Emerging Age of Precision Spectroscopy using Astro Combs: From OAO/HIDES to TMT

Malte Schramm AIST Sendai Dec 2015

ERATO MINOSHIMA IOS PROJECT

Team: H. Inaba, S. Okubo, K. Nakamura, A. Onae, K. Hosaka, , T. Kobayashi (AIST) K. Minoshima (UEC), F.L. Hong (YNU),Hiroki Yamamoto (YNU) Collaborators: H. Izumiura, E. Kambe (OAO)

Astro-comb facilities

Why Astro-comb?

The "comb" cosnists of evenly spaced lines who's frequencies are known a priori to better than 1 in 10¹⁵

- Homogenous wavelength coverage
- High intensity lines over the whole range
- Simultaneous reference but no overlap spectrum (e.g. Iodine Cell)
- Ultra stable (Repeatability)

What is an Astro-comb

OAO/HIDES Comb Character Sheet

- Optical Comb 380-540 nm (300-2500 nm possible)
- homogenous line spacing 100 Mhz → 20 Ghz
- narrow comb lines with a FWHM of few kHz (determined by the reference laser)
- Extremely low frequency (wavelength) uncertainty of the comb itself at the sub-mm/s level
- Final accuracy ~<m/s level (current level 30 m/s with Th-Ar)

OAO HIDES Comb – Main Components I

Things to do

- Ensure similar line intensities (maybe additional filter necessary)
- Ensure the system is robust and easy to use
- Optimize final RV accuracy affected by
 - Thermo-mechanical Stability of the spectrograph
 - Thermo-mechanical Stability of the detector
 - Stability of the light injection

Probably a few more ...

How does a comb signal look like Test data from ESO 3.6m/HARPS (2010)

The Comb Spectrum

Example of LFC calibrated stellar spectrum

A comb can reveal CCD inhomogeneities

Most important application for now: Exoplanets

Jupiter	@ 1 AU	: 28.4 m s ⁻¹	
Jupiter	@ 5 AU	: 12.7 m s ⁻¹	Possible targets for HIDES
Neptune	@ 0.1 AU	: 4.8 m s ⁻¹	DV/ Stability
Neptune	@ 1 AU	: 1.5 m s ⁻¹	RV Stability
Super-Earth (5 M_{\oplus})		@ 0.1 AU	: 1.4 m s ⁻¹
Super-Earth (5 M_{\oplus})		@ 1 AU	: 0.45 m s ⁻¹
Earth	@ 1 AU	: 9 cm s ⁻¹	

Planet Detectability with radial velocities

- Typical issues:
 - Telescope guiding (30 cm/s)
 - Detector instabilities and wavelength reference precision

Detecting low-mass planets 2 cm/s

Binary BHs on sub pc – pc scales

• Here SUBARU (HSC+PFS) can contribute: Only very few candidates known

Cosmological variation of the fine structure constant

Variation of 1 ppm in α or μ leads to a velocity shift of 20 m/s

- Typically use Quasar absorption line systems e.g. Lya forest
- Currently extremely challenging task
- Good test for next generation telescopes
- Precision can finally compete with clock measurements

Most challenging task:

Direct measurements of the dynamics of the universe

"It should be possible to choose between various models of the expanding universe if the deceleration of a given galaxy could be measured. Precise predictions of the expected change in $z=d\lambda/\lambda_0$ for reasonable observing times (say 100 years) is exceedingly small. Nevertheless, the predictions are interesting, since they form part of the available theory for the evolution of the universe" Sandage 1962 ApJ 136,319

Most challenging task:

Direct measurements of the dynamics of the universe

"It should be possible to choose between various models of the expanding universe if the deceleration of a given galaxy could be measured. Precise predictions of the expected change in $z=d\lambda/\lambda_0$ for reasonable observing times (say 100 years) is exceedingly small. Nevertheless, the predictions are interesting, since they form part of the available theory for the evolution of the universe" Sandage 1962 ApJ 136,319

Science Requirements or the need for LFCs

	expansion	planets	stars	metals	constants
FOV tot. energy in fibre spectral resolution spectral sampling wavelength range (μ) wavelength accuracy RV stability throughput	few arcsec $\geq 80\%$ $\geq 100\ 000$ ≥ 3 0.35-0.67 2 cm/s (20yr) ≥ 0.2	few arcsec ≥ 80% 150 000 ≥ 4 0.38-0.68 2-5 cm/s (10 yr)	few arcsec ≥ 80% 120 000 ≥ 4 0.38-0.68	few arcsec ≥ 80% ≥ 100 000 ≥ 3 0.37-0.75	few arcsec $\geq 80\%$ $\geq 150\ 000$ ≥ 4 0.37-0.68 $\leq 1m/s$
typical magnitude source size minimum exposure time maximum cumulative exposure time target density background sky subtraction sky coverage	\geq 0.2 15-17 point sources photon noise limit (typically 15min) few hundreds of hours low dark time ? \geq 90%	<11 point sources typically 15min few tens of hours low grey-dark time ? \geq 90%	15 point sources phot. noise lim. (typically 15min) few tens of hours low ≥ 90%	17-21 point sources phot. noise lim. (typically 15min) few hundreds of hours ≤ 0.01 -1 $\operatorname{arcmin}^{-2}$ dark time yes $\geq 90\%$	16-18 point sources phot. noise lim. (typically 15min) few tens of hours low dark time yes \geq 90%

Haehnelt 2010

- Astro-combs provide a reproducible, (long-term) stable wavelength calibrator of evenly spaced lines with known frequencies at 1 in 10¹⁵
- Currently main application for exoplanet detection (even with small telescopes)
- TMT and E-ELT will enable new science ()
 - Variation of fine structure constant comparable to atomic clocks
 - Sandage test (Cosmological probe)
 - Primordial nucleosythesis