

田代 寛之

初代星·初代銀河研究会2015@東北大 1月

Outline

- Introduction: 再イオン化期
- ・中性水素21cm線とは
- ・ 再イオン化期からの中性水素21cm線シグナル

Global signal Power spectrum Imaging

• Square Kilometer Array

SKA-JP

From Nature (Ncik Spenser)

From Nature (Ncik Spenser)

From Nature (Ncik Spenser)

再イオン化期:宇宙初期の構造形成と密接に関わる需要な時期

- ・ 宇宙最初の星
- 宇宙最初のブラックホール(QSO)
- 宇宙最初の銀河とそれに続く銀河の進化 などなど

From Nature (Ncik Spenser)

我々の知っている再イオン化に関しての幾つかのこと

• Gunn-Peterson Troughs (high-z QSOs)

• CMB anisotropy

- GRB (Totani et al. 2006)
- Soft X-ray background (McQuinn 2012)
- 高赤方偏移銀河 (Ouchi et al. 2010, Oesch et al. 2013) etc.

Gunn-Peterson Troughs (high-z QSOs)

- Gunn-Peterson Troughs (high-z QSOs)
 Reionization completed by z~6
- CMB anisotropy

- GRB (Totani et al. 2006)
- Soft X-ray background (McQuinn 2012)
- 高赤方偏移銀河 (Ouchi et al. 2010, Oesch et al. 2013) etc.

CMBと再イオン化

再イオン化により自由電子数の増加 —— CMBとThomson散乱

パラメータ: T 最終散乱面から我々までのThomson散乱のoptical depth

CMB anisotropy への影響

- 散乱により、散乱前の情報を失う (Primordial anisotropy がdamp)
- 散乱により、新たな情報を得る (e.g. large scaleでの偏光bump)

再イオン化により自由電子数の増加 — CMBとThomson散乱

パラメータ: T 最終散乱面から我々のところまでのThomson散乱のoptical depth

CMB anisotropy への影響

- 散乱により持っていた情報を失う (Primordial anisotropy がdamp)
- 散乱により新たな情報を得る (e.g. large scaleでの偏光bump)

WMAP 9 yr (2012): $\tau = 0.089 \pm 0.014$

Planck 2013 (only TT): $au = 0.089 \pm 0.0031$

 $z \sim 10$ あたりで再イオン化

(ただし、瞬間的な再イオン化シナリオ)

- Gunn-Peterson Troughs (high-z QSOs)
 Reionization completed by z~6
- CMB anisotropy

Reionization took place at z~10

- GRB (Totani et al. 2006)
- Soft X-ray background (McQuinn 2012)
- 高赤方偏移銀河 (Ouchi et al. 2010, Oesch et al. 2013) etc.

- Gunn-Peterson Troughs (high-z QSOs) Reionization completed by z~6
- CMB anisotropy

Reionization took place at z~10

- GRB (Totani et al. 2006)
- Soft X-ray background (McQuinn 2012)
- 高赤方偏移銀河 (Ouchi et al. 2010, Oesch et al. 2013) etc.

再イオン化はz~10あたりには始まってて、 z~6までにはおわってるっぽい

- Gunn-Peterson Troughs (high-z QSOs) Reionization completed by z~6
- CMB anisotropy

Reionization took place at z~10

- GRB (Totani et al. 2006)
- Soft X-ray background (McQuinn 2012)
- 高赤方偏移銀河 (Ouchi et al. 2010, Oesch et al. 2013) etc.

etc. 再イオン化はz~10あたりには始まってて、満足 z~6までにはおわってるっぽい We don't know

- How it occurs
- How long it takes
- How the ionized region evolves

To obtain new constraints

Redshifted 21 cm line signals one of promising probing methods for Epoch of Reionisation

Redshifted 21cm線の基本

HI 21 cm Line

21cm transition : hyper fine structure of neutral hydrogen

Line absorption or emission : Neutral hydrogen at z

宇宙論的な枠組み: CMBの存在

21cm線の放出

- 自然放射
- CMBによる誘導放射
- 21cm線の吸収
 - CMB光子による励起

CMBに対するabsorptionやemissionがシグナル

(

CMB温度からの差: differential Brightness temperature

$$\delta T_b(\nu) = \frac{T_{\rm S} - T_{\rm CMB}}{1+z} (1 - e^{-\tau_{\nu_0}})$$

~ $27x_{\rm HI}(1+\delta_{\rm i}) \left(1 - \frac{T_{\gamma}}{T_s}\right) \left(\frac{H}{dv_r/dr + H}\right) \left(\frac{1+z}{10}\right)^{1/2} \left(\frac{0.15}{\Omega_m h^2}\right)^{1/2} \left(\frac{\Omega_b h^2}{0.023}\right) [\rm mK]$

中性水素のSpin temperature

21cm 遷移の励起状態と基底状態の個数密度の比を表す

$$rac{n_1}{n_0} = 3 \exp\left(-rac{T_\star}{T_s}
ight)$$
 $egin{array}{c} n_0: 基底状態の個数密度 \ n_1: 励起状態の個数密度 \ T_\star = 0.068 \, \, {
m K} \, \, (\lambda = 21 \, \, {
m cm}) \end{array}$

21 cm 遷移(spin 温度)の物理

- 自然放射
- CMBによる遷移

CMB光子による励起や誘導放射

•衝突による遷移

水素ー水素、水素ー電子など

• Wouthousian-Field 効果

Ly シリーズを介した遷移

基底状態

21 cm 遷移(spin 温度)の物理

$$T_{\rm S}^{-1} = \frac{T_{\rm CMB}^{-1} + x_{\alpha}T_{\alpha}^{-1} + x_{\rm K}T_{\rm K}^{-1}}{1 + x_{\alpha} + x_{\rm K}}$$
(Field 1975)

ガスの運動学的温度 $T_{\rm K}$ ライマン α 色温度 T_{α} $x_{\rm K}, x_{\alpha}$ それぞれの結合定数

Spin 温度はガスとCMBの温度とのバランスで決まる

ガスの温度や天体からの影響が小さい: $x_{
m K}, x_{lpha}$ が小さい $T_s \sim T_{
m CMB}$

ガスの温度や天体からの影響が大きい: $x_{
m K}, x_{lpha}$ が大きい $T_s \sim T_{
m K} \; (T_{lpha})$

CMB温度からの差: differential Brightness temperature

$$\delta T_b(\nu) = \frac{T_{\rm S} - T_{\rm CMB}}{1+z} (1 - e^{-\tau_{\nu_0}})$$

~ $27x_{\rm HI}(1+\delta_{\rm i}) \left(1 - \frac{T_{\gamma}}{T_s}\right) \left(\frac{H}{dv_r/dr + H}\right) \left(\frac{1+z}{10}\right)^{1/2} \left(\frac{0.15}{\Omega_m h^2}\right)^{1/2} \left(\frac{\Omega_b h^2}{0.023}\right) [\rm mK]$

ガスの温度が低い $T_{\rm CMB} > T_s > T_{\rm K}$ $\delta T_b < 0$: CMBに対して吸収シグナル

ガスの温度が高い $T_{
m K} > T_s > T_{
m CMB}$ $\delta T_b > 0$: CMBに対して放射シグナル

• Line absorption (emission)

one map

観測周波数をえらぶことで Redshift毎の階層的なmaps (tomography)

• 他の観測と相補的

CMB温度からの差: differential Brightness temperature

$$\delta T_b(\nu) = \frac{T_{\rm S} - T_{\rm CMB}}{1+z} (1 - e^{-\tau_{\nu_0}})$$

~ $27x_{\rm HI}(1+\delta_{\rm i}) \left(1 - \frac{T_{\gamma}}{T_s}\right) \left(\frac{H}{dv_r/dr + H}\right) \left(\frac{1+z}{10}\right)^{1/2} \left(\frac{0.15}{\Omega_m h^2}\right)^{1/2} \left(\frac{\Omega_b h^2}{0.023}\right) [\rm mK]$

ガスの温度が低い $T_{\rm CMB} > T_s > T_{\rm K}$ $\delta T_b < 0$: CMBに対して吸収シグナル

ガスの温度が高い $T_{
m K} > T_s > T_{
m CMB}$ $\delta T_b > 0$: CMBに対して放射シグナル

再イオン化期の中性水素シグナル

Global redshifted 21 cm signal

21cm線シグナルはHIガスの物理に非常にsensitive $\delta T_b(\nu) \sim 27 x_{\rm HI} (1+\delta_{\rm i}) \left(1 - \frac{T_{\gamma}}{T_s}\right) \left(\frac{H}{dv_r/dr + H}\right) \left(\frac{1+z}{10}\right)^{1/2} \left(\frac{0.15}{\Omega_m h^2}\right)^{1/2} \left(\frac{\Omega_b h^2}{0.023}\right) [{ m mK}]$ 10^{3} T_k=<mark>T</mark>s≦Tγ £ 100 /T_k<T_s<T $T_{k} \simeq T_{s} < T_{s}$ 10

 \mathbf{z}

100

10

21cm線シグナルはHIガスの物理に非常にsensitive $\delta T_b(\nu) \sim 27x_{\rm HI}(1+\delta_i) \left(1-\frac{T_{\gamma}}{T_s}\right) \left(\frac{H}{dv_r/dr+H}\right) \left(\frac{1+z}{10}\right)^{1/2} \left(\frac{0.15}{\Omega_m h^2}\right)^{1/2} \left(\frac{\Omega_b h^2}{0.023}\right) [mK]$

吸収、放射シグナルを探ることだけでも 宇宙初期の構造形成史にせまることができる

Pritchard & Loeb 2012

X線によるheating

21 cm signalのゆらぎ

Mesinger et al. 2013

非常に複雑なゆらぎ 📄 さまざまな再イオン化物理の情報

 $\delta T_b(\nu) \sim 2 \left(x_{\rm HI} \right) 1 + \delta_i \left(1 - \frac{T_{\gamma}}{T_s} \right) \left(\frac{H}{dv_r/dr} + H \right) \left(\frac{1+z}{10} \right)^{1/2} \left(\frac{0.15}{\Omega_m h^2} \right)^{1/2} \left(\frac{\Omega_b h^2}{0.023} \right) [\rm mK]$

宇宙論(初期宇宙起源)

Astrophysics (天体形成起源) UV, X線の影響

各赤方偏移の各スケールごとのゆらぎの情報

- 密度ゆらぎ
- ・イオン化度のゆらぎ
- Ly-alpha のゆらぎ
- ・ガス温度のゆらぎ(X線によるheating)
- 速度勾配のゆらぎ

3つのピーク Scale毎のamplitudeのredshift evolution:

ionization

他の宇宙論的観測との相互相関

21 cm線観測は他の観測と相補的な関係

- 宇宙背景放射(CMB):自由電子
- 高赤方偏移銀河:イオン化光子源
- ・ 近赤外背景放射 : イオン化光子源

- 相互相関をとることに新たな情報
- 各観測特有のシステマティックなノイズをうちけせる

CMBとの相互相関

21cm line signals

$$\delta T_b(\nu) \sim \frac{7x_{\rm HI}}{1 + \delta_{\rm i}} \left(1 - \frac{T_{\gamma}}{T_s}\right) \left(\frac{H}{dv_r/dr + H}\right) \left(\frac{1 + z}{10}\right)^{1/2} \left(\frac{0.15}{\Omega_m h^2}\right)^{1/2} \left(\frac{\Omega_b h^2}{0.023}\right) [\rm mK]$$

CMB

$$\left(\frac{\delta T}{T}\right)_{kSZ} = -\sigma_{T}\bar{n}_{n(0)} \int_{z_{r}}^{z_{0}} \frac{(1+z)^{2}}{H} e^{-\tau} \bar{x_{e}} \cdot (1+\delta + \delta_{x_{e}} + \delta \delta_{x_{e}}) v_{r} dz$$

21 cm線のゆらぎ : 天体起源 (UV, X線)

極めてnon-Gaussianなゆらぎ

統計的な手法では限界があるかもしれない。。

21 cm signal から像を合成し、 再電離期の様子を直接みる

- Global signal
- Study of special areas
- Bubble sizes
- Density field

Imaging

Pop III star まわりの21 cm線シグナル

- QSO(Massive BH) (Zaroubi et al. 2007, HT & Sugiyama 2013, Yajima & Li 2014)
- PopIII SN (HT in preparation)

イオン光子源やheating源に直接迫れる可能性

"a needle in a haystack"

Projects

大型電波望遠鏡 (広帯域 : 60 MHz – 10 GHz)

- 高感度
- 高分解能
- 広視野
- 運用 : Phase I 2020 Phase II 2024 -

SKAでのサイエンス

RobertBraun氏のスライドより

Astrobiology ("The Cradle of Life")

- Project Scientist: Tyler Bourke
- Working Group Chair: Melvin Hoare

Galaxy Evolution – Continuum

- Project Scientist: Jeff Wagg
- Working Group Chairs: Nick Seymour & Isabella Prandoni

Cosmic Magnetism

- Project Scientist: Jimi Green
- Working Group Chairs: Melanie Johnston-Hollitt & Federica Govoni

Cosmology

- Project Scientist: Jeff Wagg
- Working Group Chair: Roy Maartens

Epoch of Reionisation & the Cosmic Dawn

- Project Scientist: Jeff Wagg
- Working Group Chair: Leon Koopmans

Galaxy Evolution – HI

- Project Scientist: Jimi Green
- Working Group Chairs: Lister Staveley-Smith & Tom Osterloo
- Pulsars ("Strong field tests of gravity")
 - Project Scientist: Jimi Green
 - Working Group Chairs: Ben Stappers & Michael Kramer
- Transients
 - Project Scientist: Tyler Bourke
 - -----Working Group Chairs: Rob-Fender & J.-P. MacQuart --Exploring the Universe with the world's largest radio telescope

SKAでのサイエンス

RobertBraun氏のスライドより

Astrobiology ("The Cradle of Life")

- Project Scientist: Tyler Bourke
- Working Group Chair: Melvin Hoare

Galaxy Evolution – Continuum

- Project Scientist: Jeff Wagg
- Working Group Chairs: Nick Seymour & Isabella Prandoni

Cosmic Magnetism

- Project Scientist: Jimi Green
- Working Group Chairs: Melanie Johnston-Hollitt & Federica Govoni

Cosmology

Project Scientist: Jeff Wagg

Working Group Chair: Roy Maartens

Epoch of Reionisation & the Cosmic Dawn

- Project Scientist: Jeff Wagg
- Working Group Chair: Leon Koopmans

Galaxy Evolution – HI

- Project Scientist: Jimi Green
- Working Group Chairs: Lister Staveley-Smith & Tom Osterloo
- Pulsars ("Strong field tests of gravity")
 - Project Scientist: Jimi Green
 - Working Group Chairs: Ben Stappers & Michael Kramer
- Transients
 - Project Scientist: Tyler Bourke
 - O- -Working Group Chairs: Rob Fender & J.-P. MacQuart -Exploring the Universe with the world's largest radio telescope

SKAでのサイエンス

Astrobiology ("The Cradle of Life")

「Advancing Astrophysics with the Square Kilometre Array」 としてまとめられている

- Project Scientist: Jimi Green
- Working Group Chairs: Melanie Johnston-Hollitt & Federica Govoni
- Cosmology
 - Project Scientist: Jeff Wagg

Working Group Chair: Roy Maartens

- Epoch of Reionisation & the Cosmic Dawn
 - Project Scientist: Jeff Wagg
 - Working Group Chair: Leon Koopmans
- Galaxy Evolution HI
 - Project Scientist: Jimi Green
 - Working Group Chairs: Lister Staveley-Smith & Tom Osterloo
- Pulsars ("Strong field tests of gravity")
 - Project Scientist: Jimi Green
 - Working Group Chairs: Ben Stappers & Michael Kramer
- Transients
 - Project Scientist: Tyler Bourke
 - O- -Working Group Chairs: Rob Fender & J.-P. MacQuart -Exploring the Universe with the world's largest radio telescope

大型電波望遠鏡 (広帯域 : 60 MHz – 10 GHz)

- 高感度
- 高分解能
- 広視野
- 運用 : Phase I 2020 Phase II 2024 -

SKA(Phase I : 2020-)

AustraliaとSouth Africaに3つのtelescope群

SKA(Phase I : 2020-)

AustraliaとSouth Africaに3つのtelescope群

Dark age, 再イオン化期を狙う *z* ~ 5 - 20 _(21 cm線換算)

Beam size > 5 deg

RobertBraun氏のスライドより

SKA(Phase I)で狙う再電離のサイエンス

- HI 21cm線のグローバルなシグナル $(z\sim 20)$
- 21cm線ゆらぎのpower spectrum および高次相関 $(z \sim 20, k \sim 1 \mathrm{Mpc}^{-1})$
- ・ HI 21cm線によるHI領域のイメージング

(1 mK noise for 5' at z~10, 10 mK noise for 10' at z~20)

• 高赤方偏移電波源に対する21cm吸収

再イオン化期の中性水素をprobeすることで 再イオン化プロセスや再イオン化源に迫る

初代星や初代銀河の進化の理解

SKA-JP

課題: SKAでどう存在感を出していくか

再電離班 15名

竹内努	島袋隼士
井上進	小林将人
<mark>河野孝太郎</mark>	大内正己
横山修一郎	吉浦伸太郎
高橋慶太郎	細川隆史
市來淨與	百瀬莉恵子
吉川耕司	田代寛之
長谷川賢二	

日本版サイエンスブック 3月に出版

- ・国際サイエンスブックの要約
- SKAJPのこれからの戦略

再電離班 15名

竹内努	島袋隼士
井上進	小林将人
<mark>河野孝太郎</mark>	大内正己
横山修一郎	吉浦伸太郎
高橋慶太郎	細川隆史
市來淨與	百瀬莉恵子
吉川耕司	田代寛之
長谷川賢二	

