Section 6. 星の進化(1)

6.1 ビリアル定理6.2 温度と密度の進化

惑星状星雲

図の大きさは天体の大きさと一致していません

(C: Essay Web)

なぜ星は「進化」するのか?

「進化」=時間とともにその姿を変化させる

核融合で輝いている星は、 いつか燃料を使い尽くしてしまう => そのとき星はどうなるか?

E_{tot}: 全エネルギー Ω: 重力エネルギー U: 内部エネルギー

$$U=-\frac{1}{2}\Omega$$

$$E_{\rm tot} = U + \Omega = \frac{1}{2}\Omega = -U$$

核融合をしないと、 - 全エネルギーが下がり、

- 収縮して、
- 温度が上がる

核融合の エネルギーを失う => 収縮 => 温度が上がる T ~ p^{1/3}

トリプルアルファ

=>炭素

水素

ヘリウム

ヘリウム

放置すると、、、

冷える

Phase	Main reactions	Products	T
燃焼段階	おもな反応	おもな 生成物	温度 (10 ⁸ K)
Н	pp チェイン CNO サイクル	${}^{4}_{14}$ He	0.15 - 0.2
He	$\begin{array}{c} 3^{4}\text{He} \longrightarrow {}^{12}\text{C} \\ {}^{12}\text{C} + {}^{4}\text{He} \longrightarrow {}^{16}\text{O} + \gamma \end{array}$	$1^{12}C$ $1^{16}O$	1.5
\mathbf{C}	$ {}^{12}\mathrm{C}{+}^{12}\mathrm{C}{\longrightarrow} \begin{cases} {}^{23}\mathrm{Na+p} \\ {}^{20}\mathrm{Ne+\alpha} \end{cases} $	Ne,Na Mg,Al	7
Ne	$\begin{vmatrix} ^{20}\mathrm{Ne}+\gamma \longrightarrow ^{16}\mathrm{O}+\alpha \\ ^{20}\mathrm{Ne}+\alpha \longrightarrow ^{24}\mathrm{Mg}+\gamma \end{vmatrix}$	O Mg	15
Ο	$ {}^{16}\text{O}{+}^{16}\text{O}{\longrightarrow} \begin{cases} {}^{28}\text{Si}{+}\alpha \\ {}^{31}\text{P}{+}p \end{cases} $	Si,P,S, Cl,Ar,Ca	30
Si	$\begin{vmatrix} ^{28}\text{Si}+\gamma \longrightarrow ^{24}\text{Mg}+\alpha \\ ^{24}\text{Mg}+\gamma \longrightarrow \begin{cases} ^{23}\text{Na}+p \\ ^{20}\text{Ne}+\alpha \\ & \\ \hline \end{pmatrix} $ 多くの反応 → 統計平衡	Cr,Mn, Fe,Co, Ni,Cu	40
·	Nuclear st	tatistical e	quilibrium

元素はいかにつくられたか(岩波書店)

原子核の束縛エネルギー

 $Eb = [Nm_N + Zm_p - m_i] c^2 > 0$

束縛エネルギーが大きい = より安定

鉄が最も安定

全ての星が鉄まで核融合を続けるの? => No 理想気体ではなくなる効果が重要

まとめ:星の進化(1)

- ビリアル定理
 - 星の内部エネルギーは重力エネルギーと常に関係
 - 全エネルギーが下がる => 温度が上がる (負の比熱)
- 温度と密度の進化
 - 星が収縮して温度が上がる T ~ ρ^{1/3}
 - より重い元素の核融合へ => たまねぎ構造
 - 全ての星が鉄を作る? => No 星の状態方程式が重要になる (次回のテーマ)

Appendix

1a. H-burning (pp chain)

$4^{1}H \rightarrow {}^{4}He + 2e^{+} + 2\nu$

Textbook by Pols

Energy production rate (per gram) q~ρT⁴

T ~ 4 x 10⁶ K

Textbook by Pols

Textbook by Prialnik

1b. H burning (CNO cycle) E production rate q $\sim \rho T^{16}$ T $\sim 1.5 \times 10^7$ K

$$\downarrow^{12}C + {}^{1}H \rightarrow {}^{13}N + \gamma$$

$${}^{13}N \rightarrow {}^{13}C + e^{+} + \nu$$

$${}^{13}C + {}^{1}H \rightarrow {}^{14}N + \gamma$$

$$\downarrow^{13}C + {}^{1}H \rightarrow {}^{15}O + \gamma$$

$${}^{14}N + {}^{1}H \rightarrow {}^{15}O + \gamma$$

$${}^{15}O \rightarrow {}^{15}N + e^{+} + \nu$$

$${}^{15}N + {}^{1}H \rightarrow {}^{12}C + {}^{4}He$$

$$\downarrow$$

$$\downarrow^{16}O + {}^{1}H \rightarrow {}^{17}F + \gamma$$

$${}^{16}O + {}^{1}H \rightarrow {}^{17}F + \gamma$$

$${}^{17}F \rightarrow {}^{17}O + e^{+} + \nu$$

$${}^{17}O + {}^{1}H \rightarrow {}^{14}N + {}^{4}He$$

Textbook by Prialnik

Textbook by Pols

2. He-burning (triple alpha)

$${}^{4}\text{He} + {}^{4}\text{He} \leftrightarrow {}^{8}\text{Be}$$
$${}^{8}\text{Be} + {}^{4}\text{He} \rightarrow {}^{12}\text{C}^{*} \rightarrow {}^{12}\text{C} + \gamma$$
$${}^{12}\text{C} + {}^{4}\text{He} \rightarrow {}^{16}\text{O} + \gamma,$$

Energy production rate (per gram) q ~ ρ²T⁴⁰

Textbook by Prialnik

T~1.5 x 10⁸ K

3. C-burning

$$^{12}C + {}^{12}C \rightarrow {}^{24}Mg^* \rightarrow {}^{20}Ne + \alpha$$

 $\rightarrow {}^{23}Na + p$

4. Ne-burning

²⁰Ne +
$$\gamma \leftrightarrow {}^{16}O + \alpha$$

²⁰Ne + $\alpha \rightarrow {}^{24}Mg + \gamma$

T ~ 7 x 10⁸ K

T ~ 1.5 x 10⁹ K

5. O-burning

$$^{16}O + {}^{16}O \rightarrow {}^{32}S^* \rightarrow {}^{28}Si + \alpha$$

 $\rightarrow {}^{31}P + p$

T ~ 2-3 x 10⁹ K

6. Si-burning (Nuclear statistical equilibrium) T > 4 x 10⁹ K

High temperature => photo-dissociation

²⁸Si
$$(\gamma, \alpha)$$
 ²⁴Mg (γ, α) ²⁰Ne (γ, α) ¹⁶O (γ, α) ¹²C (γ, α) 2 α

He capture

²⁸Si
$$(\alpha, \gamma)$$
 ³²S (α, γ) ³⁶Ar (α, γ) ⁴⁰Ca (α, γ) ⁴⁴Ti (α, γ) ... ⁵⁶Ni

=> equilibrium of many reactions

$$^{28}\text{Si} + \gamma \leftrightarrow ^{24}\text{Mg} + \alpha$$
,

Nuclei with high binding energy tend to be produced (Fe, Co, Ni)