at the field center; $1.03''$ at the edge		
	Blue arm	Red arm	IR arm
Wavelength coverage [nm]	380-670	650-1000	970-1260
Spectral resolution $\lambda/\Delta\lambda$	1900	2400	3500
Pixel scale [Å/pix]	0.71	0.85	0.81
Read-out noise [e ⁻ rms/pix]	3	3	4^{a}
Detector type/read-out mode	CCD	CCD	HgCdTe/SUTR
Thermal background [e ⁻ /pix/sec]	None	None	0.013
Dark current [e ⁻ /pix/sec]	3.89×10^{-4}	3.89×10^{-4}	0.01
Spectrograph image quality [μ m rms/axis]	14	14 ^b	14

IR arm, not only blue & red arms

~ wide field-of-view AND wide wavelength coverage Multi-layer survey (not yet fixed)

- ~ cosmology component (15 min x 2 visits for >1000 deg²)
- ~ galaxy/AGN component (longer exposure for 10-30 deg²)
- ~ Galactic archaeology component (for specific fields)

First light in 2017, legacy survey will start in 2019 (?)

Summary

➤AGN電離領域は一般に super-solar metallicity

- ~ high-z ほど metal rich と言われていたのは観測バイアス
- ~ 明るいAGN (*M*_{BH}の大きなAGN) ほど metal rich
- ~ 高赤方偏移で金属量が低くなるトレンドは見られない
- ~ BLR を見ても NLR を見ても同様
- ~ ALMA で high-z low-L dusty AGN を見ても metal rich

≻超低金属量銀河 (XMPG) の中に AGN が見つかってきた

- ~ SDSS で z~0.1-0.3 に数天体の発見が報告されている
- ~ broad Hαだけを頼りにしているので確実かどうかは??
- ~ 若いAGN/SMBHの状況を調べる良いターゲットかも
- Subaru Prime Focus Spectrograph
 - ~ 暗くてレアな天体を分光探査するための最強装置
 - ~ 2017年頃 first light、2019年頃にレガシー探査を開始

