Exploring Supermassive Black Hole Growth with 2m Antarctic infrared telescope

~Importance of distribution of young stars~

Nozomu Kawakatu (NAOJ)

Collaborator: Tohru Nagao (Ehime University)

3/10-3/11@東北大学 GCOEワークショップ「南極における赤外線天文学」

Outline

- Introduction
- What is a problem of SMBH formation ?
- Why distribution of young stars is important ?
- Why PAH mapping with 2m Antarctic infrared telescope ?
- Summary

What is Quasar (AGN) ?

Compact (~ 100 AU) and luminous (~ 10⁴⁶⁻⁴⁷ erg/s) objects

cf. typical galaxies ~ 10^{44} erg/s , ~ a few kpc

SMBH in the Milky Way "Orbit of SZ around Sgr A*"

SMBH – Galactic bulge Relation @ z=0

 $M_{BH}/M_{bulge} \sim 0.001$

Kormendy & Richstone 1995; Richstone et al. 1998; Ferrarese & Merritt 2000; Marconi & Hunt 2003

SMBH formation is closely related to bulge (star) formation.

A Scenario of SMBH Formation

(e.g., Rees Diagram 1984)

Gas accretion toward SMBH

The physics of angular momentum transfer is inevitable for formation of SMBHs.

It is crucial to link the mass accretion processes from a galactic scale with those from an accretion disk via the circumnucelar disk (CND).

Starburst driven "torus" around SMBH

 Disk has <u>complicated internal structure</u> and velocity fields is <u>turbulent-like</u>.
<u>Global shape</u> is determined by energy balance between turbulent dissipation and SN heating under the influence of the central massive black hole.

• The mechanism to transport the angular momentum is the <u>turbulent viscosity</u>.

Modeling growth of SMBH and circumnuclear disk

(NK & Wada 2008)

Why PAH mapping ?

- PAH (Polycyclic aromatic hydrocarbons)
- -Infrared emission features: 3.28, 6.2, 7.7, 8.6, 11.25 μ m
- -PAH are excited in starburst PDR but destroyed near an AGN.
- Dust extinction is much lower at $\lambda > 3 \,\mu$ m (< 0.05 A_v)

AGN-Nucelar Starburst (<100pc) connection

PAH mapping with ISAAC at VLT

Why 2m Atlantic infrared telescope ?

Distribution of young stars is important to reveal the physical process onto SMBHs.

⇒ PAH mapping (<u>high spatial resolution at near-IR</u>) is essential !

Required spatial resolution: ~ 0.1"

Nuclear starburst (~100pc) : ~10 pc @ z=0.05

Targets : Seyfert galaxies (AGNs), normal galaxies

2m Antarctic infrared telescope: ~0.3" @ 3 µ m (diffraction limit)

Space telescope (Spitzer, AKARI, ...) : > 3" Ichikawa-san's talk

Ground based telescope (Subaru, VLT, ...) : ~1-2"

Summary

- To reveal the SMBH formation, the distribution of young stars in dusty torus is essential.
- **PAH mapping** is a powerful tool to investigate the distribution of young stars, which are buried in the optically thick torus.
- Infrared observation with high spatial resolution by 2m Antarctic infrared telescope is crucial to reveal a difference in the distribution of young stars between AGNs and non-AGNs statistically.

High spatial resolution at the near-infrared band & plenty of telescope time

Thank you very much !