The SINS Survey: SINFONI Integral Field Spectroscopy of $z \sim 2$ Star-forming Galaxies

FÖRSTER SCHREIBER, N. M.; GENZEL, R.; BOUCHÈ, N.; CRESCI, G.; DAVIES, R.; BUSCHKAMP, P.; SHAPIRO, K.; TACCONI, L. J.; HICKS, E. K. S.; GENEL, S.; SHAPLEY, A. E.; ERB, D. K.; STEIDEL, C. C.; LUTZ, D.; EISENHAUER, F.; GILLESSEN, S.; STERNBERG, A.; RENZINI, A.; CIMATTI, A.; DADDI, E.; KURK, J.; LILLY, S.; KONG, X.; LEHNERT, M. D.; NESVADBA, N.; VERMA, A.; MCCRACKEN, H.; ARIMOTO, N.; MIGNOLI, M.; ONODERA, M.

ASTROPHYSICAL JOURNAL 706:1364-1428. 2009 DECEMBER 1¹

Review by: Mohammad Akhlaghi

Astronomical Institute Tohoku University

January 30th, 2012 Galaxy Physics Class Dr. Akiyama THE SINS SURVEY REVIEW

> Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

12 of 25 authors from Max-Planck-Institut für extraterrestrische Physik 🕨 🥃 🤜

200

RESULTS OVERVIEW

- Largest survey of spatially resolved gas kinematics, morphologies and physical properties of star forming galaxies at z ~ 1 - 3
- SINS Hα sample: 62 objects were detected in rest-frame UV: Hα(656.28nm) & NII (double line emission: 654.8nm and 658.3nm).
- ► Reasonable representation of Massive $M_{\star} \ge 10^{10} M_{\odot}$ galaxies.
- Population analysis:
 - 1/3 Rotation dominated turbulent disks
 - 1/3 Compact and Velocity dispersion dominated objects
 - 1/3 Interacting/Merging systems
- Massive galaxies tend to be more "rotation dominated".
- H α Luminosities and equivalent widths:
 - Twice higher dust attenuation towards the HII regions.
 - Comparable current and past-averaged star formation rates.

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

BACKGROUND

- The global population properties of the galaxy are generally understood:
 - Rapid evolution in $z \sim 1-4$
 - Downsizing
 - Color bimodality and Hubble sequence originate from $z \sim 1-2$.
- Current (before this paper) dependencies:
 - SED fitting and color analysis
 - Global properties such as: Stellar mass, age, SFR, interstellar extinction and sizes.
 - Limited integrated spectroscopy in the NIR. More direct and detailed constraints needed
- Important question: How massive galaxies assemble their mass?
 - Major mergers
 - Cold flows and Minor mergers

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRAC

INTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

MOHAMMAD AKHLAGHI

INTRODUCTION

& STAR FORMATION

FIGURE: Förster Schreiber et al. 2006.

- > Diversity in Kinematics and Morphologies of H α sources.
- Large fraction having disk like rotation.

GENERAL PROPERTIES

- Full sample: 80 spectroscopically confirmed galaxies with 63 observed in one emission line.
- Selectrion criteria:
 - Target visibility
 - Night sky line avoidance for Hα or [OIII]:5007Å
 - Emission line flux of $\geq 5 \times 10^{-17} \text{ ergs}^{-1} \text{ cm}^{-2}$. (Estimated with SED fitting for 2/3 of the final samples)
- AGNs were avoided, but present: line emission could be spatially or spectrally separated.

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

INTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

XINEMATICS

▶ Optical: BM/BX: Actively star-forming with moderate extinction in z ~ 1.5 - 2.0(BM) and z ~ 2.0 - 2.5(BX). Selected by spectroscopy with the NIRSPEC at Keck II.

Near Infra-Red

sBzK: More specifically evolved and/or dust-obscured populations of star-forming (sBzK) that may be under-represented in optical surveys.

- K20 survey (5): Previously observed H α and [NII].
- Deep-3a survey (7): bright at $24\mu m$ with flux $\geq 100\mu J$, AO.
- GMASS survey (19): 4.5μm selected. Hα flux estimated and non-elliptical morphologies.
- zCOSMOS-deep survey (4): sBzK with 1.4 < z_{sp} < 2.5; morphology was also a criterion
- GDDS survey (8): redshift range and on going star formation.
- Lymann Break Galaxies: Mainly taken from Steidel et al. 1999.
- Submillimeter Bright Galaxies: Accurate positional and spectroscopic information.
- ► Line emitters: In the vicinity of radio source MRC1138-262 and NIC J1143-8036a/b.

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

INTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

KINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

Bias

- The variety lowers bias compared to separate samples
- Optical z_{spec}: UV-brighter galaxies
- Minimum H α flux: younger galaxies

Reference Population:

- Chandra Deep Field South (CDFS) catalog used for comparison
- Sources with $K_{s,vega}$ < 22 and z_{photo} in the same range

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

INTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

KINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

・ロト・日本・日本・日本・日本・日本

SED CONSTRUCTION (APPENDIX A)

Characteristics (e.g. Mass, Age and etc.) could not be used from the catalogs because each used different assumptions in modeling.

- All galaxies were remodelled: newer results (compared to the base catalogs) were used in this process.
- Total photometric uncertainties were either given or found from the original images. Galactic extinction towards various fields were also considered.
- Bruzual & Charlot (2003) synthesis code was used:
 - Fixed solar metallicity, Chabrier (2003) IMF, Calzetti (2000) redenning and Madau (1995) intergalactic H opacity, $\lambda_{rest} \leq 912$ Å was set to zero.
 - Star Formation History + Dust models considered:
 - Constant Star Formation + dust
 - Instantaneus Star Formation + No dust
 - Exponentially declining SFR ($\tau = 300$ Myr) + dust
- Synthetic spectra were convolved with a filter curve
- Hα redshift (optical when not applicable) taken as base redshift

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

THE SINS SURVEY REVIEW

> Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

- Age, Extinction & luminosity scaling were taken as free parameters in the fitting and found through χ^2 minimization
- Acceptable age: 50Myrs < Age < Age_of_universe.</p>
- Best of three SFHs, was taken as true SFH.
- Errors in free parameters from 200 Monte-carlo simulations on observed SEDs.
- Emission line contribution was not corrected for:
 - All emission lines could not be accounted for in all galaxies.
 - H α was on average only 10% of all emission lines.
 - Since trends are necessary here, the effect is very low.
- Errors (Monte Carlo simulations) not considered: Metallicity, Reddening, IMF, Synthesis code & SFH.
 - Poorly understood for z~ 2 universe
 - Not too significant in trends
 - Same effect on the CDFS galaxies

Mohammad Akhlaghi

ABSTRACT

INTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ PROPERTIES

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

POPULATION COMPARISON

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRAC

INTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

POPULATION COMPARISON

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

INTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

Kinematic Properties

INTEGRATED $H\alpha$ properties

Comparison

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

REVIEW OF INTEGRAL FIELD SPECTROSCOPY

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

Integral Field Spectroscopy Divides the field in two dimensions Telescope Spectrograph Spectrograph Spectra must not overlap **OBSERVATION &** focus input output -> less information density DATA REDUCTION in datacube Lenslet Punil arrav mager Datacube slit Fibre Fibres arrav X slit Imaae Micro slicer mirrors Only the image slicer retains spatial information within each slice/sample → high information density Both designs maximise the spectrum length and allows in datacube more efficient utilisation of detector surface.

Centre for Advanced Instrumentation

Jeremy Allington-Smith

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 = の � @

SINFONI

SINFONI:

- Adaptive Optics (MACAO)
- Integral Field Spectrometer (SPIFFI)

The final Image of SINFONI is a 2D spatial array of 64×32 pixels and the spectral dimention is: 2048 pixels

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

Kinematic Properties

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

DATA COLLECTION

- 24 observing campaigns: 03/2003 to 07/2008.
- Based on redshift H or K gratings were used for Hα
- 8 objects observed with AO
- Sky subtraction:
 - Onsource dithering (majority)
 - Offsets-to-sky
- Individual exposures: 300s, 600s & 900s
- Total integration times: 20min to 10h
- Observation did not continue if Hα emission was not visible after 1-2hrs.
- Data reduction procedures are omitted here

きょうかい 聞い ふぼう ふぼう ふしゃ

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

INTRODUCTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

Kinematic Properties

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

PSF CHARACTERISTICS(APPENDIX B)

- The PSF for each object was obtained from nearby stars
- All adequate were averaged to achieve higher S/N, normalized to unity and 5σ clipped.

Narrow core and broad component: elliptical Gaussian

 Model galaxies (in spectroscopy and photometery) were constructed and convolved with various PSFs to find that uncertainties in PSF size have a small impact on the kinematic properties derived.

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

KINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

・ロト・西ト・ヨト ・ヨー シタの

• $\sigma_{real} \neq C \times N \times \sigma_{pix}$:

- slitlet projection.
- special data reduction method.
- σ_{real} was calculated by the dispersion in the dispersion of apertures of N pixels taken from empty regions of each wavelength's 2D image.
- σ_{real} shows this behavior:

 $\sigma_{real}(N,\lambda)/[N \times \sigma_{pix}(\lambda)] = a(\lambda) + b(\lambda) \log N$

- It is found that a and b are independent of λ, so the median value of each was taken.
- Finally, to find the noise for each measurement this relation was used:

 $\sigma_{\textit{real}}(N,\lambda) = [N \times \sigma_{\textit{pix}}(\lambda)] \times (\alpha_{\textit{med}} + b_{\textit{med}} \log N)$

The noise from this method is on average ×2 the Gaussian noise assumption. THE SINS SURVEY REVIEW

> Mohammad Akhlaghi

ABSTRACT

INTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

KINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

H α MAPS, POSITION VELOCITY DIAGRAMS & INTEGRATED SPECTRA (APPENDIX D)

Mohammad Akhlaghi

BSTRACT

SAMPLE SELECTION

SINS POPULATION

OBSERVATION & DATA REDUCTION

KINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

H α MAPS, POSITION VELOCITY DIAGRAMS & INTEGRATED SPECTRA (APPENDIX D)

Mohammad Akhlaghi

H α MAPS, POSITION VELOCITY DIAGRAMS & INTEGRATED SPECTRA (APPENDIX D)

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT INTRODUCTION SAMPLE SELECTION SINS POPULATION? OBSERVATION & DATA REDUCTION

KINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

Velocity integrated line fluxes, Relative velocities and Velocity dispersion were calculated using LINEFIT.

- Data cubes median filtered (2 or 3 pixel wide filter)
- Instrumental resolution through sky lines
- Uniform, Gaussian or Poisson weighted fits are preformed.
- Continuum component subtracted
- Fitting uncertainties are computed from 100 monte carlo simulations.
- Asymmetries observed: Double peak profiles, Faint-blue/redshifted tails and multiple components.

Spectral points were obtained from 90% circular apertures of the ${\rm H}\alpha$ image of each cube.

Integrated velocity dispersion ($\sigma_{int}(H\alpha)$) was calculated without shifting of the spectra

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

KINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

DOUBLE PEAKED:

Integrated spectrum Q2343-BX389 z=2.1733 $F(H\alpha)$ [NII] Ha [NII] Ho 'n 10 ř [NII] **ENII** ≽ 10-17 4.0h no-A0 ح -2000 -1000 0 - 1000 0 1000Relative velocity [km s⁻¹] 2000 2.07 2.08 2.09 2.10 λ_{obs} [μ m]

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

KINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

▲ロ▶▲圖▶▲臣▶▲臣▶ 臣 のQ()

OTHER:

Faint-blue/redshifted:

Narrow and broad components:

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

KINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

990

- Morphological major axis was usually within 20° of the kinematic major axis: direction of maximum Hα gradient.
- ► The kinematic P.A. was taken as the major axis.
- Gaussian profile is assumed for the $H\alpha$ sources
- ► $r_{1/2}(H\alpha)$ from $H\alpha$ curve-of-growth analysis and corrected for seeing
- \blacktriangleright PSF variations are of order 20%; size uncertainties in the order of $\approx 30\% 35\%$
- Typical detection limit, not straightforward:
 - Sensitivity varies with wavelength.
 - Wide range of integration times.

Mohammad Akhlaghi

ABSTRACT

INTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

KINEMATIC PROPERTIES

INTEGRATED $H\alpha$ PROPERTIES

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

▲□▶▲□▶▲□▶▲□▶ = のへぐ

Distributions relative to $H\alpha$ flux & Luminosity

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

Kinematic Properties

INTEGRATED $H\alpha$ PROPERTIES

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

DISTRIBUTIONS RELATIVE TO MASS

- Similar trends seen in all three cases
- Those identified as Disks and Mergers tend to higher horizontal values.
- AGNs are not outliers.
- Sensitivity limits:
 - Dashed line: Sensitivity limit
 - Bold line: Exposure time limit (1h); Observation strategy.

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ PROPERTIES

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

Ë

OSINS BX/BM

Comparison with Erb et al. 2006 $z \sim 2$ samples

With NIRSPEC Long-slit spectroscopy

- Higher fluxes with SINFONI by $\times 1.6$; Slit loss & Slit miss-alignment.
- Over all, Slit Spectroscopy seems to be highly reliable.

THE SINS SURVEY REVIEW

MOHAMMAD AKHLAGHI

H-ACH

- AGN

10

COMPARISON

Comparison with other IFS $z\sim2$ samples

With other IFS:

- SINS has a larger mass range
- Little difference in $F(H\alpha)$ and $L(H\alpha)$

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

▲ロ▶▲舂▶▲差▶▲差▶ 差 のの()

Is $H\alpha$ from Star forming regions or AGNs or shock-ionized material?

From Star forming regions:

- Rest-frame optical line ratios (e.g. $[NII]/H\alpha$)
- Rest-frame UV spectra
- In one of four AGNs, $H\alpha$ is dominated by star-forming regions.

From AGNs:

- Shapiro et al. 2009 show a broad underlying Hα component in all SINS samples Could be due to lower level or obscured AGN
- AGNs would also affect the SED results

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

$H\alpha$ Luminosity:

- SED fitting extinction: $A_{V,SED}$: $L^0(H\alpha)$
- Extinction due to dust: $A_{V,Neb} = A_{V,SED}/0.44$: $L^{00}(H\alpha)$
- Calzetti et al. 2000 redenning: $A_{H\alpha} = 0.82 \times A_V$
- Balmer absorption and Galactic extinction neglected.

$H\alpha$ Equivalent width:

- Ratio of $H\alpha$ line flux to Broad band flux densities: $W_{BB}^{rest}(H\alpha)$
- Measurements of line-free continuum of the integrated spectra: W^{rest}_{SINF}(Hα)

SFR found by Kennicut(1998) paper:

 $\log (SFR(H\alpha)[M_{\odot}/yr]) = \log (L(H\alpha)[erg/s]) - 41.33$

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

- Only $H\alpha$ is suitable for constraining dust distribution.
- The right column (with differential attenuation: DA) has a better fit.
- (a), (b) & (d) are not independent.

Even with DA, the observed values are $\sim 30\%$ larger

- AGNs?.
- ► Metallicity?
- Density bounded HII regions?
- IMF biased towards more massive stars?YES

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

▲□▶▲□▶▲□▶▲□▶ ■ のへの

- Only $H\alpha$ is suitable for constraining dust distribution.
- The right column (with differential attenuation: DA) has a better fit.
- (a), (b) & (d) are not independent.

Even with DA, the observed values are $\sim 30\%$ larger

- AGNs?.
- Metallicity?
- Density bounded HII regions?
- IMF biased towards more massive stars?YES

THE SINS SURVEY REVIEW

> Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

KINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

▲□▶▲□▶▲□▶▲□▶ = のへぐ

- Only $H\alpha$ is suitable for constraining dust distribution.
- The right column (with differential attenuation: DA) has a better fit.

[10⁴² erg s⁻¹] 10

° (Ha)

O SINS Ha sample

l = 10 = 100 $L_{ared}^0 (H\alpha) = [10^{42} \text{ erg s}^{-1}]$

100 Wreat (Ha) [Å]

O SINS Ha sample

8-10

1000 Z y_{BB}^{rest} (H α)

100

(a), (b) & (d) are not independent.

Even with DA, the observed values are \sim 30% larger

- AGNs?.
- Metallicity?
- Density bounded HII regions?

10 100 1000

O SINS Ha sample

100

Aram/0.44

 L_{pred}^{0} (H α) [10⁴² erg s⁻¹]

Wreat (Ha) [Å]

erg s

[1042

(Ha)

0

1000

(Ha)

f. -Aram

1000

0.1

THE SINS SURVEY REVIEW

MOHAMMAD AKHLAGHI

DUST DISTRIBUTION & STAR FORMATION

- Only $H\alpha$ is suitable for constraining dust distribution.
- The right column (with differential attenuation: DA) has a better fit.
- (a), (b) & (d) are not independent.

Even with DA, the observed values are \sim 30% larger

- AGNs?.
- Metallicity?
- Density bounded HII regions?
- IMF biased towards more massive stars?YES

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

KINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

▲□▶▲□▶▲□▶▲□▶ = のへぐ

- Only $H\alpha$ is suitable for constraining dust distribution.
- The right column (with differential attenuation: DA) has a better fit.
- (a), (b) & (d) are not independent.

Even with DA, the observed values are \sim 30% larger

- AGNs?.
- Metallicity?
- Density bounded HII regions?
- IMF biased towards more massive stars?YES

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

KINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

▲□▶▲□▶▲□▶▲□▶ ■ のへの

STAR FORMATION HISTORIES

- Left column: No DA, Right column: DA.
- Right column is less dispersed and the best SFH is Constant Star Formation (CSF)
- b=(current SFR)/(past-averaged SFR)

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACI

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

・ロト・四・・川・・田・・日・ シック

STAR FORMATION RATES

- Good Agreement between (b), (c) & (D)
- The SINS SFRs cannot help in resolving the theoretical-observational discrepancy in SFR evolution.

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

KINEMATIC DIVERSITY

- All on the same angular scale
- Gas kinematics ($H\alpha$ emitting) are used for galaxy kinematics

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

KINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Disk or Merger:

- Quantitative: Degree of asymmetry; 10 Disks, 5 Mergers
- Qualitative: Similar fraction of disks and mergers

Rotaion/Dispersion Dominated:

- Reliable: $v_{rot}/\sigma_0 = 1$; 13 rotation & 1 dispersion dominated.
- Simulations: The above boundary can be translated to: $v_{obs}/(2\sigma_{int}) \sim 0.4$: $\sim 1/3$ of sources are dispersion dominated.

So:

1/3 Disks,

1/3 Mergers,

1/3 velocity dispersion dominated (mainly compact and low mass)

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ PROPERTIES

Comparison

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

▲□▶▲□▶▲□▶▲□▶ = のへぐ

- $v_{rot}/\sigma_0 \sim 1-7$; for local galaxies: 10-20
- So the variations in rotational velocity are very high; Thick disks and high turbulence.
 Has been confirmed directly and indirectly by other studies
- Possible origins for this turbulence:
 - Intense star formation Feedback.
 - Heating due to Gas accretion.
 - Stirring due to Internal dynamical processes.
- On AO observed sources, deviations from pure rotation on kpc scale have been noticed.

Mohammad Akhlaghi

ABSTRACT

INTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

・ロト・西ト・山田・山田・山下

- Tend to be more compact
- Very low values of velocity gradients are observed
- What can they be?
 - Small disks with unresolved rotation.
 - Nearly Face on disks.
 - Systems with random/non-circular kinematics; e.g. late stage mergers or very young systems.
- Law et al. (2009), studying less massive galaxies found a larger fraction of such sources.

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ PROPERTIES

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

▲□▶▲□▶▲□▶▲□▶ = のへぐ

- Consisting of rotation or dispersion dominated components.
- Cannot be classified by integrated $H\alpha$ or stellar properties.
- Selection Criterion:
 - Projected separations $\leq 15 20 kpc$.
 - Elevated Star Formation.
 - Perturbed and asymmetric gas kinematics on 1-5kpc scales.
- Such phases occur on a very short time scale ($\sim 100 Myr$).
- Morphological analysis of mergers is necessary for a complete analysis.

Mohammad Akhlaghi

ABSTRACT

INTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

・ロト・西ト・山田・山田・山下

VELOCITY-SIZE RELATION

The Law et al. 2009 sample was also included.

 v_d is the circular velocity:

- Kinematic modelling
- ► Velocity Gradient + width: Rotation dominated, average of: $v_d^{vgrad} \sin(i) = 1.3 v_{obs}(H\alpha)$ and $v_d^{width} \sin(i) = 0.99 \sigma_{int}(H\alpha)$
- Velocity Width: dispersion dominated, virial relation: v_d = √3σ_{int}(Hα)

THE SINS SURVEY REVIEW

> Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

VELOCITY-SIZE RELATION

Test of Feedback processes due to star formation

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

・ロト・母ト・ヨト・ヨー もんの

MASS FRACTIONS AND DARK MATTER CONTRIBUTION

- Baryonic Mass fraction: $f_{baryons} = (M_{gas} M_{\star})/M_{dyn}$.
- SED modelling errors (for M_{gas} & M_{*}) aren't significant
- Gas mass fraction is $\sim 15 30\%$.
- > Dark matter contributions in central 10kpc is $\sim 20 30\%$.

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS

SUMMARY

・ロト・西・・田・・田・・日・

SUMMARY

- Reasonable sample of Massive, actively star-forming galaxies at $z \sim 2$
- Differential Extinction between HII regions and stars is seen.
- SINS galaxies have undergone a roughly Constant SFR.
- They have Large velocity dispersion: $\sim 30 90 km/s$
- Gas kinematics is often surprisingly ordered.
- Rotation dominated, Velocity dispersion dominated and Mergers/Interactions are equally distributed.
- The rotation dominated galaxies follow a velocity-size relation and tend to be more massive.
- The dispersion dominated galaxies have lower mass and lower angular momentum; have a wide range of ages.

THE SINS SURVEY REVIEW

Mohammad Akhlaghi

ABSTRACT

NTRODUCTION

SAMPLE SELECTION

SINS POPULATION?

OBSERVATION & DATA REDUCTION

XINEMATIC PROPERTIES

INTEGRATED $H\alpha$ properties

COMPARISON

DUST DISTRIBUTION & STAR FORMATION

KINEMATICS