超低光度矮小楕円銀河 Boötes I の化学組成

石垣美歩 (カブリIPMU/JSPS) Co-I: 青木和光 (国立天文台)、岡本桜子 (上海天文台)、 有本信雄 (国立天文台)

Dwarf spheroidal galaxies (dSphs) around the Milky Way

Classical dSphs Ultra-faint dSphs (UFDs)

Luminosity vs. metallicity of UFDs

* Low luminosity and very metal-poor

Stellar population in UFDs

Brown et al. 2014

★ Very old, small scatter in age⇒ Short duration of star formation

Metallicity distribution in UFDs

* - I dex spread in $[Fe/H] \Rightarrow$ Complex star formation history

Star formation possibly affected by cosmic reionization and chemical enrichment via supernovae of the first stars

- * Discovered in SDSS DR5 (Belokurov+06)
- * D_☉= 66kpc
- * Stellar mass ~ $104M_{\odot}$
- * Dynamical mass 10⁶ M_{\odot}

Color-magnitude diagram of Boötes I

- * Old stellar population with age>13 Gyr (Okamoto et al. 2012, Brown et al. 2014)
- Majority of stars (>80%)
 formed before z- 6
 (Brown et al. 2014)

Candidate of the first galaxies or galaxies formed prior to reionization

Okamoto et al. 2012

A large abundance spread in Boötes I?

Feltzing et al 2009

*Presence of a star (Boo-127) with an anomalous abundance ratio \Rightarrow Signature of inhomogeneous chemical enrichment

Much smaller spreads in the abundance ratios?

* Homogeneous chemical evolution in Bootes I?

Gilmore et al. 2013

Observation and analysis

- * High-res. spectroscopy with Subaru/HDS (PI:Okamoto, S.)
- * λ~4000-6000A with R-30000
- * 1D-LTE abundance analysis (Aoki et al. 2009)
- * Elemental abundances:
 - * α-elements (e.g. Mg, Ca, Si)
 - * Fe-peak elements (e.g. Cr, Ni)
 - Neutron-capture elements (Sr and Ba)

Mg/Ca anomaly in Boo-127?

- * The anomaly in [Mg/Ca] (=0.69) reported by Feltzing+09 is not reproduced in this work
- * Sources for the systematic errors
 - * Low-signal-to-noise: errors in EWs -20mA
 - * Difference in adopted atmospheric parameters
 - * $\Delta \log g$: 0.6 dex, $\Delta vturb$: 0.5 km/s
 - * Difference in log gf value:
 - * EWs (abundance) x (log gf)

Red: Boo-127 black HD 216245 with [Mg/Ca]=0.14

[X/Fe] vs [Fe/H]: carbon to zinc

- Bootes I
 Comparison stars
 MW halo (Ishigaki+12, 13)
- * Nearly homogeneous
 [X/Fe] over a wide
 metallicity range
- * Similar to the Milky Way halo stars
- Decreasing [Ca/Fe] trend with [Fe/H] (probability for the null hypothesis - 7%)

Neutron-capture elements

- Bootes I
- Comparison stars
- MW halo (SAGA data base)
- The lower [Sr/Fe]
 ratios for Bootes I
 compared to the MW
 halo stars
- * Similar to other UFDs
 e.g. Hercules (Koch et
 al. 2013)

Ishigaki et al. 2014

Comparison with Segue I: a elements

A simple chemical evolution model with very low SFR (e.g. Kirby+11)

Clear differences in the abundance trends from a fainter UFD, Segue I

Bootes I:

Decreasing [X/Fe] trend with [Fe/H]: →A signature of Fe contribution from Type Ia SNe

Segue I:

Constant [X/Fe] for a wide range of [Fe/H] → No contribution from Type Ia SNe

Comparison with Segue I: neutroncapture elements

Bootes I:

Increasing [X/H] trends with [Fe/H]:

→ Continuous enrichment of Sr and Ba via r-process with Fe

Segue I:

Very low upper limits in [Sr/H] and [Ba/H] → No significant chemical

enrichment via r-process

Boötes I and Segue I

Summary

- * Based on the high-resolution spectra taken with Subaru/HDS, chemical abundances in the 6 giant stars in Bootes I were obtained.
- * Chemical abundances the Bootes I stars are characterized by:
 * nearly homogenous abundance ratios ([X/Fe]) in the metallicity range -3<[Fe/H]<-2 for the most elements lighter than Zn.
 - * low [Sr/H] abundances relative to the Milky Way halo stars
- * The decreasing [Ca/Fe] trend with [Fe/H] suggests that Bootes I has experienced a continuous star formation with contribution from Type Ia SNe, unlike a fainter UFD Segue I

Outline

- * Motivation
 - * Ultra-faint dwarf galaxies (UFDs) around the Milky Way: possible remnant of the first galaxies formed in the early universe
- * Analysis
 - * Chemical abundance analyses of 6 giant stars in Boötes I based on the Subaru/HDS spectra
- * Results
 - * Homogeneous abundance ratios ([X/Fe]) for many elements lighter than Zinc
 - * Lower abundances of neutron-capture elements than in Milky Way halo stars
- * Discussion
 - * Implications for the early chemical evolution in Boötes I