2009/3/10

南極における赤外線天文学

Transit observations of Exoplanets

NAOJ•ELT project Takuya Yamashita

Outline

- Planetary Transit?
- 2ry Eclipse
- Atmosphere of Exoplanets
- Benefit of Antarctica
- Proposed Observations
 - New exoplanets survey for known transiting objects
 - 2ry Eclipse of known transiting exoplanets
- Summary

Planetary Transits?

- Exoplanets come across in front of host stars
 - Mercury and Venus show transits
 - It is observed as very small extinction of fluxes of host stars
- Chance coincidence is needed that a planetary orbit is seen nearly edge-on

Planetary Transits?

- What is known from transits?
 - Diameter of the planet
 - Inclination of Planetary Orbit
 - Resolves uncertainty of planetary mass derived from RV method
 - \rightarrow Planetary density
- What is known from the density?
 - Composition
 - Gas giant (Jupiter-type)?
 - Rocky Planet (Earth-like)?
 - Ice Planet (Uranus-type)?
 - Interior structure
 - E.g., Interior of gas giants
 - Mass ratio of a core
 - Important for planet formation

Current Status of Transit Observations

- Transit Survey
 - Small dedicated telescope
 - TrES, HATnet, XO, SuperWASP
 - 10cm class camera lens
 - Short period (1-10days) gas giants are found
 - Intermediate Telescope
 - OGLE(Optical Gravitational Lensing Experiment): 1.3m
 - Mainly for micro lensing event
 - Difficult to follow up due to faint targets
 - Dedicated Space missions
 - CoRoT: 2006/12/27 launch
 - 27cm、150days × 5 field、Rocky Planets
 - Kepler: 2009/3/6 launch
 - 95cm、4 years 1field、Earth-like Planets

2ry Eclipse

• A planet is hidden by a host star

- Inverse process to transit
 - Radiation from planets are dimmed during this process
 - Thermal emission (IR)
 - Scattered light (Optical)
- Extinction is extremely small
- What is known ?
 - Planetary Surface
 - Thermal emission form the ground and atmosphere (IR)
 - Reflected spectrum by the ground and the atmosphere (Opt)
 - Absorption due to the atmosphere(Opt, IR)

Current Status of 2ry Eclipse Observations

- Spitzer (longer than $3.5 \,\mu$ m)
 - Left figure (Comparison with models)
- Ground based observation
 - Recently detected (Right figure)

Planetary Atmosphere (Transit)

- Planetary atmosphere can be studied during the transit
 - Light from a host star is absorbed by the planetary atmosphere
 - Atmospheric gas has their specific absorption features
 - Planetary gas components are known by spectroscopy

Planetary Atmosphere (2ry Eclipse)

- We can measure planetary atmosphere at the 2ry Eclipse
 - Light from the ground (or lower atmosphere) is absorbed by the atmosphere
 - Thermal emission from planetary atmosphere can be observed depending on the thermal structure
 - Planetary gas components are known by spectroscopy

Current Status of Atmospheric Studies

- Transmission Spec. at Transits
 - Lower Atm.: Na
 - Upper ouflowing Atm : Ly α 、OI, CII
 - Water vapor, Methane
- Emission Spec. at 2ry Eclipses
 - No successful spectroscopy

Benefits at Antrctica

- Long lasting nights
 - Continuous Observation
 - Do not miss long period transit phenomena
 - Currently detected transits have peridos between 3-10 days a= 0.03 - 0.1AU(Mercury: P=87days, a=0.39AU)
- Little change in object altitude, and small water vapor, and stable condition
 - High photometric accuracy
 - Even a small extinction can be detected
 - Small transiting planets can be discovered
- Low temperature and small water vapor
 - High sensitivity in the Infrared
 - Small telescope can attain high sensitivity

What observations can be benefitted?

- Survey for new transiting planets Cont
 - Long period transit can be targeted (v.s. space mission)
 - ASTEP (Antarctic Search for Transiting Extrasolar Planets)

- Dome C, 10cm fixed telescope, $4k \times 4k$ CCD, $4^{\circ} \times 4^{\circ}$ FOV

Cont

- Transit phenomena for known long period RV planets ont
 Proposed by Dr. Takato
- New transiting planets for known transiting systems
 - Other planetary orbits are expected to be alighned
 - Long period and/or small planets

2009/3/10

What observations can be benefitted?

• 2ry Eclipse

- 2ry Eclipse of known transiting planets
 - Detect thermal emission from exoplanets
- TTV (Transit Timing Variation) Cont
 - The presence of exo-moon, ring and other planets
- Spectroscopy of planetary Atmosphere

– May be difficult with 40cm ?

New planets for know transiting systems

- Target: known transiting systems
 - Long period and/or small planets
 - Currently known transiting planets are very short-period

- » P = 88 days, a = 0.39 AU (Mercury)
- Most are Jupiter sized ones
- More like solar system → Longer period and/or small planets
- Why known transiting systems?
- Orbits of other planets are expected to be along the line of sight
 - For our solar system $\Delta i < 2^{\circ}$ (Except for Mercury)

New planets for know transiting systems

- Method
 - Optical (IR is also OK, Opt. sensitivity is better?) 1 band
 - Interval is less than transiting event (3hr)
 - Comparison star is available within the same field
 - For photometric accuracy
 - Depth of the transits
 - Jupiter size:1%
 - Neptune size ~0.1% Targets
 - Earth size: ∼0.01%
 - High system stability and also stability of the target is important

New planets for know transiting systems

- Candidate conditions
 - Decl. < -30°
 - V > 12.5 mag (S/N > 1000 for 200sec integration)
 - 0.1 % \rightarrow R ~ 0.3 × R_{Jup} ~ 1 × R_{Nep} ~ 3 × R_{Earth}
- Currently available targets
 - WASP-4b,-5b, 7b, 15b
- Small number of targets !
 - Transit surveys are not active for southern sky
 - HAT-South will be added to Super WASP
 - Space mission will provide new transiting system but already done

2ry Eclipse of known transiting planets

- What will be revealed?
 - Hot Jupiter
 - Thermal emission from the atmosphere: Surface temperature
 - Atmospheric structure: Not yet revealed with Spitzer
 - Low S/N ratio for spectroscopy
 - Weak features among Spitzer wavelength coverage
 - Inversed layer?
 - 2μ m band flux can offer important information
 - Without other wavelength data, NBF (3 parts in the K band) is preferable (also good for transits)

2ry Eclipse of known transiting planets

- Targets: Known transiting planets
- Method
 - Near Infrared
 - Photometric observation around expected 2ry Eclipse time
 - Comparison star is available within the same field
 - For photometric accuracy
 - Typical depth of 2ry Eclipse
 - Less than 0.1%
 - High system stability and also stability of the target is important

2ry Eclipse of known transiting planets

- Candidate conditions
 - Decl. < -30°
 - K > 10.0 mag (S/N > 1000 for 200sec integration)
 - Typical depth for 2ry Eclipse $\sim 0.1\%$
- Currently available targets
 - WASP-4b,-5b, 7b, 15b (same as pthe revious proposal)
- Small numbers of targets
 - HAT-South will be added to Super WASP
 - Space mission will also provide new transiting system
 - However, until JWST will be launched

Summary

- Proposed transit observations
 - New transiting planets for known transiting system
 - V.s. dedicated space mission
 - Different targets but the same science
 - 2ry Eclipse of known transiting systems
 - Before JWST will be launched (2013?)
- Currently only 4 targets are available
 - On-going survey will add more
 - Most of the transiting system found with small telescope can be the targets
 - Super WASP, HAT-South
- It is better, if prism spectroscopy (over NIR) is available
 - For both transmission and emission spectroscopy