Section 5.恒星の光度と寿命

5.1 光の拡散

5.2 恒星の光度と質量の関係

「宇宙の爆発現争」

- 恒星の性質と進化の概要を理解する
- 星の爆発で何が起きているのかを理解する
- 爆発のメカニズム
- 電磁波放射のメカニズム
- 宇宙の元素の起源を理解する
- 「時間軸天文学」や
「マルチメッセンジャー天文学」の

最新の話題に触れる

講域凃料を回程

https：／／www．astr．tohoku．ac．jp／～masaomi．tanaka／chiba2021

内容

成績

- 全体の概論
- 恒星の性質
- 恒星の進化
- 超新星爆発
- 爆発現象からの電磁波放射
- 元素の起源
- 時間領域天文学，マルチメッセンジャー天文学
- 出席，質問
- レポート課題

様々な疑問を物理を使って理解しよう

- なぜ星は「進化」するのか？
- なぜ質量で運命が変わるのか？
- なぜ星は爆発するのか？
- 超新星の膨大なエネルギーはどこからきたのか？
- 超新星はなぜ非常に明るくなるのか？
- なぜ中性子星合体は輝くのか？

熱力学

カ学

統計力学

電磁気学

量子力学
 相対論

星の一生

惑星状星雲

寿命
絥1千万年

超新星爆発
赤色超巨星

星間空間

Hertzsprung－Russel 図（HR図）

光度

温度（K）

http：／／astronomy．nmsu．edu／geas／lectures／lecture23／slide04．html

質量と半径の関係

Lecture Note by Pols

質量と光度の関係

（例） $\mathbf{M}=10$ Msun
＝＞L～104 Lsun
＝＞表命
～ $10^{10} \mathrm{yr}$（100億年）／10³
～ 10^{7} yr（1000万年）

重い星の方が寿命が短い

Lecture Note by Pols

なぜ星は重いと急激に明るいのか？

星の中の不透明度（opacity）

Lecture Note by Pols

さまざまな銀河

渦巻銀河
M101

楕円銀河
ESO 325－G004
（C）NASA，ESA

- 星を作っていない
- 古い星が多い
＝軽い星が多い
－赤く見える

まとめ：恒星の光度と寿命

- 光の拡散
- 拡散時間 $\mathrm{t}_{\mathrm{esc}} \sim(\mathrm{R} / \mathrm{c}) \mathrm{\tau}$（＜＝＝ $\left.\mathrm{t}=\mathrm{K} \mathrm{\rho R}\right)$
- 恒星の「不透明度」
- 自由電子による散乱
- 東縛－自由吸収，自由－自由吸収
－L～E／tesc＝＞L～M3．5
- 恒星の性質
- 重い星ほど寿命が短い（ N ～M ${ }^{-3}$ ）

