SPICA の遠中間赤外線 検出器

和田武彦、鈴木仁研 (ISAS/JAXA)

内容

- 次世代赤外線天文衛星SPICA
- 赤外線検出器
- SPICAの中間赤外線検出器
 - Si:Sb BIB 1024x1024
 - Si:As BIB 1024x1024
 - 熱設計
- SPICAの遠赤外線検出器(鈴木さん)

次世代赤外線天文衛星SPICA

- Payload Module V-grooves (PLM) (放射冷却 &断熱) Service Module (SVM)
 - 外寸: Ф4500 mm x 5285 mm
 - 質量: 2614 kg (dry, nominal),
 - 3450 kg (wet, with margin)

ESA CDF study:

NG-CryoIRTel, Next Generation Cryogenic InfraRed Telescope. http://sci.esa.int/jump.cfm?oid=56108

- 大口径:2.5m
- 冷却望遠鏡: 8K
- 波長17-210umの
- 遠中間赤外線で分光観測
- 放射と冷凍機による冷却
- 冷媒、真空容器が不要
- JAXA H3ロケット
- L2に設置(地球から150万km)
- 2027-2028年打上
- 日欧共同ミッション
- ESA CDF study (2014)
- JAXA戦略的中型ミッション: MDR合格 (2015)
- ESA CV M5応募 (2016)

冷却により背景熱雑音を低減

遠中間赤外線で圧倒的な高感度

SPICA観測装置

- 遠赤外線観測装置(SAFARI)
 - 波長34-210um
 - 波長分解能R=300の分光器
 - スペクトル線観測限界 5x10⁻²⁰W/m² (5σ1時間)
 - 赤方偏移z=3/115億年前の銀河を10時間で分光観測
 - 超伝導転移端検出器(TES)
- 中間赤外線観測装置(SMI)
 - 波長17-36um 低分散分光器(LRS)
 - 連続波観測限界 30μJy (5σ1時間)
 - 赤方偏移z=3/115億年前の銀河を1時間で分光観測
 - 波長18-36um 中分散分光器(MRS)
 - 波長12-18um 高分散分光器(MRS)
 - スペクトル線観測限界 5x10⁻²⁰W/m² (5σ1時間)
 - 赤方偏移z=3/115億年前の銀河を10時間で分光観測
 - BIB型光伝導検出器
 - 波長12-17umではSi:As BIB 1024x1024を使用
 - 波長17-36umではSi:Sb BIB 1024x1024を使用

SPICA観測装置

- 遠赤外線観測装置(SAFARI)
 - 波長34-210um
 - 波長分解能R=300の分光器
 - スペクトル線観測限界 5x10⁻²⁰W/m² (5σ1時間)
 - 赤方偏移z=3/115億年前の銀河を10時間で分光観測
 - 超伝導転移端検出器(TES)
- 中間赤外線観測装置(SMI)
 - 波長17-36um 低分散分光器(LRS)
 - 連続波観測限界 30μJy (5σ1時間)
 - 赤方偏移z=3/115億年前の銀河を1時間で分光観測
 - 波長18-36um 中分散分光器(MRS)
 - 波長12-18um 高分散分光器(MRS)
 - スペクトル線観測限界 5x10⁻²⁰W/m² (5σ1時間)
 - 赤方偏移z=3/115億年前の銀河を10時間で分光観測
 - BIB型光伝導検出器
 - 波長12-17umではSi:As BIB 1024x1024を使用
 - 波長17-36umではSi:Sb BIB 1024x1024を使用

赤外線画像センサー

- 光検知器
- •読み出し回路
 - 信号処理(積分等)
 - 画素選択回路

光検知

- coherent detection
 - -振幅と位相の両方検出(波として検出)
 - 超高速動作が必要
 - 直接検出 ~ GHz
 - Heterodyne ~ THz
 - 電波干渉計(ALMA)~1 THz
 - 量子カスケードレーザー~10THz
- incoherent detection
 - 振幅のみを検出
 - 熱型
 - 高感度な温度計と熱容量の小さな吸収体
 - Transition Edge Sensor(TES)
 - 量子型
 - 超伝導準粒子 (STJ, KIDS)
 - 量子井戸型
 - 半導体量子型
 - BIB型光伝導検出器

Industry's fastest 12-bit ADC at 4 GSPS

TI ADC12J4000

半導体量子型検出器

•X線から遠赤外線まで幅広く使われている。

Fig. 18. Fundamental optical excitation processes in semiconductors: (a) intrinsic absorption, (b) extrinsic absorption, (c) free carrier

> absorption. Rogalski and Sizov 2011, Opto-electron. Rev. 19, 346-404

- TESに対する優位性
 - 不要な電磁波に感度を持たない(熱型は何でも感じる)
 - 冷却が楽(遠赤外線でも2KでOK、TESは100mK以下に冷却)

- 感度の不安定性
- Si系では20um

中間赤外線画像センサー

- 検知部にSi:As/Si:Sb BIB検出器
- ・読み出し回路部にSi 読み出し集積回路(ROIC)
 - •動作温度(4-6K)は通常のCMOSの動作限界に近い
 - FD-SOI CMOSなら4Kでも動作 (Wada et al. 2012, J. Low. Temp. Phys. 167, 602)

(HST/NICMOS Instrument handbook)

(Wada et al. 2016, JLTP, accepted)

(Love et al., 2006, SPIE 6276, 62761Y)

(宇宙用)BIB型赤外線検出器の 発達

		2006/2003	2009	2018	2027
メーカー		AKARI/Spitzer	WISE	JWST	SPICA
Raytheon	Si:As	256x256		1024x1024	
	ROIC	CRC744		SBRC375	
DRS	Si:As	128x128	1024x1024		1024x1024
	Si:Sb	128x128			1024x1024
	ROIC	LF128	LF1024		LF1024

SPICA用中間赤外線検出器

- 広い視野、広帯域分光、高分散分光
 - 画素が多いこと
- 超低背景放射環境を活かす
 - 暗電流が少ないこと
 - 読み出し雑音が小さいこと
- 12-18um: Si:As IBC 1Kx1K
 - JWST/MIRI検出器
- 18-36um: Si:Sb BIB 1Kx1K
 - Spitzer/IRSのSi:Sb 128x128とWISEのSi:As 1024x1024をベース に開発

検出器仕様

	12-18um	18-36um
supplier	Raytheon	DRS
format	1024x1024	1024x1024
detector	Si:As IBC	Si:Sb BIB
wavelength	1-26um	1-36um
QE(average)	>40 % (goal >80%)	>50%
Read noise(CDS)	40 e	100 e
Dark current	<0.2 e/s/pix (<0.03 e/s/pix goal)	<2 e/s/pix (<0.2 e/s/pix for 1024x900) (<0.1 e/s/pix goal)
Pixel size	25um	18um
Operating temperature	6K	4K

中間赤外線検出器開発

Detector Assembly (DA)

Si:Sb 1Kx1Kの開発

- Spitzer/IRS Si:Sb検出器とWISE 1Kx1K ROICを組み 合わせて実現する。
- 暗電流が大きい(2 e/s)。この低減が課題。
- FY2010年より開発を開始
- ROIC由来の暗電流を測定し十分小さい(<0.2e/s)であることを確認した。
- Si:Sb結晶を新規に作成し、Si:Sb検出器由来の暗 電流が小さい(<0.2e/s)ことを確認。

(Khalap et al., 2012, SPIE 8512, 851200)

Si:As, Si:Sbの量子効率

Si:Sbの長波長端での量子効率が小さいが、SOFIA/FOCASTと同様な手法(AR,検出器構造の改良)で向上が可能

熱設計

- ・肝は冷却 "cooling power is everything!"
- 熱流入、発熱が大きいと冷えない
 - 冷媒冷却ならミッション寿命が減るだけ
 - 冷凍機冷却だとミッションが破綻
- 15mW at 4K, 5mW at 1.7K for all FPI
- 入熱を減らす: 電気配線
- 発熱を減らす:寄生電気容量の削減
- 検出器熱アニーリング運用

Sugita et. al., Cryogenics 50, 566 (2010)

Shinozaki et. al., Cryogenics 64, 228 (2014)

SMI検出器系の熱設計

- 熱伝導割り当て
 0.7mW at 4.5K
- 運用時発熱の割り当て 8mW at 4.5K
- ・
 ・
 かアニーリング運用にて1.7K冷凍機への熱流量が
 2mWを超えないこと

熱伝導設計(電気配線)

- テフロン被覆電線について熱伝導方程式を解いた。
- •全配線(検出器、FW、温度計他) 699本を考慮
- 現実的な配線ルートを考慮して長さを仮定
- 直径0.05mmリン青銅線を2本束ねたものを使うことで、熱伝導を0.60mW(仕様0.7mW)に抑えつつ、電気抵抗を121ohm(仕様250ohm)に抑えることができた。

Wada et al., SPIE 8442, 84423V (2012)

電線: 製造メーカ・商社さん紹介できます。

熱設計結果(電気配線)

Stage1 (low T)	Stage2 (highT)	T1 [K]	T2 [K]	L_el [m]	L_th [m]	wire	F_heat mW	Res ohm	Cap pF
DET	FPI	1.7	4.5	0.1	0.1	PBW2	0.08	2.52	3
FPI	IOB	4.5	4.5	2.0	2.0	CUW3	0	5.7	62.1
IOB	ТОВ	4.5	4.5	1.35	1.35	CUW3	0	3.85	41.9
ТОВ	TS	4.5	30	1.4	1.4	PBW2	0.61	35.3	42.0
TS	IS	30	56.4	1.0	0.416	PBW2	4.24	25.2	30.0
IS	MS	56.4	88.0	0.2	0.105	PBW2	25.06	5.04	6.0
MS	OS	88.0	136.0	0.2	0.105	PBW2	47.37	5.04	6.0
OS	MT	136.0	241.4	1.5	0.88	PBW2	15.70	37.8	45.0
MT	PLBM	241.4	253.0	5.6	5.6	AGW26	90.00	0.6	415
PLBM	FPIE	253.0	253.0	2.0	2.0	AGW26	0	0.2	148

F_heatは699本分

発熱設計(検出器発熱)

- •低温部(4.5K)での発熱は検出器が支配的。
- ・配線寄生容量の駆動にほとんどが費やされている(容量x周波数)。
- 容量の削減
 - 電線芯線直径の削減(直径100µm=>50µm)
 - 信号線の這いまわしを工夫して配線長を節約。
 - 中間温度ステージ(130K)にバッファアンプを設け、4.5K
 ステージが駆動する長さを節約。

熱設計結果(検出器発熱)

Detector	Power in detector (mW)			Power in buffer (mW)			Frame rate
	Unit cell	output	total	load	output	Total	(Hz)
1Kx1K	0.86	0.96	1.82	1.34	6.08	7.42	0.95

熱設計(熱アニーリング)

- 軌道上運用中は、cosmic rayにさらされる。
- Hittingを受けたpixelは特性が悪化(暗電流増大)する。
- 一度、高温(20K)にすると特性が回復することが知られている。(熱アニーリング)

熱設計(熱アニーリング)

- 定常観測時には十分に検出器が冷却(4K for Si:Sb)される必要がある。
 - 冷凍機との間の熱抵抗を小さく!
- ・ 冷凍機の特性から、cooling powerを超える熱流入 は許されない。
 - アニーリング実現のためには、冷凍機との間の熱抵抗 は大きく!
- 定常解は存在しない。
- ・非定常解を探した。

熱モデル

- 検出器(+マザーボード)と冷凍機の間に熱容量
 バッファーを設ける。
- 定常観測状態で検出器が冷えるように熱抵抗を 決定
- アニール時はパルス熱入力を与えることで短時間 検出器温度を上昇させる。
- ・冷凍機に流れ込む熱流量が設計値を超えないよう、バッファーの熱容量を決定。

熱モデル(アニーリング)

検出器マザーボード
 25x35x1.5mm Al2O3

熱設計結果(アニーリング)

まとめ

- SPICAの特徴 冷却宇宙望遠鏡 超低背景放射環境
 をフルに活かすため、多画素、高効率、低暗電流、 低雑音検出器が必要
- 12-18um Si:As 1Kx1K は既開発(JWST/MIRI)
- 18-36um Si:Sb 1Kx1Kを開発中
- 無冷媒、放射・冷凍機冷却のため、熱制約条件が シビア
- ・ 配線、検出器運用方向を最適化することで熱設 計解が見つかった。
- 同時に「熱アニーリング」を実現する解もつかった。

Wada et al., SPIE 8442, 84423V (2012)

宣伝

- 新学術領域研究「3次元半導体検出器で切り拓く 新たな量子イメージングの展開」(平成25~29年 度) <u>http://soipix.jp/b02.html</u>
- Ge遠赤外線BIB検出器開発に関しては、 http://www.ir.isas.jaxa.jp/~wada/PUB/BIB/
- FD-SOI CMOS 極低温読出集積回路に関しては、 http://www.ir.isas.jaxa.jp/~wada/PUB/CRE/
- 単一材料多層干渉光学フィルターに関しては、 <u>http://www.ir.isas.jaxa.jp/~wada/PUB/SWS/</u>