# Observation of planets at Mt. Haleakala, Hawaii and Laser Heterodyne Spectroscopy in Antarctica

S. Okano<sup>1</sup>, Y. Kasaba<sup>2</sup>, and M. Kagitani<sup>2</sup>

1 Planetary Plasma and Atmospheric Research Center,
Tohoku University
2 Department of Geophysics, Tohoku University
Japan



## Long-Term Monitoring observation of plasma and atmospheric emissions around planets and satellites







Dynamics of Mercury's magnetosphere and atmospheric emission

## Mercury's Sodium Tail

Sodium atoms are accelerated by solar radiation pressure to create a comet like shaped sodium tail.

Large initial velocity is needed to escape from Mercury's gravitation, and it can be produced by SWS and/or MMV.



Kameda et al., 2008

Baumgardner et al., 2008

## Spectral image obtained at Haleakala on June 6, 2007



Extremely bright scattered light from planetary disk is always a big problem in our observation of weak emission on and around a planet.

The problem is much more serious in observation of exoplanets.

A new telescope designed to minimize such a problem and dedicated to observation of solar system planets and exoplanets is desired.

Prof. Jeff Kuhn at IfA/UH, Prof. Svetlana Berdyugina at IfA/ETH Zurich, and our group at Tohoku University are now collaborating in a construction plan of such a telescope at the summit of Mt. Haleakala, Maui, Hawaii.



Haleakala
High Altitude Observatory
alt. ~3000m

We can get to the summit before the same noon even we leave Sendai in the same evening.





#### **Our present facility at Haleakala Observatory**

Remote operation started in 2008



#### Conceptual sketch of JHET telescope

## 1.8m Off-axis Gregorian, coronagraphic telescope on equatorial mount





口径2m、厚さ10cmで36点支持でアクティブサポートした場合の鏡面誤差(最大20nmRMS)





#### Aerial view of the summit of Mt. Haleakala and telescope construction plan

JHET: Japan Hawaii Europe Telescope



ATST: Advanced Technology Solar Telescope 4m off-axis NSF funded

## Infrared observation of planetary atmosphere

High sensitivity for atmospheric composition measurements

- ◆Isotope ratio
  - ex. D/H: information on atmospheric evolution (Deutrium is hard to escape compare to hydrogen
    - Detection of minor constituents ex. CH₄on Mars ~10 ppb
      - Why does CH<sub>4</sub> exist without lives and volcanoes [Krasnopolsky et al., 2004],[Formisano et al., 2004]



- wind velocity (atmospheric escape)
- **ex.** Resolving power of  $>10^7$  is required to measure 10m/sec wind
- Compactness & Light weight for application to orbiter and lander
  - heavy Echell spectrometer cannot be onboard a spacecraft







S/N ratio of LHS

$$S/N = \frac{Ps \cdot A}{\Delta h v} \sqrt{Bt}$$

Ps:signal input energy (W/m<sup>2</sup>•Hz)

A: effective area of telescope (m<sup>2</sup>)

 $\Delta$ : degradation facor

hv:πηοτονενεργψ (1.989x10<sup>-20</sup>J @10μm)

B: bandwidth (Hz)

t:integration time(sec)

Example of LHS data (source: Sun, ozone absorption@9µm)

## Venus Results: U. Koln (May/June 2007)





[Sonnabend, 2008]

### Application to measurements of exoplanetary atmosphere

Energy reaching to the earth from a star with  $m_V = 0$  and surface temperature of 5000K

$$P_{s,10\mu m} = 3.42 \times 10^{-24} \text{ W/m}^2 \text{ Hz} = 0.42 \times 10^{-24} \text{ W/m}^2$$



0 \_\_\_\_\_

S/N~4300 is possible with a telescope of 2m diameter, B = 300MHz, t = 10 days, and  $\Delta$  = 2.

## Advantages of Laser Heterodyne Spectroscopy combined with a Telescope in Antarctica

Input energy from a star of  $m_V = 0$  with surface temperature of 5000K

For Laser Heterodyne reception,  $A\Omega \sim \lambda^2$ 

Input energy of atmospheric radiation 2.7 x  $10^{-22}$  W/Hz for T = 288K (15C)  $3.0 \times 10^{-23}$  W/Hz for T = 200K (-73C)

If we can make the most use of low temperature atmospheric radiation in Antarctica, and Infrared laser heterodyne spectroscopy which can attain shot-noise limited sensitivity,

Detection of atmospheric molecules in an exoplanetary atmosphere may not be a dream.