

4.1 恒星内部の温度4.2 核融合反応

太陽はなぜこんなに明るいの?? =>物理を使って理解しよう

日本の一年の消費電力 = 2 x 10¹⁹ J = 2 x 10²⁶ erg 日本が107年=1000万年かけて使うエネルギーを1秒で放射

太陽の明るさ $= 4 \times 10^{26} \text{ J/s} (= \text{W}) = 4 \times 10^{33} \text{ erg/s}$

太陽はなぜ明るく輝くのか?

A. 化学反応

https://www.britannica.com/science/chemical-reaction

(例) C+ O₂ -> CO₂

原子や分子がくっつく = 原子核は変わらない

B. 原子核反応

(例) H + H + H + H -> He

原子核が変わる = 新しい元素ができる

太陽を約100億年 輝かせることができる

星の中では核融合反応が起きているらしい

=> 本当? 星の中はどうなっているの?

クーロン障壁 E~(Z1Z2e²)/r~10⁶ eV (MeV)

ガスの典型的なエネルギー E ~ kT ~ 10³ eV (keV) <= 10⁷ K

⇒ トンネル効果 量子力学 温度が高いほど核融合が 起こりやすい

Textbook by Pols

原子核物理 水素燃焼 (pp chain)

$4^{1}\text{H} \rightarrow {}^{4}\text{He} + 2\,\text{e}^{+} + 2\,\nu$

Textbook by Pols

<mark>原子核物理</mark> 水素燃焼 (CNO cycle)

$$\downarrow^{12}C + {}^{1}H \rightarrow {}^{13}N + \gamma$$

$${}^{13}N \rightarrow {}^{13}C + e^{+} + \gamma$$

$${}^{13}C + {}^{1}H \rightarrow {}^{14}N + \gamma$$

$$\downarrow^{13}C + {}^{1}H \rightarrow {}^{15}O + \gamma$$

$${}^{14}N + {}^{1}H \rightarrow {}^{15}O + \gamma$$

$${}^{15}O \rightarrow {}^{15}N + e^{+} + \gamma$$

$${}^{15}N + {}^{1}H \rightarrow {}^{12}C + {}^{4}He$$

$$\downarrow$$

$$\downarrow^{16}O + {}^{1}H \rightarrow {}^{17}F + \gamma$$

$${}^{16}O + {}^{1}H \rightarrow {}^{17}F + \gamma$$

$${}^{17}F \rightarrow {}^{17}O + e^{+} + \gamma$$

$${}^{17}O + {}^{1}H \rightarrow {}^{14}N + {}^{4}He$$

Textbook by Prialnik

Textbook by Pols

質量と半径の関係

Lecture Note by Pols

まとめ

• 恒星の内部

- 力学と熱力学で大まかに理解できる
- 太陽の中心温度は約10⁷K (1000万度)
- 核融合反応
 - 原子核のクーロンポテンシャル
 >> 粒子の運動エネルギー
 - トンネル効果が必要 (量子力学)

様々な疑問を物理を使って理解しよう

- なぜ星は「進化」するのか?
- なぜ質量で運命が変わるのか?
- ●なぜ星は爆発するのか?
- 超新星の膨大なエネルギーはどこからきたのか?
- 超新星はなぜ非常に明るくなるのか?
- なぜ中性子星合体は輝くのか?

宇宙物理学 天体物理学

