宇宙物理学特論 「宇宙の爆発現象」

田中雅臣(東北大学)

田中 雅臣

愛知県出身 38歳

名古屋市生まれ、知多半島育ち

研究

天文学・天体物理学 観測・理論 (シミュレーション)

宇宙における突発的現象の物理 (超新星爆発や中性子星合体) 宇宙における元素の起源 1998-2001: 愛知県半田高校 2001-2005: 東京大学 2005-2009: 東京大学大学院 2009-2011: 東京大学 Kavli IPMU 2011-2018: 国立天文台 2018- 現在: 東北大学

間違い探し (5秒で絵が変わります)

中性子星合体からの重力波

LIGO Scientific Collaboration and Virgo Collaboration, 2017, PRL

(C) Michitaro Koike (NAOJ/HSC)

中性子星合体からの電磁波放射 「キロノバ」

2017.08.18-19 2017.08.24-25

(C) NAOJ

<u>宇宙における爆発現象</u>

- 超新星爆発

- 中性子星合体 (重力波源)
- 星の潮汐破壊
- 星のフレア

なぜ研究するのか?

- 極限的な物理状況
- 宇宙における元素の起源
- 多くの未解決問題

「宇宙の爆発現象」

- 恒星の性質と進化の概要を理解する
- 星の爆発で何が起きているのかを理解する

● 爆発のメカニズム

- 電磁波放射のメカニズム
- 宇宙の元素の起源を理解する
- 「時間軸天文学」や 「マルチメッセンジャー天文学」の 最新の話題に触れる

講義資料と日程

https://www.astr.tohoku.ac.jp/~masaomi.tanaka/chiba2021

- 全体の概論
 *半分板書、半分スライド
- 恒星の性質
- ●恒星の進化
- 超新星爆発
- 爆発現象からの電磁波放射
- 元素の起源
- 時間領域天文学、マルチメッセンジャー天文学

Section 1. 概論:恒星の一生、超新星爆発、元素の起源

1.1 星の一生と超新星爆発

1.2 元素の起源

冷泉家時雨亭叢書

明月記

フェリス女学院大学蔵 『新三十六歌仙画帖』

ー条院 寛弘3年4月2日 (西暦1006年5月1日)の夜以降、 火星のように非常に明るい客星が現れる

かに星雲 = M1

歴史的な「超新星」の記録(一部)

名前	場所	西暦	明るさ(等級)
SN 185	銀河系内	185年	-8?
SN 1006	銀河系内	1006年	-9?
かに星雲	銀河系内	1054年	-4?
SN 1181	銀河系内	1181年	0
ティコ	銀河系内	1572年	-4
ケプラー	銀河系内	1604年	-3
SN 1987A	マゼラン雲	1987年	3

およそ100-200年に1回

超新星の光度曲線 (明るさの時間変化)

図の大きさは天体の大きさと一致していません

寿命

(C: Essay Web)

ブラックホール

図の大きさは天体の大きさと一致していません

(C: Essay Web)

1 H		ピ	ツ	グリ	『ン		~25% H										
³ Li	⁴ Be						5 B	6 (7 N	8 ()	9 F	10 Ne					
11 Na	12 Mg	生		Ψ ¹			13 A	14 Si	15 P	16 S	17 C	18 Ar					
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	24 Cr	²⁵ Mn	26 Fe	27 Co	28 Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	39 Y	⁴⁰ Zr	41 Nb	⁴² Мо	43 Tc	⁴⁴ Ru	45 Rh	⁴⁶ Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
55 Cs	56 Ba	^{57~71} La-Lu	⁷² Hf	⁷³ Ta	74 W	⁷⁵ Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	⁸⁰ Hg	81 TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
87 Fr	⁸⁸ Ra	89~103 Ac-Lr	¹⁰⁴ Rf	¹⁰⁵ Db	106 Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	110 Ds	¹¹¹ Rg	112 Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og
			57 La	⁵⁸ Ce	59 Pr	60 Nd	61 Pm	62 Sm	⁶³ Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	⁶⁹ Tm	⁷⁰ Yb	71 Lu
			⁸⁹ Ac	⁹⁰ Th	⁹¹ Pa	92 U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	⁹⁶ Cm	97 Bk	⁹⁸ Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr

超新星爆発!

図の大きさは天体の大きさと一致していません

(C: Essay Web)

何も起きない

図の大きさは天体の大きさと一致していません

対になって 存在する星

白色矮星

David A. Hardy

tuesy

ケイ素

鉄

親星

放出元素

主に親星の元素

(O, Mg, Caなど)

爆発時に合成する元素 (Si, Ca, Feなど)

私たちの身の回りの元素は星の中や超新星爆発で作られる

超新星の規模を実感する

約10¹⁹ cm(約10光年~3 pc) 1572年にティコブラーエが観測した 核爆発型超新星爆発の残骸

速度 = 距離/時間

距離:10¹⁹ cm

時間:約400年

速度 = 10¹⁹ / (400 x 3 x 10⁷) ~ 10⁹ cm/s ~ 10,000 km/s 10光年 = 光が10年かかる距離 超新星は400年かかった 超新星の速度 = 光速の40分の1 = (300,000 km/秒) / 40 秒速 10,000km

約10,000 km

問題: 超新星爆発の「エネルギー」は?

 $E = \frac{1}{2}Mv^2$

太陽の質量 = 2 x 10³³ g 超新星の質量 ~ 太陽の質量

運動エネルギー=1/2×質量×速度² =1/2×(2×10³³g)×(10⁹ cm/s)² ~10⁵¹ erg

星の一生と超新星爆発:まとめ

- 星の中では元素が作られている
- 星は「進化する」
- 「重力崩壊型」 超新星
 - 主に酸素やマグネシウムなどの起源
- 「核爆発型」 超新星
 - 主に鉄族元素の起源
- 超新星の「規模」
 - 膨張速度~10,000 km/s
 - 超新星のエネルギー~10⁵¹ erg (10⁴⁴ J)
 - 銀河の形成にも影響を与える

レポート課題1

 1a. 様々な宇宙の天体の大きさ、 天体までの距離を調べて 宇宙の対数定規を完成させる
 1b. 宇宙の大きさを実感するために、例えて説明してみる 例: 地球の大きさが1円玉ぐらいだったら、 太陽は?太陽系は?銀河は?銀河団は?

1c. 取り上げた天体の質量を調べて、 質量とスケールの2次元平面に書き込む

長さスケール(大きさ、距離)

質量 vs サイズ

Size (cm)

Size (pc)

パーセク (pc): 天文学で使われる距離の単位 1 pc: 「年周視差」が1秒角となる距離

1 秒角 = (1/3600.0 x π/180) ~ 4.85 x 10-6 ラジアン d = r/θ = 1.5 x 10¹³ / 4.85 x 10⁻⁶ ~ 3.1 x 10¹⁸ cm ~ 3.3光年 (3.085678 x 10¹⁸ cm)

Section 1. 概論:恒星の一生、超新星爆発、元素の起源

1.1星の一生と超新星爆発

1.2 元素の起源

身の回りの元素

1 H																	² He
³ Li	⁴ Be											5 B	6 C	7 N	8 0	9 F	¹⁰ Ne
¹¹ Na	¹² Mg											13 Al	¹⁴ Si	15 P	16 S	17 Cl	¹⁸ Ar
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 Co	28 Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	39 Y	⁴⁰ Zr	⁴¹ Nb	⁴² Mo	43 Tc	⁴⁴ Ru	45 Rh	⁴⁶ Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	Xe
55 Cs	56 Ba	^{57~71} La-Lu	⁷² Hf	⁷³ Ta	74 W	⁷⁵ Re	⁷⁶ Os	77 Ir	78 Pt	⁷⁹ Au	⁸⁰ Hg	81 TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	39~103 Ac-Lr	¹⁰⁴ Rf	105 Db	106 Sg	¹⁰⁷ Bh	108 Hs	¹⁰⁹ Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og
			57 La	⁵⁸ Ce	59 Pr	60 Nd	61 Pm	⁶² Sm	⁶³ Eu	64 Gd	65 Tb	66 Dv	67 Ho	68 Er	⁶⁹ Tm	70 Yb	71 Lu
			⁸⁹ Ac	90 Th	⁹¹ Pa	92 U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	⁹⁶ Cm	⁹⁷ Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

人間の体

* 桜井 弘 (化学と教育 48, 459-463, 2000) 質量比

* 理科年表 上部大陸地殻の平均 質量比

宇宙に存在する元素の割合

親星

放出元素

主に親星の元素

(O, Mg, Caなど)

爆発時に合成する元素 (Si, Ca, Feなど)

私たちの身の回りの元素は星の中や超新星爆発で作られる

最近生まれた星の方がMg/Fe比が低い

銀河系の星の組成比 (Mg/Fe)

Sneden+08

la型超新星の方がdelay timeが長い

元素の周期表

														•	~25	%	
1 H		ビ	ツ	グリ	『ン												² He
3	4 D_											5 D	6	7 N I	8	9 F	10 N L -
	Be			-	_							В	<u> </u>				
11	12 星の中・超新星爆発													15 D	16 6	17	18
Na	MO												SL	Р	5		Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K_	Ca	Sc	<u> </u>	V	Cr	Mn	Ee	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	_43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	_56	57~71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg		Pb	Bi	Po	At	Rn
87	88	89~103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
		ſ				(0)	<u> </u>		(2)		<u> </u>		(7	<u> </u>	(0)	70	71
			5/	58	59 D	60 NL-L	01 D	62 C	63 F	64 C-L	65 TL	66 D	6/	68 F	69 T	70	
			La	Ce	Pr_	Nd	Pm	Sm	EU	GQ	ID	Dy	HO	Er_	Im	ΥD	LU

 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103

 Ac
 Th
 Pa
 U
 Np
 Pu
 Am
 Bk
 Cf
 Es
 Fm
 Md
 No
 Lr

鉄より重い元素の起源は謎が多い

元素の起源:まとめ

● 身の回りの元素のほとんどは星の中で合成された

- 「重力崩壊型」 超新星
 - 主に酸素やマグネシウムなどの起源
- 「核爆発型」 超新星
 - 主に鉄族元素の起源
- 銀河系内の星の観測による検証が可能

様々な疑問を物理を使って理解しよう

- なぜ星は「進化」するのか?
- なぜ質量で運命が変わるのか?
- ●なぜ星は爆発するのか?
- 超新星の膨大なエネルギーはどこからきたのか?
- 超新星はなぜ非常に明るくなるのか?
- なぜ中性子星合体は輝くのか?

熱力学

統計力学

力学

宇宙物理学 天体物理学

