

宇宙初期天体の形成: 初代星&初代BH

大向一行 東北大学 天体理論

Tohoku University

First Stars

Before First Stars=Simple Universe ?

- well-defined initial condition Cosmological Initial Condition
 Streaming motion(velocity difference between baryon and DM) was overlooked (Tseliakhovich& Hirata 2010)
- simple chemistry and thermal process
 Simple primordial gas (H, He,& slight amount of D, Li)
 no external radiation field other than CMB, no Cosmic Ray

This is still OK

(But: new missing process is sometimes found and added e.g., Li chemistry DM annihilation might have played a role in heating/ionization)

• simple dynamics weak magnetic field magnetic fields may have been amplified by small-scale turbulent dynamo, and may have played some role in dynamics and heating by ambipolar diffusion

Except very early universe, predictable theory is well established ??

Radiative cooling in primordial gas

H₂ is needed for making the gas cold

H₂ formation in primordial gas

At low densities (<10⁸cm⁻³)

H ⁻ channel : e catalyzed	(Peebles & Dicke 1968; Hirasawa+1969)
H + e → H ⁻ + γ H ⁻ + H → H ₂ + e	rate higher by an order of mag.
H ₂ ⁺ channel : H ⁺ catalyzed	(Saslaw & Zipoy 1967)
$H + H^+ \rightarrow H_2^+ + \gamma$	can be important
$H_2^+ + H \rightarrow H_2^- + H^+$	in strong radiation fields.

At higher densities (>10⁸cm⁻³)

3-body reactions (Palla, Salpeter & Stahler 1983) $H + H + H \rightarrow H_2 + H$ $H + H + H_2 \rightarrow H_2 + H_2$. Makes the gas fully molecular at ~10¹¹cm⁻³

First Star Forming Sites

ACDM cosmology Simulate starting from the density fluctuations up to the formation of first object

First Objects to form stars: small halos with virial temperature T_{vir} > 1000K (minihalos ~10⁶M_{sun}, z~20-30) 600h⁻¹kpc the gas in which cools by

H₂ line emission and become denser

→ Star formation

Yoshida, Abel, Hernquist & Sugiyama (2003)

Thermal evolution of primordial gas

Runaway Collapse of Dense Cores to Protostars

(KO & Nishi 1998)

Self-similar Collapse (up to n^{-3})

Density, temperature, velocity higher than in Pop I case

O-7 in Figure is time sequence

•protostar(=hydrostatic core)

state 6; n~10²²cm⁻³, M_{star}~10⁻³M_{sun}

(similar to Pop I case)

•temperature and density in the envelope are higher than in Pop I case.

Birth of the first protostar

Yoshida, KO, Hernquist 2008 Hydrostatic protostar
 (initial mass ~10⁻²M_{sun})
 forms at ~10²¹cm⁻³

Protostar grows by accretion

Accretion terminates → Final stellar mass

primordial gas (Z=0)

no dust, low opacity ⇒ lower radiation pressure higher temperature (a few 100K) ⇒ higher accretion rate

$$\dot{M} \sim \frac{M_{\rm J}}{t_{ff}} = \frac{c_s^3}{G} \sim 2 \times 10^{-6} M_{\odot} / \mathrm{yr} \left(\frac{T}{10K}\right)^{3/2}$$

Both effects work to weaken the stellar feedback effect

Massive star will be formed. How much?

Cases with different accretion rates

All protostars go through the adiabatic and the KH contraction phases.

Subsequent phase depends on the accr. rate.

✓With low accretion rate (<dM/dt_{crit}=4 10⁻³M_{sun}/yr): →the star reaches ZAMS and accretion continues

✓With higher accretion rate (>dM/dt_{crit}) : →the star starts inflating when L (=L_{*}+L_{acc}) becomes close to L_{Edd}.

 $L_{\rm acc} \propto M_*/R_*$

Feedback-limited mass of first stars

In non-spherical accretion: mass of first stars is set by the UV feedback photoevaporation of disk (McKee & Tan 08, Hosokawa+11/12, Stacy+12, Hirano +14, Susa + 2014)

Accretion stops at ~40Msun

contour: density, color: temperature

Hosokawa, KO, Yoshida, Yorke 2011, 2012

Statistical Study: toward IMF

3D cosmological simulation+2D radiation hydro simulation for star formation

Hirano et al. (+KO) 2014, 2015 studied >100-1000 halos

mass distribution of first stars

Hirano+ (KO) 2014, 2015 studied >100-1000 halos

 ✓ flat distribution in a wide mass range: a few 10-100 M_{sun}

✓ even $1000M_{sun}$ first stars can be formed

First Binaries ?

Some first stars were also binaries

fragmentation during the collapse

("turbulent fragmentation")

From 2009 onward, it becomes known that binaries/multiples are formed in the first star formation.

fragmentation of circumstellar disk after protostar formation ("disk fragmentation")

Clark et al. 2011

Greif et al. 2011

Earlier work on first binary formation

Machida, KO+ 2008

➢ barotropic EOS from one-zone model
➢ idealistic initial condition:
➢ BE sphere (10³ cm⁻³)
density x 1.01 (α₀=0.83)
➢ Rotation β₀
➢ Perturbation (bar A_φ + m=3)

All the cores with some rotation ($\beta_0 > 10^{-6} - 10^{-5}$ fragment.

More prone to fragmentation than present-day

Radiative feedback in 3D

Hosokawa + (KO) 2016

Public multi-D MHD code: PLUTO (e.g., Mignone et al. 07)

A modified version developed for studying present-day high-mass star formation (R.Kuiper+10 etc.) + self-gravity + FLD solvers

- UV radiation transfer + chemistry
- Stellar evolution (Yorke & Bodenheimer 08)
- Cosmological initial condition (Hirano+14)

polar coordinate + central sink (radius of 30AU and spatially fixed)

Follow the long-term ($\sim 10^5$ yrs) evolution with ionizing (EUV) and dissociating (FUV) feedback in 3D

fragmentation and migration...

Hosokawa + (KO) 2016

Contour: Toomre Q parameter solid: Q=0.1, dotted: Q=1.0

The central star grows very massive before the UV feedback shut off the accretion.

But, radiation comes only from the central source. \rightarrow massive binary formation remains unexplored.

Multi-source simulation in AMR

Sugimura +(KO). in prep.

AMR + (M)HD + self-gravity + sink particle method (Matsumoto 07 etc.)

 + adaptive ray-tracing (ART) method for multiple soruces (e.g., Abel & Wandelt 02; Rosen et al. 2017) of EUV (H ionizing) & FUV (H2 dissociating) rad.

+ chemistry network & cooling/heating processes w/ the primordial composition (zero metallicity)

+ Cosmological initial cond. (Hirano et al. 15) Halos C & D of Hosokawa+ (2016)

3D movie

halo C, rsin_{k=64}au

Time: -151617.0

sink particle evolution minihalo C, r_{sink}=64au

sink particle evolution^{halo D, r_{sink}=64au}

Evolutionary phases

(a) initial frag.

(b) merger induced by a-few-body effect

(c) accreting binary

(d) internal photoevaporation

(e) external photoevaporation

 $100 \cdot$ (a) (b) !(d) (e) (c) sp0 $M [M_{\odot}]$ 50sp1 sp2 () 10 $[\mathrm{I}^{10}_{\mathrm{M}}]$ $\ge 10^{-4}$ 10^{-5} 10^{4} \bigtriangledown^{103} 60M_{sun} + 30M_{su}

Massive binaries are common among first stars

Toward MHD calculation:

accurate ionization degree modelling needed

Magnetic fields will change the picture ?

In Galactic ISM, B-fileds are almost in energy equi-partition:

 $E_{B} \, {\boldsymbol \sim} E_{kin} {\boldsymbol \sim} E_{grav}$

Roles:

- •Support against the collapse
- •Jet/Outflow launching
- •Angular momentum transport by magnetic braking, magneto-rotational instability
- •Suppressing fragmentation of disk
- \rightarrow determines frequency of binary formation

Even in low-metallicity ISM, significant B-fields may be present seed field ($\sim 10^{-19}$ G) amplified by e.g., small-scale dynamo

(e.g., Machida & Doi '13)

Magnetic field dissipation

Ionization degree in star forming clouds is low \rightarrow magnetic dissipation can occur e.g., Wardle 2007

balance of Lorentz and drag forces for charged particles j

$$Z_{j}eE' + Z_{j}e\frac{v_{j}}{c} \times B - m_{j}\gamma_{j}\rho v_{j} = 0$$
Hall parameter

$$\rightarrow J = \sum_{j} n_{j}eZ_{j}v_{j} = \sigma_{O}E'_{\parallel} + \sigma_{H}\hat{B} \times E'_{\perp} + \sigma_{P}E'_{\perp}$$

$$\beta_{j} = \frac{|Z_{j}|eB}{m_{j}c}\frac{1}{\gamma_{j}\rho}$$
with Obmic Hall and
$$e^{c}\sum_{j} e^{C}\sum_{j} e^{C}\sum_{j} n_{j}Z_{j}$$

with Ohmic, Hall, and
Pedersen conductivities
$$\sigma_O = \frac{ec}{B} \sum_j n_j |Z_j| \beta_j \quad \sigma_H = \frac{ec}{B} \sum_j \frac{n_j Z_j}{1 + \beta_j^2} \quad \sigma_P = \frac{ec}{B} \sum_j \frac{n_j |Z_j| \beta_j}{1 + \beta_j^2}$$

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) - \nabla \times [\eta_{\rm O} \nabla \times \boldsymbol{B} + \eta_{\rm H} (\nabla \times \boldsymbol{B}) \times \hat{\boldsymbol{B}} + \eta_{\rm A} (\nabla \times \boldsymbol{B})_{\perp}]$$

Dhmic, Hall and ambipolar diffusivities

$$\eta_O = \frac{c^2}{4\pi\sigma_O} \qquad \eta_H = \frac{c^2}{4\pi\sigma_\perp} \frac{\sigma_H}{\sigma_\perp} \qquad \eta_A = \frac{c^2}{4\pi\sigma_\perp} \frac{\sigma_P}{\sigma_\perp} - \eta_O$$

$$\sigma_\perp = \sqrt{\sigma_H^2 + \sigma_P^2}$$

Ionization degree controls magnetic dissipation

new chemical network

- 107+107=214 reactions among 23 species. H, H₂, e⁻, H⁺, H₂⁺, H₃⁺, H⁻, He, He⁺, He²⁺, HeH⁺, D, HD, D⁺, HD⁺, D⁻, Li, LiH, Li⁺, Li⁻, LiH⁺, Li²⁺, Li³⁺.
- •all the reactions are reversed. Rate coefficients for reverse reactions calculated from the detailed balance.

$$R_{1}+R_{2} \longrightarrow P_{1}+P_{2} \qquad k_{rev} = k_{fwd}K_{eq}(T)$$

$$K_{eq}(T) = \left(\frac{2\pi k_{B}T}{h_{P}^{2}}\right)^{3(M-N)/2} \left(\frac{m_{R_{1}}...m_{R_{M}}}{m_{P_{1}}...m_{P_{N}}}\right)^{3/2} \left(\frac{z(R_{1})...z(R_{M})}{z(P_{1})...z(P_{N})}\right) e^{-\Delta E/k_{B}T}$$

accurate treatment of ionization degree in primordial gas

Nakauchi, KO, Susa 2019

204 reactions (all reversed) among 23 species:

major positive ions: $H^+ \rightarrow Li^+ \rightarrow H_3^+ \rightarrow H^+$

Li ionization by thermal photons enhances ionization degree at >10¹⁴cm⁻³

$$\mathrm{Li}^+ + e \rightleftharpoons \mathrm{Li} + \gamma$$

First Black Holes

Supermassive BHs

©eht

 ubiquitously reside at the center of galaxies
 BH mass correlates with the bulge mass

Like train stations in Japanese cities

But its origin unknown

Highest-z SMBHs

SMBHs are already in existence in <Gyrs universe.

They are not alone:

Dozens of quasars have been found at z>6.5

(Venemans +2014, Matsuoka+2017, 2018)

• Ultra-massive BH of $1.2 \times 10^{10} M_{sun}$ at z=6.3 (Wu+2013)

SMBH growth time problem

✓ stellar-mass BH fails to reach supermassive by z~7.
✓ More massive seeds or more rapid growth required.

seed BH formation scenarios

Volonteri 2012

1) first star remnant BHs

Volonteri 2012

getting more massive in recent years ...

Hirano+ (KO) 2014, 2015 studied >100-1000 halos

 ✓ flat distribution in a wide mass range:
 a few 10-100 M_{sun}

✓ even $1000M_{sun}$ first stars can be formed

Super-critical growth feasible?

Sugimura+ (KO) 2017, 2018

- accretion flow in the shadow can be protected from radiative feedback.
 But
- angular momentum reduces the accretion rate unless centrifugal radius < ~5% Bondi radius

l radius dius
2) direct collapse BHs

Volonteri 2012

Requirements for SMS formation by direct collapse

Collapse phase:

- Monolithic collapse without fragmentation
 - − Rapid cooling → fragmentation
 Without such cooling → no fragmentation.

Accretion phase:

- Formation timescale shorter than lifetime (~2Myrs)
 - High accretion rate $>M_*/t_*\sim 10^5 M_{sun}/2x10^6 yr \sim 0.05 M_{sun}/yr$
- Protostellar Feedback suppressed

Cloud collapse in intense FUV field

If FUV radiation is more intense than the critical value J_{crit}, the cloud cools solely by atomic cooling.

No rapid cooling phase
 → monolithic collapse

high temperature (at ~8000K) during the collapse
→high accretion rate in protostellar phase

 $dM_*/dt \sim c_s^3/G \sim 0.06M_{sun}/yr (T/10^4K)^{3/2}$

Supermassive stars (>10⁵M_{sun}) will form

Monolithic Collapse of Atomically Cooling Cloud

Inayoshi, Omukai & Tasker (2014)

e.g., Bromm & Loeb 2003, Latif +, Regan +

✓ No major eposode of fragmentation \checkmark small protostar (~0.1M_{sun}) is formed

Accretion evolution to supermassive stars

Does the star becomes super-massive without feedback stopping its growth?

"Stellar Inflation" by rapid accretion

Hosokawa, Yorke, KO (2012)

With rapid mass accretion (> 0.01 M_{sun}/yr), protostar does not reach the main sequence.

Instead, its radius inflates enormously to ~10AU.

Super-giant protostar on HR diagram

Hosokawa+(KO) (2013)

low effective temperature at several 10³K (looks like a red-giant star)

→negligible UV luminosity and feedback

→accretion continues unhindered and the star becomes supermassive

General relativistic collapse

depending on its accretion rate

$\dot{M}(M_{\odot}\mathrm{yr}^{-1})$	0.1	0.3	1.0	10
$ $	$1.2 imes 10^5$ 0.00	1.9×10^{5} 0.99	3.5×10^{5} 1.00	8.0×10^{5} (0.51)
	fuel exhaustion	general relativistic instability		

Final Stellar Mass and Composition of the Inner Core

✓ The onset of GR instability at $1.4 \times 10^5 M_{sun}$ was predicted from n=3 polytrope model →BUT the collapse starts at somewhat later (more massive) in reality

✓ It was believed that the collapse begins before the nuclear burning. →BUT the hydrogen is exhausted in the $< 1M_{sun}/yr$ cases. entropy distribution : envelope not in n=3 polytrope

GR instability criterion for β=const. star

 $\beta/6 < 1.12 \, (2GM/Rc^2)$

Stringent condition for FUV channel

J_{crit} : intensity at LW wavelenths (12.4eV) Sugimura, KO, Inoue 2014 needed for atomic cooling.

 ✓ J_{crit} increases with radiation temperature (i.e., hardness)

H⁻ photodetachment and H₂ formation

H₂ formation via H⁻ channel

$$H + e \rightarrow H^- + \gamma$$

 H_2 formation: $H^- + H \rightarrow H_2 + e$

Photodetachment: $H^- + \gamma \rightarrow H + e$

With the same J_{21} , softer (lower T_{UV})radiation is more effective in suppressing H_2 formation

J_{crit} for Starburst Galaxies

Using realistic spectra of starbursts...

Required J_{crit} is very high (~1000) even for PopII galaxies (unless >several 100Myr)

Only in rare environments ?

Direct collapse occurs only in very rare environments (~1Gpc⁻³).
Direct collapse may still account for high-z SMBH.

Alternative channels? shock heating in dense primordial gas

Inayoshi & KO 2012

- shocks at >10³⁻⁴/cc, with> several 10³K
 - H₂ collisionally dissociated
 - Fragments at 8000K with $> \sim 10^5 M_{sun}$
 - Isothermal collapse thereafter

Alternative channels? streaming motions of baryons

•In halos with large streaming motions, high accretion rate ($\sim 0.1 M_{sun}/yr$) is realized.

•Formed star grows to $\sim 10^5 M_{sun}$.

 Expected number ~1 Gpc⁻³ naturally account for highest-z SMBH (how about other SMBHs in less early universe?)

3) stellar merger in dense clusters

3) stellar merger

Locally unstable gas flows toward the galaxy center

Gas fragments into stars, and a dense star cluster forms

Stars merge in a very massive star that collapses into black hole ~100 times more massive than the Sun

Volonteri 2012

What if there are some metals ?

•For [M/H] > ~-5, dust cooling causes rapid temperture drop

Fragmentation of metal-enriched clouds

- Filament-like structure is formed and fragments due to sudden temperature drop in the case of $Z\!\sim\!10^{\text{-4}}Z_{\text{sun}}$
- dense star cluster formation?

Seed BH formation in dense clusters in cosmological simulations

stellar mergers occur in dense enough clusters
merger product is at most ~1000M_{sun}, not more massive that first stars
may loose some fraction of mass by stellar winds before collapse to BH

What if there are some metals ?

Chon & KO in prep.

0 yr 300 yı $10^{-4} Z_{\odot}$ 500 AU 600 yr 0 yr 300 yr $10^{-5} Z_{\odot}$ 500 AU 0 yr 300 yı 600 yı $5 \times 10^{-6} Z_{\odot}$ 500 AU 300 yr 0 yr 600 v $10^{-6} Z_{\odot}$ 500 AU 12 10 14 $\log_{10} n \,[{\rm cm}^{-3}]$

•For [M/H] > ~-5, dust cooling causes rapid temperture drop ^c Super Competitive Accretion'

Runaway growth of the central star by Super Competitive Accretion

Cloud fragments into numerous objects
Some grow supermassive by merger/accretion

Summary

First star formation

- Protostellar radiative feedback sets the final stellar mass at a few 10-100Msun
- Massive binaries are maybe common
- correct ionization model developed

Supermassive star as a seed BH

- Photodissociation (or collisional dissociation in dense, shocks) suppresses H₂ cooling, leading to SMS formation via isothermal collapse at 8000K.
- SMS grows by accretion up to ~10⁵M_{sun}, then collapses to BH by GR instability.
- Runaway formation of SMS by super competitive accretion in metal-enriched cluster seems viable.

ご清聴ありがとうございました。