Section 10. 超新星爆発のメカニズム

10.1 核爆発型超新星 10.2 重力崩壊型超新星

対になって 存在する星

白色矮星

David A. Hardy

tuesy

超新星爆発!

ケイ素

鉄

普通の星の場合は核融合が起きることでバランスしている

白色矮星はなぜ核融合で爆発するのか?

Nomoto+84, Timmes+

領域	温度 (K)	密度 (g cm-3)		主な元素
1	(7-9) x 10 ⁹	10 ⁸⁻⁹	NSE + 電子捕獲	⁵⁶ Fe, ⁵⁴ Fe, ⁵⁸ Ni
2	(5-7) x 10 ⁹	107-8	NSE	56 Ni
3	(4-5) x 10 ⁹	<107	不完全ケイ素燃焼	²⁸ Si, ³² S, ⁴⁰ Ca
4	< 4 x 10 ⁹	<107	不完全酸素燃焼	¹⁶ O, ²⁴ Mg

*NSE = nuclear statistical equilibrium (核統計平衡)

観測

Tanaka+10

Thermonuclear Supernova Explosion

model f1

(c) Friedrich Röpke, MPA, 2004

白色矮星をどう太らせるか?

普通の星から降着

2つの白色矮星が合体

single degenerate (SDシナリオ) double degenerate (DDシナリオ)

未だ論争中

核爆発型超新星:まとめ

● チャンドラセカール限界に近い白色矮星の核爆発

● 核融合反応 => 縮退圧が優勢のため核反応が暴走

● 爆発的元素合成

- 約0.8 Msunの鉄族元素(⁵⁶Ni & ⁵⁶Fe, ⁵⁴Fe, ⁵⁸Ni) > 重力崩壊型
- 約0.4 Msunの中間質量元素 (²⁸Si, ³²S, ⁴⁰Ca)

● 親星の進化経路

- Single degenerate (SDシナリオ) or double degenerate (DDシナリオ)
- 研究のホットトピック

Section 10. 超新星爆発のメカニズム

10.1 核爆発型超新星 10.2 重力崩壊型超新星

図の大きさは天体の大きさと一致していません

(C: Essay Web)

20太陽質量の場合 (重力崩壊直前は約16太陽質量)	質量 (太陽質量)	半径 (太陽半 径)	中心に落ちる までの時間 (秒)
	16	1000	3x 10 ⁷ (1yr)
He	6	0.5	300
	5	0.2	50
	4	0.08	20
Si	2	0.005	1
Fe	1.5	0.003	0.1
	太陽半径 = 7 x 10 ¹⁰ cm		
	鉄コア半径~0.003 x 7 x 10 ¹⁰ cm		
	~ 2 x	10 ⁸ cm ~ 2,000) km

超新星爆発!

何がおきて、どうやって爆発するのか?

コンピュータシミュレーションの結果 (1次元球対称を仮定)

重力崩壊型超新星

星の一生の最期に何が起きるのか? 膨大なエネルギーはどこから?

なぜ爆発するのか? なぜ爆発は「難しい」のか?

(C) 原子核から読み解く超新星爆発の世界 住吉光介さん著

アメリカのグループの結果

S20.0 ENTROPY LEA VELOCITY Time = -168.0 ms Radius = 500.00 km

日本のグループの結果

まだE ~ 10⁵⁰ erg (1桁足りない) 現代宇宙物理学の最大の謎の1つ

超新星SN 1987A

最近100年で最も近い超新星 (銀河系のとなり、大マゼラン雲、50 kpc)

SN 1987Aから ニュートリノを検出

カミオカンデ

(C) ICRR

E_{nu}~10⁵³ ergが確認された! => ニュートリノ加熱 メカニズムの基礎

* Observed energy (anti electron neutrino) x 6

Jegerlehner et al. 1996

レポート課題 5

カミオカンデで11イベントのニュートリノが観測された。 5a. 地球に届いた反電子ニュートリノのフラックスが

f~1010個/cm2程度であることを示せ。

5b. SN 1987Aがニュートリノとして放出した

総エネルギーを概算せよ。

ただし、以下の仮定をして良い

* カミオカンデの有効体積 2 kton

 $\bar{\nu_e} + p \rightarrow e^+ + n$

- * 主な反応は水分子中の陽子との反応 (反応断面積 ~ 10-41 cm2)で、 検出されるのは全て反電子ニュートリノ
- * 観測されたニュートリノのそれぞれのエネルギーは10 MeV
- * 超新星からはすべての(6種類の)フレーバーのニュートリノが 同数放出された
- * 大マゼラン雲までの距離 50 kpc

重力崩壊型超新星:まとめ

● 大質量星の進化の最後

● 電子捕獲と鉄の光分解により暴走的に重力崩壊

● 爆発のメカニズム

- 重力崩壊 => バウンス => 衝撃波停滞 => ニュートリノ加熱
- SN 1987Aからのニュートリノが検出された
- 詳細な爆発メカニズムは未だ解明されていない
- 爆発時に新たな元素を合成
 - 56Ni => 超新星の熱源
 - 親星で作った元素とともに星間空間へ放出

Appendix

衝撃波にされされた高温物質中の元素合成 星の中の元素合成より圧倒的に短い時間 => より高い温度が必要

名称	主な生成元素	燃焼温度	星の中の場合
爆発的炭素・ネオン燃焼	O, Mg, Si, Ne	$2 \times 10^9 \text{ K}$	0.7 x 10 ⁹ , 1.5 x 10 ⁹
爆発的酸素燃焼	O, Si, S, Ar, Ca	$3-4 \times 10^9 \text{ K}$	~3 x 10 ⁹
不完全ケイ素燃焼	Si, S, Fe, Ar, Ca	$4 \times 10^9 \text{ K}$	
完全ケイ素燃焼	Fe, He, Ni, Zn, Co	$5 \times 10^9 { m K}$	~4 x 10 ⁹

元素はいかにつくられたか(岩波書店)

Nomoto+13

Nomoto+13

6