Toward Detection of First Supernovae

- 初代星超新星の検出に向けて -

Masaomi Tanaka 田中 雅臣

L ~ 10⁶ - 10^{7.5} Lsun (for 100-1000 Msun)

Taniguchi-san's talk

(e.g., Bromm+01, Stiavelli+09, Bromm & Yoshida 11, Rydberg+11)

First Supernova L ~ 10⁸⁻¹⁰ Lsun

Smartt 2012

Toward Detection of First Supernovae

Massive star evolution and supernova emission
Superluminous supernova
Survey for first supernovae

pair-instability supernova (PISN)

core-collapse supernova (CCSN)

direct collapse (SN? GRB?)

250

Mass

Metallicity (mass loss) & Rotation

00

150

200

Final CO core mass

 $M_{\rm CO}/{
m M}_{\odot}$

Yoshida+14, see Yoon+12 and Chatzopoulos+12 for the effect of rotation

Final mass

Yoshida+14

Core-collapse supernova

Shock breakout (~ Id for red supergiant) E_k ~ E_{int} ~ I0⁵¹ erg

Element distribution after explosion

Pair-instability supernova (Takahashi-san's talk)

Explosive O/Si burning E_{nuc} ~ 10⁵³ erg E_k ~ 10⁵² erg

Element distribution after explosion

Energy source of SN (I) radioactivity

$$L = [1.7 \times 10^9 e^{(-t/8.8d)} + 3.8 \times 10^8 e^{(-t/111d)}] \left(\frac{M_{56Ni}}{0.1M_{\odot}}\right) L_{\odot}$$

0.1 Msun ejection => $\sim 5 \times 10^8$ Lsun @ 20d

Energy source of SN (2) internal energy

$$L \sim E_{\rm int} \left(\frac{t_{\rm b}}{t}\right) \frac{1}{\Delta t}$$

~ $3 \times 10^8 L_{\odot} \left(\frac{E_{\rm int}}{10^{51} {\rm erg}}\right) \left(\frac{t_b}{1 {\rm d}}\right) \left(\frac{t}{100 {\rm d}}\right)^{-2}$

$t_b \sim Id$ for RSG (R ~ 1000 Rsun)

t_b ~ 0.001d for WR (R ~ 1 Rsun) (negligible)

Energy source of SN (3) kinetic energy

High mass loss rate (> 10⁻³ Msun/yr) ~100 yr before the explosion

 $L \sim 10^9 L_{\odot} \left(\frac{\alpha}{0.1}\right) \left(\frac{E_{\rm k}}{10^{51} {\rm erg}}\right) \left(\frac{\Delta t}{1 {\rm yr}}\right)$

10⁸ Lsun

10¹¹ Lsun

10¹⁰ Lsun

10⁹ Lsun

First supernovae...

JWST $t_{survey} = 1$ yr, $t_{exp} = 0.1 - 1$ d Number of fields = $t_{survey}/2t_{exp}$

Mesinger+06

Toward Detection of First Supernovae

Massive star evolution and supernova emission
Superluminous supernova
Survey for first supernovae

10¹¹ Lsun

Kinetic-energy powered

CSM interaction

emission line

0

10¹⁰ Lsun

10¹¹ Lsun

Possibly PISN?? M(⁵⁶Ni) ~ 3 Msun

But see Moriya+10, Yoshida+11 for core-collapse interpretation

Spectrum: No hydrogen

PISN without H...?

Kasen+11

10⁸ Lsun

10⁹ Lsun

10¹⁰ Lsun

10¹¹ Lsun

Absolute R-band magnitude

What powers this type...??

- Not ⁵⁶Ni
- Not internal energy (no H)
- Not (clearly) interaction
- magnetar...???

10¹¹ Lsun

10¹⁰ Lsun

10⁹ Lsun

Toward Detection of First Supernovae

Massive star evolution and supernova emission
Superluminous supernova
Survey for first supernovae

Туре	brightness	color	progenitor
Normal SN	X	X	
SLSN (kinetic energy)		o (bright in UV)	? (need CSM)
SLSN ~ PISN(?) (radioactivity)		x (faint in UV)	? (H?)
SLSN (??)	•	• (bright in UV)	??

Observed SLSN

PISN model

Quimby+II

Dessart+13

"Genuine" PISN may be difficult

Kasen+11, see also Dessart+13

"Observed" SLSNe are detectable @ z > 10

MT, Moriya, Yoshida+13

MT, Moriya, Yoshida+13

Survey simulation

Quimby+I3

Up to z ~ 10 with planned strategy

Euclid 2019-

To detect supernovae @ z ~ 15

Studying IMF by number count

!! Caveats !!

- Star formation rate
 => Needs galaxy survey (z >~ 10)
- "Mysterious" objects
 - Progenitor (minimum mass?)
 - Metallicity dependence
 => # of SN/SFR as a function of redshift
- Completeness
 > Needs well-controlled "missed" fraction

Transient survey with Subaru/HSC (2014-)

Superluminous supernovae at z ~ 5-6

Subaru and Hyper Suprime-Cam

Summary

- "Normal" supernovae: difficult to detect @ z > 6
- "Superluminous" supernovae
 - kinetic powered, radioactively powered, and...
 - Detail of the progenitor is still mystery
- Planned NIR survey can detect SLSNe up to z ~ 10
 - Late 2010 and 2020-
 - z ~ 15 with dedicated NIR survey (2000 deg²)
- Lower-redshift survey is critical
 - progenitor, metallicity dependence, and completeness
 - Survey with Subaru is ongoing