活動銀河核の降着流からの ニュートリノ放射

木村成生

References 1) SSK, Murase, Meszaros, 2019, PRD, 100, 083014 2) SSK, Murase, Meszaros in preparation 3) Murase, SSK, Meszaros, arXiv:1904.04226 see also: SSK, Murase, Toma, 2015, ApJ, 806, 159

Collaborators Peter Meszaros (Penn State) Kohta Murase (Penn State; YITP) Kenji Toma (Tohoku Univ.)

Theoretical Astrophysics Tohoku University

HEAP 2019@ 蔵王温泉

December 2019

Index

- IceCube Neutrinos
- Accretion Flow in AGN
- AGN Corona model Murase, SSK, Meszaros, arXiv:1904.04226
- · LLAGN RIAF model
- SSK, Murase, Meszaros, 2019, PRD, 100, 083014 SSK, Murase, Meszaros in prep.

• Summary

Index

- IceCube Neutrinos
- Accretion Flow in AGN

Murase, SSK, Meszaros, arXiv:1904.04226

- AGN Corona model
- LLAGN RIAF model SSK, Murase, Meszaros, 2019, PRD, 100, 083014 SSK, Murase, Meszaros in prep.
- Summary

Detection of Astrophysical Neutrinos Shower or Cascade (ve)

(b)

- IceCube experiment reported detection of astro-v (E ~ PeV) in 2013
- Shower: good for spectrum

4

Track: good for source search

Neutrino Spectrum

electron and tau neutrinos

- Track analysis: flat spectrum (E > 200 TeV)
- Cascade analysis: soft spectrum (E > 1 TeV)
- Hint of 2 component?? Uncertainty of analyses?? •

Arrival Direction

00.0

0.50

 $\nu_{\rm e}$

0.00

90.7

 $\mathbf{2}$

U

0.83 I

0^{.0}

pion decay [(1:2:0) at Source]

Neutrino Production Process

• Photomeson production $(p\gamma) = \sigma[mb]$

Neutrino Production Process

• Photomeson production $(p\gamma) = \sigma[mb]$

Neutrino Production Process

Point Source Constraint

 10^{7} discovery potential for discovery potential for transient source candidates 10^{6} in 10 years in 10 years 10^{5} SNe & newborn pulsars 10^{4} **hypernovae** 10^{3}

see Murase & Waxman 16

- No point-source detection
 - → High number density of neutrino sources
- IceCube already disfavors luminous sources • (GRBs, Blazars, Jetted TDEs)

 10^{6}

Gamma-ray Constraints

- Astrophysical Vs are accompanied with γ rays
- V intensity at $10 \text{ TeV} > \gamma$ -ray intensity at 100 GeV
 - \rightarrow accompanying γ rays overshoot Fermi data
 - \rightarrow V sources should be opaque to Y rays Murase et al. 2013, 2016 Ahler & Halzen 2017

Index

- IceCube Neutrinos
- Accretion Flow in AGN

Murase, SSK, Meszaros, arXiv:1904.04226

- AGN Corona model
- LLAGN RIAF model SSK, Murase, Meszaros, 2019, PRD, 100, 083014 SSK, Murase, Meszaros in prep.
- Summary

• Radio-quiet AGNs

M77 (NGC 1068): Wikipedia©

- No prominent jet
- 90% of AGNs

Radio-loud AGNs

M87 (NGC 4486): Wikipedia©

- Powerful Jets
- I-10 % of AGNs

Radio-quiet AGNs

- Hottest Point in Northern Sky (2.9 σ)

Radio-loud AGNs

IceCube 2018

Multi-messenger campaign

- IC I70922 (3 σ)
- 2014-2015 Neutrino flare (3.5 σ)

• Radio-quiet AGNs

- Hottest Point in Northern Sky (2.9 σ)

• Radio-loud AGNs Multi-messenger campaign IceCube 2018

- IC I70922 (3 σ)
- 2014-2015 Neutrino flare (3.5 σ)

Radio-quiet AGNs

Radio-quiet AGNs

ラックホー**Particle Acceleration in** Accretion Flows

Magnetic reconnection or wave-particle interaction accelerates CRs,

- Fairly high photon & proton densities in Coronae & RIAFs
- Interaction between CRs and matter/photons
 → neutrino & gamma-ray emission
- · TeV-PeV γ -rays are reprocessed to MeV-GeV γ rays

Index

- IceCube Neutrinos
- Accretion Flow in AGN

Murase, SSK, Meszaros, arXiv:1904.04226

- AGN Corona model
- LLAGN RIAF model SSK, Murase, M
 - SSK, Murase, Meszaros, 2019, PRD, 100, 083014 SSK, Murase, Meszaros in prep.

• Summary

Stochastic Acceleration

e.g.) Fermi 1949, Stawarz & Petrosian 2008, SSK et al. 2015

• Consider plasma with turbulent fields E_0 particle $* < \sim \sim \sim$ $E' > E_0$ $E' > E_0$ $E' < E_0$

Some gain E, others lose $E \rightarrow diffusion$ in E space

$$\frac{\partial f}{\partial t} = \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_p \frac{\partial f}{\partial p} \right)$$

According to quasi-linear theory, gyro-resonant scattering results in $D_p \propto p^q$ (power-spectrum $P_k = P_0 k^{-q}$)

Basic Equations

l0⁻¹

- Escape : Diffusive escape & infall to SMBH
- Coolings: pp inelastic collision, photomeson production proton synchrotron, Bethe-Heitler process ($p+\gamma \rightarrow p+e^++e^-$)
- Muon & Pion Coolings are negligibly inefficient
- HE γ -rays are absorbed by target photons ($\gamma + \gamma \rightarrow e^+ + e^-$)
 - → electron & positron emit high-energy gamma-rays
 - → Calculate electromagnetic cascades

Target Photon Field

Pringle 1981, Ho 2008, Hopkins 2007 Bat AGN Spectroscopic Survey 2017, 2018, Mayers et al. 2018 Luminous objects

 \rightarrow Rich observational data

→ We can use empirical relation based on observations

- Opt-UV photons from accretion disk
- X-rays from hot coronae above thin disk
 - Higher L_{opt}/L_x for higher $L_x AGNs$
- Softer spectra for higher L_x AGNs

Rates & CR Spectrum

- $E_{p,max} \sim 10^5 \text{ GeV by } t_{acc} = t_{BH}$
- BH suppresses V production
 at E_P ~ 3×10⁴ 3×10⁶ GeV
- Escape is inefficient

- Hard spectrum due to SA
- Pile up around E_{max}
 - Higher $L_x \rightarrow$ lower E_{max} because of efficient cooling

HE particles from Nearby Seyfert Galaxies

- A typical Seyfert at 100 Mpc
- pγ neutrinos are detectable by IceCube-Gen2
- MeV γ-rays can be detected
 by future satellites.

• MeV γ -ray luminosity is determined by B-H pair production \rightarrow Ratio of γ to ν flux is fixed by the observed photon field \rightarrow We can robustly test our model by future experiments

Extragalactic γ & ν Backgrounds

$$\Phi_{\nu,\text{ob}}^{\text{diff}}(E_{\nu,\text{ob}}) = \frac{1}{4\pi} \int_{L_{\text{min}}}^{L_{\text{max}}} dL_{\text{X}} \int_{0}^{z_{\text{max}}} dz \frac{dn_{0}}{dL_{\text{X}}} f(z) \frac{dV}{dz} \Phi_{\nu,\text{ob}},$$

• AGNs with $L_x \sim 10^{44}$ erg/s provide the dominant contribution e.g., Ueda et al. 2014

- We choose the injection efficiency so that our model can explain the MESE excess.
- **Energetically reasonable:** P_{CR}/P_{th} ~ P_{CR}/P_B ~ 0.01

Cascade emission provides 10 - 30 % of MeV γ-ray background

Index

- IceCube Neutrinos
- Accretion Flow in AGN

Murase, SSK, Meszaros, arXiv:1904.04226

- AGN Corona model
- · LLAGN RIAF model
- SSK, Murase, Meszaros, 2019, PRD, 100, 083014 SSK, Murase, Meszaros in prep.

• Summary

- Escape : Infall to SMBH
- Coolings: pp inelastic collision, photomeson production proton synchrotron, Bethe-Heitler process ($p+\gamma \rightarrow p+e^++e^-$)
- Muon & Pion Coolings are negligibly inefficient
- HE γ -rays are absorbed by target photons ($\gamma + \gamma \rightarrow e^+ + e^-$)
 - → electron & positron emit high-energy gamma-rays
 - → Calculate electro-magnetic cascades

Target Photon Field

Low-luminosity → Poor observational data

→ Formulation based on theory

- Thermal electrons in RIAFs emit seed photons
- Our results are consistent with X-ray observations

Rates & CR Spectrum

- Infall is dominant
- Neutrino is mainly produced by pp
- For SA, acceleration rate is much lower than PL model

- Hard proton spectrum for SA
- Cutoff energy for SA is much higher than the critical energy (t_{acc} = t_{fall}) due to hard spectrum & gradual cutoff

Number of Muon Tracks

- IceCube cannot detect a neutrino
- IceCube-Gen2 can detect
 a few neutrinos of E > 10 TeV

 10^{3}

Murase & Waxman 2016

- IceCube cannot distinguish signals from the background
- IceCube-Gen2 can detect
 several neutrinos of E > 30 TeV

້າ 2 10⁰

$$\begin{array}{l} \textbf{Extragalactic } \boldsymbol{\gamma} \ \& \boldsymbol{\nu} \\ \textbf{Backgrounds} \\ \Phi_i = \frac{c}{4\pi H_0} \int \frac{dz}{\sqrt{(1+z)^3 \Omega_m + \Omega_\Lambda}} \int dL_{\mathrm{H}\alpha} \rho_{\mathrm{H}\alpha} \frac{L_{\varepsilon_i}}{\varepsilon_i} e^{-\tau_{i,\mathrm{IGM}}}, \end{array}$$

- AGNs with L_{Hα}< 4x10⁴¹ erg/s equally contribute to V
- LLAGNs with L_Hα ~ 4x10⁴¹ erg/s mainly contribute to MeV

- LLAGN can explain
 TeV-PeV ν and MeV γ
 bkgrds simultaneously
- GeV γs are attenuated at RIAFs in LLAGNs
 - → consistent with Fermi data
 - $P_{CR} \sim 0.1 P_{th}$ for SA, $P_{CR} \sim 0.4 P_{th}$ for PL
 - → Need hard spectrum

$$\begin{array}{l} \textbf{Extragalactic } \boldsymbol{\gamma} \ \& \boldsymbol{\nu} \\ \textbf{Backgrounds} \\ \Phi_i = \frac{c}{4\pi H_0} \int \frac{dz}{\sqrt{(1+z)^3 \Omega_m + \Omega_\Lambda}} \int dL_{\mathrm{H}\alpha} \rho_{\mathrm{H}\alpha} \frac{L_{\varepsilon_i}}{\varepsilon_i} e^{-\tau_{i,\mathrm{IGM}}}, \end{array}$$

- LLAGNs with L_{Hα}< 4x10⁴¹ erg/s equally contribute to V
- LLAGNs with L_{Hα} ~ 4x10⁴¹ erg/s mainly contribute to MeV

Index

- IceCube Neutrinos
- Accretion Flow in AGN

Murase, SSK, Meszaros, arXiv:1904.04226

- AGN Corona model
- LLAGN RIAF model

SSK, Murase, Meszaros, 2019, PRD, 100, 083014 SSK, Murase, Meszaros in prep.

• Summary

- Future multi-messenger observations can robustly test both models:
 - IceCube-Gen2 can detect AGNs as point sources

- AMEGO can detect MeV γ rays from AGNs

Thank you for your attention

- Accretion onto Supermassive black hole (M_{BH}~10⁸M_{sun}) gravitational energy → radiation or thermal energy
- SMBH paradigm is proved by Event Horizon Telescope

Plasma Conditions in Accretion Flow

- To accelerate non-thermal particles, relaxation time > dissipation time
- For RIAFs in LLAGNs, $t_{dis} \sim t_{dyn} \sim R/V_{fall}$
- For Coronae in QSO, $t_{dis} \sim H/V_A$
- Protons are collisionless for both cases
 → Non-thermal Proton
- Electrons are collisional for both cases
 - → Thermal electrons only

Luminosity Function

ν & γ intensities from LLAGNs

$$\Phi_{i} = \frac{c}{4\pi H_{0}} \int \frac{dz}{\sqrt{(1+z)^{3}\Omega_{m} + \Omega_{\Lambda}}} \int dL_{\mathrm{H}\alpha} \rho_{\mathrm{H}\alpha} \frac{L_{\varepsilon_{i}}}{\varepsilon_{i}} e^{-\tau_{i,\mathrm{IGM}}},$$

• $\rho_{H\alpha}$: H α line Luminosity function

We use higher LF

Target Photon Field

- Low-luminosity → Poor observational data
 → Theory driven formulation
- Thermal electrons in RIAFs emit seed photons
- Provide X-ray luminosity by observation
 - → Bolometric correction based on AGN survey
 - → Estimate mass accretion rate
 - \rightarrow Obtain physical quantities (ρ , B, n, Te) in RIAFs
 - → Calculate target photon spectrum by one-zone approximation
- We do not adjust X-ray luminosity

EM Cascades in IGM

- Cutoff energy by $\gamma\gamma$ pair production in RIAFs $E_{cut} \sim 0.1$ 100 GeV
- $\tau_{YY,IGM} \sim I$ for $E_Y = 100$ GeV @ z=0.5 \rightarrow We need to consider attenuation
- $\gamma\gamma$ pair production: e⁺e⁻ of $\gamma_e \sim 10^5$ for $E_{\gamma} \sim 100$ GeV $\rightarrow E_{ic} \sim 4\gamma_e^2 E_{CMB}/3 \sim 10$ MeV \rightarrow we can ignore EM cascade in IGM
- $\tau \ll 1$ for v & MeV γ
 - \rightarrow we can ignore attenuations

Implications & Caveats

- Multi-messenger tests are promising: Nearby LLAGNs are detectable by IC-Gen2 & e-ASTROGAM
- High source number density (~10-3 Mpc-3)
 → LLAGNs can avoid the point-source constraints
- Luminosity Function (LF) is very uncertain
 - LF by Hao et al. (2005) >> Greene & Ho (2007)
 - If we use Greene & Ho (2007), neutrino flux becomes too low to explain TeV-PeV neutrinos